微波焙烧含锗氧化锌烟尘回收锗的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
云南省某湿法炼锌厂生产过程中产生大量的含锗氧化锌烟尘,现有工艺是用硫酸浸出、单宁沉锗工艺回收其中的锗,但由于氧化锌烟尘中锗主要以锗铁复合氧化物形式存在,造成锗的浸出率通常低于60%,难以高效回收。因此,锗铁复合氧化物晶体结构的破坏分离是提高锗浸出率、实现高效利用的关键技术。采用微波处理含锗氧化锌烟尘可以破碎矿物、提高比表面积、转变矿物晶型等。为此本论文提出两种微波处理新工艺,系统深入研究了各个工艺过程参数以及相关原理,提高了锗的浸出率。
     首先,提出了微波煅烧-硫酸浸出含锗氧化锌烟尘工艺。单因素实验研究发现,微波煅烧温度在210℃~290℃的范围内,随着温度升高,物料粒度降低,比表面积增加,锗浸出率也提高;当温度高于290℃时,物料会发生烧结,不利于锗的浸出;在290℃下微波煅烧10min后,含锗氧化锌烟尘的平均粒度由原来的5.39μm降为1.70μm。根据微观形貌SEM和XRD物相分析发现,在适当的温度范围里,微波煅烧可以使含锗氧化锌烟尘中大颗粒产生碎裂,难溶的Fe4Ge3O12物相消失。采用响应曲面优化法,研究了液固比、硫酸初始浓度、微波煅烧温度、浸出温度、浸出时间等影响因素对锗的浸出率的影响规律。结果发现:前三个因素是显著影响因素;优化的工艺参数为:微波煅烧温度287℃、液固比6.5mL·g-1、浸出时间4h、硫酸初始浓度9.0mol/L.浸出温度60℃,预测在此条件下锗浸出率为85.25%。再采用该参数进行了验证实验,发现锗浸出率可达到84.37%。预测结果与实验值相对误差仅为1.04%,说明优化结果准确可靠。与现有工艺相比,锗浸出率提高了约22个百分点。接着,进行了硫酸浸出过程动力学的研究,考察了硫酸初始浓度、浸出温度和时间等因素对锗浸出率的影响。结果发现,该浸出过程遵循固体膜层的收缩核模型。
     其次,为了进一步提高锗的回收率,提出了微波碱性焙烧-水溶含锗氧化锌烟尘的工艺,研究了配碱量比、微波焙烧温度、液固比、浸出温度、浸出时间、熟化时间等对锗浸出率的影响规律。结果表明:配碱量比、微波焙烧温度、配碱量比与微波加热温度交互影响是本工艺的显著影响因素;优化的工艺参数为配碱量比1g·g-1、熟化时间1d、焙烧温度408℃、保温10min、液固比6.4m L·g-1、水溶温度66℃、水溶时间67min;在此条件下,响应曲面优化预测值为97.16%,验证实验锗的浸出率为97.38%,两者相对误差仅为0.23%,说明优化结果较好。与现有的常规碱性焙烧工艺相比,碱性焙烧温度由1080℃降低到408℃,保温时间由60min降低到10min。水溶动力学研究表明,锗酸钠水溶过程符合扩散控制模型,表观活化能为15.46kJ/mol。
     最后,分别建立了微波煅烧-硫酸浸出工艺和微波碱性焙烧-水溶工艺的神经网络反预测模型,预测结果表明神经网络预测模型的预测值与实验值有较好的拟合效果,且不同实验条件下的预测结果变化趋势与实测值变化趋势相符合,模型收敛精度都达到10-5。对实际预测锗浸出率及工艺参数有较好的指导意义。
Zinc hydrometallurgy plant produce large amounts of germanium-containing zinc oxide fume during a production process in Yunnan Province.The present art of dust treatment is sulfuric acid leaching and tannic germanium precipitation for recovering Ge. For insoluble of Fe4Ge3O12, the leaching rate of germanium is generally lower than60%. Thus, separation and destruction of Fe4Ge3O12becomes a key technical subject for improving germanium extraction and the efficient utilization of germanium resource. Microwave treatment has the capability of reducing the particle size of minerals, increasing their specific surface area, and even transforming their crystal structures. Two novel processes of microwave roasting are proposed for improving Ge extraction in this dissertation, and their key technology and related theories are studied. Results reveal that Ge leaching rates are markedly increased
     At first, microwave calcination-sulfuric acid leaching was used to recover Ge. The size of material reduces the specific surface area and the Ge extraction increase with increasing temperature, when the microwave sintering temperature is in the range of210℃~290℃. It is unfit for leaching of germanium when the temperature is higher than290℃. The average particle sizes of zinc oxide dust bearing germanium reduce from5.39μm to1.70μm after microwave calcination at290℃for10min. The Ge extraction increased after microwave calcination because the particle size became small. The SEM and XRD of material show microwave calcination can change the morphology and particle size of zinc oxide dust bearing germanium. Large particle was fragmentated, the size of zinc oxide dust bearing germanium was reduced, the uniformity of size was improved, and the characteristic peak of Fe4Ge3O12was disappeared after microwave calcinations. The relational mode of the germanium extraction and the influencing factors was obtained by Design-Expert software. Microwave calcination temperature, liquid-solid ratio and initial concentration of sulfuric acid are the significant factors for the process. Microwave calcination-sulfuric acid leaching experiments was designed using response surface methodology. By analyzing each factors significance and the correlation, the optimized conditions were obtained as follows:microwave calcination at287℃, liquid-solid ratio of6.5mL·g-1, leaching time of4h, sulfuric acid initial concentration of9.0mol/L, leaching temperature at60℃with germanium extraction about84.37%. The predictive value was85.25%. The relative error is1.04%between the forecast value and the actual value. The germanium extraction was increased22%compared with existing process. The kinetics of Ge leaching by microwave calcination-sulfuric acid was studied. The effects of leaching temperature and initial concentration of sulfuric acid on the leaching rate of germanium were examined. The experiment results indicate that germanium leaching rