FeS_2、NiS_2薄膜制备及其电化学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
可以作为锂电池或锂离子电池的正极材料的FeS2和NiS2,由于具有组成元素无毒、价格低廉、充放电容量高和可以大电流放电等优点一直备受关注,在军用热电池和一次高能原电池方面都有应用,但是由于在室温条件下这类正极材料的循环性能差,所以作为二次电池的正极材料应用研究开展的很少。本文采用溶胶-凝胶法制备了Fe2O3薄膜和NiO薄膜,然后把Fe2O3薄膜和NiO薄膜与气体硫进行气-固反应合成了FeS2和NiS2薄膜材料。本文的研究内容为使用origin软件和QBasic程序计算和绘制了相图,从绘制的相图选择了合理的合成方法,实验上主要研究了合成工艺条件对FeS2和NiS2薄膜材料的相结构及电化学性能的影响,并在此基础上对Li+离子在FeS2和NiS2薄膜材料中的扩散系数和首次放电时产生的电化学极化机理等进行了研究,主要结果如下:
     使用XRD和电化学方法研究证实金属Au耐高温硫化,并且在1.0-2.5V(vs Li+/Li)范围内电化学性能稳定,可以用作制备黄铁矿薄膜时的基体及可用作FeS2薄膜电极在锂电池中的正极集流体。使用计算机绘制了Fe-S-O、Ni-S-O的lgPs2-lgPO2优势区位图和lgPs2-lgPSO2优势区位图,从理论上证明Fe2O3、NiO在硫气体中热处理可以分别得到相应的二硫化合物FeS2、NiS2。
     在金属氯化物无水乙醇溶胶-凝胶体系中,使用提拉-热处理方法,制备铁氧化物薄膜和镍氧化物薄膜,XRD光谱证明制备的铁氧化物薄膜在500℃热处理30分钟后为Fe2O3相结构(赤铁矿结构)薄膜,而镍氧化物薄膜在600℃热处理30分钟后为NiO相结构(绿镍矿结构)薄膜。制备的Fe2O3薄膜和NiO薄膜表面平整、均匀,细腻且与基体结合良好。
     系统研究了硫化温度、硫化时间和硫化时硫气体压力等合成条件在Fe2O3、NiO薄膜转化为FeS2、NiS2薄膜过程中对薄膜相结构、薄膜的晶粒尺寸及制备的薄膜电极的电化学性能的影响。Fe2O3薄膜与0.4克硫一起密封于30cm3的石英管中,并于350-800℃热处理硫化20小时热硫化处理后可以使F2O3薄膜转变成为FeS2薄膜,在SEM显微图谱上可以看到,薄膜的晶粒尺寸随硫化温度的升高而增大,尤其当硫化温度在800℃后出现颗粒达7000nm大小的FeS2薄膜。综合电化学性能较好的硫化工艺条件为:硫化温度为500℃,硫化时间20小时,硫化时最佳硫气体压力为13大气压。在这个优化条件下制备的FeS2薄膜的Li/FeS2电池中,其电化学性能最佳,首次电池放电容量大约在900mAh g-1,第二次电池放电容量大约530 mAh g-1,经30次循环充放电后的放电容量达410 mAh g-1。
     NiO薄膜与0.4克硫一起密封于30cm3的石英管中,并于400-600℃热处理硫化20小时后可以转变成为NiS2相结构薄膜,而当硫化温度在700-800℃,由于气化而使基体材料上的Ni损失且不能得到NiS2相结构薄膜。对于NiS2相结构薄膜,电化学性能最好的硫化工艺条件为:硫化温度为600℃,硫化时间20小时,硫化时最佳硫气体压力为15大气压。在这个优化条件下制备的NiS2薄膜的Li/NiS2电池中其电化学性能最佳,首次电池放电容量大约在880mAh g-1,第二次电池放电容量大约600 mAh g-1,经30次循环充放电后的放电容量为400 mAhg-1。
     由于电极表面含有S、O2等杂质,使得新装配的Li/FeS2、NiS2/Li电池的开路电压高于Li/FeS2、NiS2/Li电池的理论电压。
     在Li/FeS2电池和Li/NiS2电池中,使用0.4C电流放电到1.0V时,FeS2可以100%还原为Fe+2Li2S,而NiS2可以100%还原为Ni+2Li2S。第一次放电结束后接着的充电过程中,Fe可以几乎100%可以电化学氧化成Li2FeS2,而Ni几乎100%可以电化学氧化成Ni3S2。
     电位阶跃法测定得到Li+离子在FeS2中的扩散系数为1.4×10-16cm2S-1,Li+离子在NiS2中的扩散系数为5.3×10-17cm2S-1。FeS2和NiS2薄膜电极在1M LiPF6的EC/DMC(1:1,v/v)溶液中循环伏安、恒电流充放电及电位阶跃实验结果证明,首次放电时FeS2和NiS2薄膜电极存在严重的Li+离子扩散极化,使得电池放电电位低于理论电池电位。从0.4C恒电流时电池的恒流循环充电电化学性能来看,NiS2薄膜电极的第二到第十次放电容量比FeS2薄膜电极要大,而第十一次循环以后,NiS2薄膜电极的放电容量比FeS2薄膜电极略小。但从FeS2和NiS2薄膜电极的电位阶跃法测得的Li+离子在薄膜材料中的扩散系数结果都表明,室温条件下,在1M LiPF6的EC/DMC(1:1,v/v)溶液中FeS2薄膜电极的大电流电化学性能要优于FeS2薄膜电极的电化学性能。
FeS2 and NiS2 are promising candidates for cathode materials in lithium batteries or lithium ion batteries due to their high theoretical capacity, low cost (abundant mineral), non-toxicity and high high current densities. They have been used as cathode materials in thermal batteries and primary cells in the past. Because of the poor cycle performances of electrochemistry in room temperature, FeS2 and NiS2 have not used as cathode materials in second batteries. In this paper, Fe2O3 films and NiO films were prepared by sol-gel techniques, then the FeS2 and NiS2 films were synthesized on gold substrates after the metal oxide films being heat-treated in sealed quartz tubes in gaseous sulfur.
     The effects of technological conditions on the phase structures and the electrochemical performances of films have been studied. And the diffusion coefficient of Li+ion in FeS2 and NiS2 Materials have been determined by potential step method.
     After metal Au being heat-treated at 400-800℃in sealed quartz tubes in gaseous sulfur, the phase structure of Au has not been changed according to the result of XRD diffraction. And It is determined that the metal Au has excellent electrochemical stability in 1M LiPF6 of EC/DMC (1:1, v/v) solution in the range of 1.0-2.5 V (vs Li+/Li) potential by cyclic voltammetry and constant current charge-discharge techniques. So the Au is adequate substrate on which the FeS2 and NiS2 were prepared and the Au can be used as current collector for cathode of Li batteries in the range of 1.0-2.5V (vs Li+/Li) potential. The predominance area diagrams of 1gPS2-1gPO2 and 1gPS2-1gPSO2 for Fe-S-0 and Ni-S-0 were drawn by the improved component activity term method of base element. And the influences on the purity of pyrite by the residual oxygen impurity in the process of synthesis have been characterized according to these drawn predominance area diagrams. The predominance area diagrams show that the high-purity FeS2 and NiS2 can be prepared by heat-treatment of iron/ iron oxides and nickel/nickel oxide with sulfur in sealed quartz reactor. Iron oxide films and nickel oxide films were prepared on gold substrates by sol-gel method with Both Acetylacetone and Ferric chloride and chlorepoxy-propone dissolved in ethanol solution. The Iron oxide films and nickel oxide films were crack-free, transparent and uniform. These metal oxide film exhibit good bonding with the Au matrixs.
     The effects of sulfurzing temperature, sulfurizing time and the gaseous sulfur pressure on the phase structures and the electrochemical performances of films have been studied systematically. The experimental results show that the FeS2 films can be prepared by the F2O3 films being heat-treated at 350-800℃in 13atm gaseous sulfur for 20hours. The SEM determined that the grain size of the films will increase as the heat-treatment temperature increases. Especially after being heat-treated at 800℃, the grain sizes of the FeS2 films reach 8μm. While the FeS2 films is prepared at 500℃in 13atm gaseous sulfur for 20hours, the prepared FeS2 films exist the best electrochemical performances:the first discharge capacity is 900mAh g-1, and 30th discharge capacity is 410 mAh g-1。
     Meanwhile the experimental results show that the NiS2 films can be prepared by the NiO films being heat-treated at 400-600℃in 15atm gaseous sulfur for 20hours. After NiO films being heat-treated at 700-800℃for 20hours, the NiS2 phase structure films cannot be obtained and the nickel on the matrix will loss Owing to evaporation. While the NiS2 films is prepared at 600℃in 15atm gaseous sulfur for 20hours, the prepared NiS2 films exist the best electrochemical performances:the first discharge capacity is 880mAh g-1, and 30th discharge capacity is 400 mAh g-1.
     The open-circuit potential (OCV) of the fresh Li/FeS2、Li/NiS2 cell is 2.2-3. IV, which is larger than that of theory. This is caused by FeS2、NiS2 electrodes containing impurities of S、O.
     While the Li/FeS2 or Li/NiS2 cell is discharged to 1.0V wtith 0.4C current at the first discharging,100% of the FeS2 in cathode can be reduced to Fe+2Li2S and 100% of the NiS2 in cathode can be reduced to Ni+2Li2S. Subsequently at the first charging,100% of the reduced Fe can be oxidized to Li2FeS2 and 100% of the reduced Ni can be oxidized to Ni3S2.
     The diffusion coefficient have been determined by potential step method:the diffusion coefficientof Li+ion in is 1.4×10-16 cm2 S-1 and the diffusion coefficient of Li+ion in the prepared NiS2 film is 5.3×10-17 cm2 S-1. It is determined that the diffusion polarization of Li+ion into crystals of FeS2 or NiS2 film is one of the reasons that causes the discharging potential is low at the first discharging 1M LiPF6 EC/DMC (1:1, v/v) solution by cyclic voltammetry and constant current charge-discharge techniques.
     Moreover, electrochemical performance of the NiS2 film is better than that of the FeS2 film between the second and the 10th cycle at 0.4C dishcharging, but electrochemical performance of the NiS2 film is worse than that of the FeS2 film after the 10th cycle.
引文
[1]蒋利军,张向军,刘晓鹏,等.新能源材料的研究进展.化学进展,2009,28(Z1): 50-56
    [2]T. Mizushima, P. C. Jones, P. J. Wiseman, et al. LixCoO2 (0    [3]J. N. Reimers, J. R. Dahn. Electrochemical and In Situ X-Ray Diffraction Studies of Lithium Intercalation in LixCoO2. J. Electrochem. Soc.,1992,139:2091-2097
    [4]M. M. Thackeray. Handbook of battery Materys. New York:John Wiley &Sons. Inc.1999:293-297
    [5]Doron Aurbach, Boris Markovsky, Gregory Salitra, et al. Review on electrode-electrolyte solution interactions, related to cathode materials for Li-ion batteries. Journal of Power Sources,2007,165(2): 491-499
    [6]K. S. Han, S. W. Song, M. Yoshimura. Room-Temperature Fabrication of Lithium Cobalt Oxide Thin-Film Electrodes by Lithium Hydroxide Solution Treatment. Journal of the American Ceramic Society,1998,81: 2465-2467
    [7]R. J. Gummow, M. M. Thackery, W. David, et al. Structure and electrochemistry of lithium cobalt oxide synthesised at 400°C. Mater. Res. Bull.,1992,27:327-329
    [8]E. Rossen, J. N. Reimers, J. R. Dahn. Synthesis and electrochemistry of spinel LT——LiCoO2. Solid state Ionics,1993,62:53-60
    [9]吴宇平,万春荣,姜长印,等.锂离子二次电池.北京:化学工业出版社.2002.18-34
    [10]K. Mizushima, P. C. Jones, P. J. Wiseman, et al. LixCoO2 (0    [11]Y. Nishi. Something About Lithium Ion Batteries. Shokabo Press, Tokyo,1997
    [12]E. D. Jeong, M. S. Won, Y. B. Shin. Cathodic properties of a lithium ion secondary battery using LiCoO2 prepared by a complex formation reaction. J. Power Sources,1998,70:70-77
    [13]Naoto Kitamura, Hidenobu Iwatsuki, Yasushi Idemoto. Improvement of cathode performance of LiMn2O4 as a cathode active material for Li ion battery by step-by-step supersonic-wave treatments. J. Power Sources, 2009,189:114-120
    [14]Changyin Wang, Shigang Lu, Surong Kan, et al. Enhanced capacity retention of Co and Li doubly doped LiMn2O4. J. Power Sources,2009,189: 607-610
    [15]Bok-Hee Kim, Jong-Hwan Kim, Ik-Hyun Kwon, et al. Ceramics International,2007,33:837-841
    [16]Myoung Youp Song, Ryong Lee. Synthesis by sol-gel method and electrochemical properties of LiNiO2 cathode material for lithium secondary battery. J. Power Sources,2002,111:97-103
    [17]J. Molenda, P. Wilk, J. Marzec. Electrochemical and chemical deintercalation of LiMn2O4. Solid State Ionics,2002,146:73-79
    [18]Kingo Ariyoshi, Tomohiro Ichikawa, Tsutomu Ohzuku. Structural change of LiNi1/2Mn1/2O2 during charge and discharge in nonaqueous lithium cells. J. Physics and Chemistry of Solids,2008,69:1238-1241
    [19]Yoshinori Kida, Katsunori Yanagida, Atsushi Yanai, et al. Cycle performance of LiCoxNi1-xO2/graphite-coke hybrid carbon systems for long-life lithium secondary batteries. J. Power Sources, 2005,142:323-328
    [20]Tsutomu Ohzuku, Atsushi Ueda, Masatoshi Nagayama. Electrochemistry and Structural Chemistry of LiNiO2 (R3m) for 4 Volt Secondary Lithium Cells. J. Electrochem. Soc.1993,140:1862-1870
    [21]Miaojun Wang, Alexandra Navrotsky. Enthalpy of formation of LiNiO2, LiCoO2 and their solid solution, LiNi1-xCoxO2. Solid State Ionies, 2004,166:167-171
    [22]J. R. Dahn, U. von Sacken, M. W. Juzkow, et al. Rechargeable LiNiO2/Carbon Cells. J. Electrochem. Soc.,1991,138:2207-2211
    [23]C. Delmas, J. P. Peres, A. Rougier, et al. On the behavior of the LixNiO2 system:an electrochemical and structural overview. Journal of Power Sources,1997,68(1):120-125
    [24]D. P. Abraham, R. D. Twesten, M. Balasubramanian, et al. Surface changes on LiNi0.8Co0.2O2 particles during testing of high-power lithium-ion cells. J. McBreen, K. Amine. Electrochemistry Communications,2002,4: 620-625
    [25]Okada Masaki, Takahashi Ken-iehi, Mouri Takashi. Synthesis and electrochemical characteristics of Li (Ni·M)O2 (M=Co, Mn) cathode for rechargeable lithium batteries. J. Power sources.1997,68:545-548
    [26]W. Li, J. C. Currie. Morphology Effects on the Electrochemical Performance of LiNi1-xCoO2. J. Electrochem. Soc.,1997,144:2773-2779
    [27]Akira Kinoshita, Katsunori Yanagida, Atsush Yanai, et al. Electrochemical characteristics of LiNi1-xO2 as positive electrode materials for lithium secondary batteries. J. Power sources, 2001,102:283-287
    [28]Nitta Yoshiaki, Okamura Kazuhiro, Haraguehi Kazunori, et al. Crystal structure study of LiNi1-xMnO2. J.Power Sources,1995,54:511-515
    [29]S.H. Kang, J. Kim, M. E. Stoll, et al. Layered Li(Ni0.5-xMn0.5-M2x')O2 (M'=Co, Al, Ti;x=0,0.025) cathode materials for Li-ion rechargeable batteries. J. Power Sources,2002,112:41-48
    [30]Michael E. Spahr, Petr Novák, Otto Haas, et al. Cycling performance of novel lithium insertion electrode materials based on the Li-Ni-Mn-O system. J. Power Sources,1997,68:629-633
    [31]J. Kim, K. Amine. A comparative study on the substitution of divalent, trivalent and tetravalent metal ions in LiNi1-xMxO2 (M=Cu2+, Al3+ and Ti4+). J. Power Sources,2002,104:33-39
    [32]R. Stoyanova, E. Zheeheva, E. Kuzmanova. Aluminium coordination in LiNi1-yAlyO2 solid solutions. Solid State Ionics,2000,128:1-10
    [33]Wang G. X., Zhang S., Bradhurst D. H., et al. LiAlδNi1-δO2 solid solutions as cathodic materials for rechargeable lithium batteries. Solid State Ionics,1999,116:271-277
    [34]C. Pouillerie, L. Croguennee, C. Delmas. The LixNi1-yMgyO2 (y=0.05, 0.10) system:structural modifications observed upon cycling. Solid State Ionics,2000,132:15-29
    [35]C. Julien, G. A. Nazri, A. Rougier. Electrochemical performances of layered LiM1-yMy'O2 (M=Ni, Co; M'=Mg, Al, B) oxides in lithium batteries. Solid State Ionics,2000,135:121-130
    [36]杨儒,李敏,胡天斗,等.锂离子电池正极材料LiNixCo(1-x)O2局域结构的研究. 北京化工大学学报,2002,29:63-66
    [37]豆志河,张廷安,侯闯.锂离子电池正极材料LiNi(0.8)Co(0.2)O2和LiNi(0.95)Ce(0.05)O2制备工艺优化.中国稀土学报,2004,22:651-655
    [38]桂阳海,胡国荣,赵恒勤,等.稀土掺杂锂离子电池正极材料锂镍钴氧的研究.矿产保护与利用,2003,(2):41-44
    [39]G. V. Subba Rao, B. V. R. Chowdari, H. J. Lindner. Yttrium-doped Li(Ni, Co)O2:an improved cathode for Li-ion batteries J. Power Sources, 2001,97-98:313-315
    [40]H. X. Yang, Q. F. Dong, X. H. Hu, et al. Preparation and characterization of LiNiO2 synthesized from Ni (OH) 2 and LiOH·H2O. J. Power Sources,1999,79:256-261
    [41]曹文玉,顾惠敏,翟玉春,等.锂离子电池正极材料LiNiO_2的制备及修饰.材料与冶金学报,2005,4:30-35
    [42]Myoung Youp Song, Ryong Lee. Synthesis by sol-gel method and electrochemical properties of LiNiO2 cathode material for lithium secondary battery. J. Power Sources,2002,111:97-103
    [43]Zhou Yingke, Huang Jier, Shen Chengmin, et al. Synthesis of highly ordered LiNiO2 nanowire arrays in AAO templates and their structural properties. Materials Science and Engineering A,2002,335:260-267
    [44]H. M. Wu, J. P. Tu, X. T. Chen, et al. Synthesis and characterization of LiNi0.8Co0.2O2 as cathode material for lithium-ion batteries by a spray-drying method. J. Power Sources,2006,159:291-294
    [45]Decheng Li, Atsushi Ito, Koichi Kobayakawa, et al. Electrochemical characteristics of LiNi0.5Mn1.5O4 prepared by spray drying and post-annealing. Electrochimica Acta,2007,52:1919-1924
    [46]赖欣,毕剑,史芳,等.电化学沉积技术制备LiNiO2薄膜及表征(英文).无机化学学报,2006,22:1929-1932
    [47]M. M. Thackeray, Handbook of Battery Materials, Weinheim, Germany: Wiley-VCH,1999.293-294
    [48]C. S. Johnson, D. W. Dees, M. F. Mansuetto, et al. Structural and electrochemical studies of α-manganese dioxide (α-MnO2). J. Power Sources,1997,68:570-577
    [49]M. M. Thackeray, M. F. Mansuetto, J. B. Bates. Structural stability of LiMn2O4 electrodes for lithium batteries. J. Power Sources, 1997,68:153-158
    [50]R. J. Gummow, A. Kock, M. M. Thackerym. Improved-capacity retention in rechargeable 4 V lithium/lithium-manganese oxide (spinel) cells. Solid State Ionics,1994,69:59-67
    [51]M. Y. Saidi, J. Barker, R. Koksbang. Structural and electrochemical investigation of lithium insertion in the Li1-xMn2O4 spinel phase. Electrochimica Acta,1996,41:199-204
    [52]T. Ohzuku, M. Kitagawa, T. Hirai. Electrochemistry of Manganese Dioxide in Lithium Nonaqueous Cell. J. Electrochem. Soc.1990,137: 769-774
    [53]Y. Jang, B. Huang, H. Wang, et al. Electrochemical Cycling-Induced Spinel Formation in High-Charge-Capacity Orthorhombic LiMnO2. J. Electrochem. Soc.,1999,146(9):3217-223
    [54]Q. Wang, J. Sun, C. Chen. Thermal Stability of Delithiated LiMn2O4 with Electrolyte for Lithium-Ion Batteries. J. Electrochem. Soc.,2007-, 154 (4):A263-A267
    [55]H. Xia, Y. S. Meng, L. Lu, et al. Electrochemical Properties of Nonstoichiometric LiNi0.5Mn1.5O4-δ Thin-Film Electrodes Prepared by Pulsed Laser Deposition. J. Electrochem. Soc.,2007,154(8):A737-A743
    [56]A. S. Andersson, J.O. Thomas. The source of first-cycle capacity loss in LiFeP04. J. Power Sources,2001,97-98:498-502
    [57]A. K. Padhi, K. S. Nanjundaswamy, J. B. Goodenough. Phospho-olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries. J. Electrochem. Soc.,1997,144(3):1188-1194
    [58]S. Y. Chung, J. T. Bloking, Y. M. Chiang. Electronically conductive phospho-olivines as lithium storage electrodes. Nature Materials,2002, (1):123-127
    [59]J. Barker, Y. SaidiM, J. L. Swoyer. Lithium. Iron(Ⅱ) Phospho-olivines Prepared by a Novel Carbothermal Reduction Method. Electrochem. Solid-State Lett.,2003,6:53-55
    [60]D. Y. Wang, H. Li, S. Q. Shi, et al. Improving the rate performance of LiFeP04 by Fe-site doping. Electrochimica Acta,2005,50:2955-2958
    [61]Pier Paolo Prosini, Daniela Zane, Mauro Pasquali. Improved electrochemical performance of a LiFePO4-based composite cathode. Electrochimica Acta,2001,46(23):3517-3523
    [62]Anna S. Andersson, Beata Kalska, Lennart Haggstrom, et al. Lithium extraction/insertion in LiFePO4:an X-ray diffraction and Mossbauer spectroscopy study. Solid State Ionics,2000,130:41-52
    [63]Shoufeng Yang, Peter Y. Zavalij, M. Stanley Whittingham. Hydrothermal synthesis of lithium iron phosphate cathodes. Electrochemistry Communications,2001,3:505-508
    [64]K. PadhiA, K. S. Nanjundaswamy, C. Masquelier, et al. Effect of Structure on the Fe3+/Fe2+Redox Couple in Iron Phosphates. J. Electrochem. Soc.,1998,144:1609-1613
    [65]F. Croce, A. D'Epifanio, J. Hassoun, et al. A Novel Concept for the Synthesis of an Improved LiFePO4 Lithium Battery Cathode. Electrochem. Solid-State Lett.,2002,5:47-50
    [66]Y. Q. Hu, M. M. Doff, R. Kostecki, et al. Electrochemical Performance of Sol-Gel Synthesized LiFePO4 in Lithium Batteries. J. Electrochem. Soc.,2004,151:A1279-1285
    [67]P. P. Prosini, S. M. Carew, S. A. Scaccia. A New Synthetic Route for Preparing LiFePO4 with Enhanced Electrochemical Performance. J. Electrochem. Soc,2002,149:A886-890
    [68]G. Arnold, J. Garche, R. Hemmer, et al. Fine-particle lithium iron phosphate LiFeP04 synthesized by a new low-cost aqueous precipitation technique. J. Power Sources,2003,119-121:247-251
    [69]K. S. Park, J. T. Son, H.. T Chung, et al. Synthesis of LiFeP04 by co-precipitation and microwave heating. Electrochemistry Communications,2003,5:839-842
    [70]S. L. Bewlay, K. Konstantinov, G. X. Wang, et al. Conductivity improvements to spray-produced LiFePO4 by addition of a carbon source. Mater. Lett.,2004,58:1788-1791
    [71]M. S. Whittingham. Electrical Energy Storage and Intercalation Chemistry. Science,1976,192:1126-128
    [72]Yasuhiro Miki, Daisuke Nakazato, Hiromasa Ikuta, et al. Amorphous MoS2 as the cathode of lithium secondary batteries. J. Power Sources, 1995,54:508-510
    [73]Nobuyuki Imanishi, Kiyoshi Kanamura, Zen-ichiro Takehara. Synthesis of MoS2 Thin Film by Chemical Vapor Deposition Method and Discharge Characteristics as a Cathode of the Lithium Secondary Battery. J. Electrochem. Soc.,1992,139:2082-2087
    [74]F. C. Laman, J. A. R. Stiles, R. J. Shank, et al. Rate limiting mechanisms in lithium—molybdenum disulfide batteries. J. Power Sources, 1985,14:201-207
    [75]G. Chatzitheodorou, S. Fiechter, M. Kunst, et al. Low temperature chemical preparation of semiconducting transition metal chalcogenide films for energy conversion and storage, lubrication and surface protection. Mater. Res. Bull.1988, m23:1261-1271
    [76]Rudolph R. Haering, James A. R. Stiles, Klaus Brandt. Lithium molybdenum disulphide battery cathode. U.S. Patent 4,224,390,1980
    [77]Yang Shao-Horn, Steve Osmialowski, Quinn C. Horn, Nano-FeS2 for Commercial Li/FeS2 Primary Batteries. J. Electrochem. Soc.2002,149: A1499-1502
    [78]刘志坚,黄英华,李志友,等.Li-B/FeS2熔盐热电池放电特性的研究.粉末冶金材料科学与工程,1999,4(2):157-161
    [79]种晋,董静,曹军记,等.锂合金-硫化铁热电池贮存寿命研究.电源技术,2004,28(10):621-626
    [80]Jae-Won Choi, Gouri Cheruvally, Hyo-Jun Ahn, et al. Electrochemical characteristics of room temperature Li/FeS2 batteries with natural pyrite cathode. J. Power Sources,2006,163:158-165
    [81]R. Fong, J. R. Dahn, C. H. W. Jones. Electrochemistry of Pyrite-Based Cathodes for Ambient Temperature Lithium Batteries. J. Electrochem. Soc.,1989,136:3206-3210
    [82]D. Golodnitsky, E. Peled. Pyrite as cathode insertion material in rechargeable lithium/composite polymer electrolyte batteries. Electrochimica Acta,1999,45:335-350.
    [83]E. Peled, D. Golodnitsky, E. Strauss, et al. Li/CPE/FeS2 rechargeable battery. Electrochimica Acta 1998,43:1593-1599
    [84]L. A. Montoro, J. M. Rosolen. Gelatin/DMSO:a new approach to enhancing the performance of a pyrite electrode in a lithium battery. Solid Satate Ionics,2003,159:233-240.
    [85]Rosamaria Fong, C. H. W. Jones, J. R. Dahn. A study of pyrite-based cathodes for ambient temperature lithium batteries by in situ57Fe Mossbauer spectroscopy. J. Power Sources,1989,26:333-339
    [86]S. K. Preto, Z. Tomczuk, S. von Winbush, et al. Reactions of FeS2, CoS2, and NiS2 Electrodes in Molten LiCl-KCl Electrolytes. J. Electrochem. Soc,1983,130:264-273
    [87]李萍乡,李雅清,窦维喜.锂系热电池的发展.新疆有色金属2001,S1:11-13
    [88]J. D. BRISCOE, Proc 38th Intern Power Sources Symp [C]. NJ USA: HILL C,1998.235-239
    [89]S. DALLEK, T. C. MURPHY, T. NGUVER, Pro 36th Intern Power sources Symp [C]. NJ USA:HILL C,1994.329-332
    [90]Jiaqing dong, Daocong Li, Zhenghe Peng, et al. Synthesis and electrochemical performanceof cobalt disulfide. Journal of Solid State Electrochemistry,2008,12:171-174
    [91]D. M. BUSH. Asixty minute thermal battery [R]. USA.1975
    [92]http://www. crystalstar. org/Photo/ShowPhoto. asp?PhotoID=50
    [93]Totir Dana Alexa. Spectroscopic studies of cathode materials for lithium-ion batteries. Ph.D. Case Western Reserve University.2000, AAI9981872
    [94]E. Strauss, D. Golodnitsky, E. Peled. Journal of Solid State Electrochemistry, Elucidation of the charge-discharge mechanism of lithium/polymer electrolyte/pyrite batteries.2002,6:468-474
    [95]E. Strauss, D. Golodnitsky, K. Freedman. et al. To the electrochemistry of pyrite in Li/solid composite-polymer-electrolyte battery. J. Power Sources,2003,115:323-331
    [96]Ela Strauss, Scott Calvin, Harshna Mehta, et al. X-ray absorption spectroscopy of highly cycled Li/composite polymer electrolyte/FeS2 cells. Solid State Ionics,2003,164:51-63
    [97]L. A. Montoro, J.M. Rosolen. Gelatin/DMSO:a new approach to enhancing the performance of a pyrite electrode in a lithium battery. Solid State Ionics,2003,159:233-240
    [98]Won-Sub Yoon, Sung-Ho Ban, Kyung-Keun Lee, et al. Electrochemical characterization of layered LiCoO2 films prepared by electrostatic spray deposition. J. Power Sources, 2001,97-98:282
    [99]Hee-Soo Moon, Jong-Wan Park.Improvement of cyclability of LiMn2O4 thin films by transition-metal substitution. J. Power Sources 2003, 119-121:717-720
    [100]Eishi Endo, Toshikazu Yasuda, Kiyoshi Yamaura, et al. LiNiO2 electrode modified by plasma chemical vapor deposition for higher voltage performance. J. Power Sources,2001,93:87-92
    [101]Carla Polo Fonseca, Ricardo M. Paula, M. J. A. Eliria, et al. A new approach to obtain lithium nickel cobalt oxide porous films. Electrochimica Acta.2006,51:6419-6425
    [102]N. Nakayama, T. Nozawa, Y. Iriyama. Interfacial lithium-ion transfer at the LiMn2O4 thin film electrode/aqueous solution interface. J. Power Sources,2007,174:695-700
    [103]A. Ennaoui, S. Fiechter, Pettenkofer. Iron disulfide for solar energy conversion. Solar Energy Materials and Solar Cells, 1993,29:289-370
    [104]A. Ennaoui, S. Fiechter, H. Goslowsky, et al. Photoactive Synthetic Polycrystalline Pyrite (FeS2). J. Electronchem. Soc.,1985,132: 1579-1582
    [105]B. Thomas, C. Hopfner, K. Ellmer, et al. Growth of FeS2 (pyrite) thin films on single crystalline substrates by low pressure metalorganic chemical vapour deposition. J. Crystal Growth,1995,146:630-635
    [106]B. Thomas, K. Ellmer, M. Muller, et al. Structural and photoelectrical properties of FeS2 (pyrite) thin films grown by MOCVD. J. Crystal Growth,1997,170:808-812
    [107]G. Chatzitheodorou, S. Fiechter, et al. Thin photoactive FeS2 (pyrite) films. Mater. Res. Bull,1986,21(9):1481-1487
    [108]A. Ennaoui, S. Fiechter, H. Tributsch, et al. Photoelectrochemical Energy Conversion Obtained with Ultrathin Organo-Metallic-Chemical-Vapor-Deposition Layer of FeS2 (Pyrite) on TiO2. J. electrochem. Soc.,1992,139(9):2514-2518
    [109]G. Pimenta, W. Kautek. Pyrite film formation by H2S reactive annealing of iron. Thin Solid Films,1994,238:213-217
    [110]L. Meng, M.S. Liu. Thin pyrite (FeS2) films prepared by thermal-sulfurating iron films at various temperatures. Materials Science and Engineering 1999, B60:168-172
    [111]N. Hamdadou, A. Khelil, J. C. Bernede. Pyrite FeS2 films obtained by sulphuration of iron pre-deposited films. Materials Chemistry and Physics,2003,78:591-601
    [112]S. Bausch, B. Sailer, H. Keppner, et al. Preparation of pyrite films by plasma-assisted sulfurization of thin iron films. applied physics letters,1990,57:25-27
    [113]H. Dahman, M. Khalifa, M. Brunel, B. Rezig. Iron pyrite films prepared by sulfur vapor transport. Thin Solid films,1996,280:56-60
    [114]G. Smestad, A. Da Silva, H. Tributsch, et al. Formation of semiconducting iron pyrite by spray pyrolysis. Solar Energy Materials 1989,18:299-313
    [115]A. K. Raturi, L. Ndjeli, K. Rabah. FeS2 thin films prepared by spray pyrolysis. Renewable Energy 1997,11:191-195
    [116]A. Yamamoto, M. Nakamura, A. Seki,, et al. Pyrite (FeS2) thin films prepared by spray method using FeSO4 and (NH4)2Sx. Solar Energy Materials and Solar Cells,2003,75:451-456
    [117]B. Ouertani, J. Ouerfelli, M. Saadoun, et al. Transformation of amorphous iron oxide films pre-deposited by spray pyrolysis into FeS2-pyrite films. Materials Letters,2005,59(6):734-739
    [118]A. K. Raturi, S. Waita, B. Aduda, T. Nyangonda. Photoactive iron pyrite films for photoelectrochemical (PEC) cells. Renewable Energy 2000,20:37-43
    [119]G. Smestad, A. Ennaoui, S. Fiechter, et al. Photoactive thin film semiconducting iron pyrite prepared by sulfurization of iron oxides. Solar Energy Materials,1990,20:149-165
    [120]A. S. Arico, V. Antonucci, P. L. Antonucci,, et al. Electrodeposition and characterization of iron sulphide thin films. Materials Letters 1992,13:12-17
    [121]Sigeyuki Nakamura, Akio Yamamoto. Electrodeposition of pyrite(FeS2) thin films for photovoltaic cells. Solar Energy Materials and Solar Cells,2001,65:79-85
    [122]李恩玲.光电薄膜材料FeS_2(黄铁矿)的研制.西安理工大学学报2002,18(1):48-50
    [123]D. Lichtenberger, K. Ellmer, R. Schieck, et al. Structural, optical and electrical properties of polycrystalline iron pyrite layers deposited by reactive d. c. magnetron sputtering. Thin Solid Films, 1994,246:6-12
    [124]G. Willeke, R. Dasbach, B. Sailer, E. Bucher. Thin pyrite (FeS2) films prepared by magnetron sputtering. Thin Solid Films, 1992,213:271-276
    [125]D. Lichtenberger, K. Ellmer, R. Schieck, et al. Optical, electrical and structural properties of polycrystalline iron-pyrite (FeS2) layers deposited by reactive DC magnetron sputtering. Applied Surface Science,1993,70-71:583-587
    [126]C. De Las Heras, C. Sanchez, Characterization of iron pyrite thin films obtained by flash evaporation/Thin Solid films,1991,199:259-267
    [127]M. Bronold, S. Kubala. Thin pyrite (FeS2) films by molecular beam deposition.Thin Solid films,1997,304:178-182
    [128]周伟舫电化学测量,上海:上海科学技术出版社.1985.40-50
    [129]L. Yuan, H. K. Liu, A. Maaroof, et al. Mesoporous gold as anode material for lithium-ion cells. Journal of New Materials for Electrochemical Systems,2007,10:95-99
    [130]C. W. Bale, A. D. Pelton. EFFICIENT PROCEDURE FOR COMPUTING ISOTHERMAL PREDOMINANCE DIAGRAMS. Can Metall Q,1986,25:107-112
    [131]C. W. Bale. Theory and computation of two-metal and higher order predominance area diagrams. Can Metall Q,1990,29:263-277
    [132]张传福,刘海霞,曾德文,等.优势区图的计算机绘制系统.中南工业大学学报,1998,29:241-244
    [133]I. Barin,纯物质热化学数据手册北京:科学出版社2003.10
    [134]M. H. Shariat. A new look at nickel-oxygen-sulfur diagrams, Calphad.1996,20:47-67
    [135]O. Kubaschewski, C. B. Alcock, Metallurgical thermochemistry,5th edu(Oxford, etc,:pergamon):449
    [136]迪安J.A.兰氏化学手册,北京:科学出版社,1991.10-33
    [137]A. K. Raturi, S. Waita, B. Aduda, et al. Photoactive iron pyrite films for photoelectrochemical (PEC) cells. Renewable Energy,2000,20: 37-43
    [138]马景云,张卫珂,于方丽.溶胶-凝胶法基本原理及其在压电陶瓷中的应用.陶瓷,2005,(8):12-14
    [139]王娟,李晨,徐博.溶胶-凝胶法的基本原理、发展及应用现状.化学工业与工程,2009,26:273-277
    [140]王宝玲,胡丽丽,张丽艳.溶胶-凝胶法在平面光波导薄膜制备中的应用.压电与声光,2008,30:594-597
    [141]韩德强,李勇.薄膜制备技术中溶胶-凝胶工艺研究.四川化工,2005,(5):45-47
    [142]谢玉群.环氧氯丙烷法制备超细β-FeOOH粒子.无机化学学报,1999,15:49-53.
    [143]Yoshihiro Hida, Hiromitsu Kozuka. Photoanodic properties of sol-gel-derived iron oxide thin films with embedded gold nanoparticles: effects of polyvinylpyrrolidone in coating solutions. Thin Solid Films, 2005,476(2):264-271
    [144]Nilgun Ozer, Fatma Tepehan. Optical and electrochemical characteristics of sol-gel deposited iron oxide films. Solar Energy Materials and Solar Cells,1998,56(2):141-152
    [145]B. Ouertani, J. Ouerfelli, M. Saadoun, et al. Transformation of amorphous iron oxide films pre-deposited by spray pyrolysis into FeS2-pyrite films. Materials Letters,2005,59:734-739
    [146]孟亮,涂江平,刘茂森.不同温度热硫化纯Fe膜制备FeS2薄膜的研究.材料工程,1998,(8):7-10
    [147]J. M. Yan, H. Z. Huang, J. Zhang, et al. A study of novel anode material CoS2 for lithium ion battery. J. Power Sources,2005,146(1-2): 264-269
    [148]R. M. A. Leith, J. C. J. M. Terhell. Transition Metal Dichalcogenides. In:Preparation and Crystal Growth of Materials with Layered Structures. Dordrecht, The Netherlands,1977:141-223
    [149]李强,陈永强,刘耀青.一种高纯二硫化镍粉末的合成方法.中国,CN1240765,1999
    [150]P. B. bonnean, R. K. Shibao, R. B. Kaner. Low-Temperature Precursor Synthesis of Crystalline Nickel Disulfide. Inorg. Chem.1990, 29:2511-2514
    [151]X. M. zhang, X. F. Qian, C. Wang, et al. Solvent-thermal preparation of nanocrystalline pyrite nickel disulphide. Matewrials Science and Engineering B,1999,57:170-171
    [152]Xianhui Chen, Rong Fan.. Low-Temperature Hydrothermal Synthesis of Transition Metal Dichalcogenides. Chem. Mater.,2001,13:802-805
    [153]J. R. Craig, S. D. Scott. Sulfide phase equilibria. In:P. H. Ribbe ed. Sulfide mineralogy. Short Course Notes Miner. Soc. Am.,1974,1:77-80
    [154]P. P. Prosini, M. Lisi, D. Zane, et al. Determination of the chemical diffusion coefficient of lithiumin LiFePO4. Solid State Ionics, 2002,148:45-51
    [155]O. Omae, J. Suzuki, T. Katsuta, et al. Influence of surface treatment on the Li doping/undoping reaction at a mesophase. low temperature carbon fiber. Solid State Ionics,2002,152:105-110
    [156]Takashi Uchida, Yasuyuki Morikawa, Hiromasa Ikuta, et al, Chemical Diffusion Coefficient of Lithium in Carbon Fiber. J. Electrochem. Soc.,1996,143(8):2606-2610
    [157]R. Baddour-Hadjean, J. Farcy, J. P. Pereira-Ramos, et al. A Kinetic Study of Lithium Transport in a New Li Intercalation Material Al0.11V2O5.15 Synthesized via a Sol-Gel Process. J. Electrochem. Soc.,1996, 143 (7):2083-2088
    [158]V. Livshits, A. Blum, E. Strauss, et al. Development of a bipolar Li/composite polymer electrolyte/pyrite battery for electric vehicles. J. Power Sources 2001,97-98:782-785
    [159]http://www. crct. polymtl. ca/fact/
    [160]娄向东,贾晓华,王晓兵.CdS纳米材料的制备及气敏性能研究.传感器技术,2005,2(48):22-24
    [161]杨少霞,冯玉杰,蔡伟民,等.CeO2对RuO2/γ-Al2O3催化剂湿式氧化降解苯酚性能的影响.材料工程,2003,(11):32-39
    [162]崔秀兰,杨桔材,刘源,等.钙钛矿型LaMnO3-δ及La1-xSrxMnO3-δ纳米粒子的XPS表征.稀土,2000,21(3):23-26
    [163]王海飞.锂电池电解质电导率理论计算.邯郸学院学报,2007,17:51-54
    [164]王连亮,张琨,张丽娟,等.库仑法和电化学阻抗法测量LiFePO_4锂离子扩散系数.盐湖研究,2009,17:52-57

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700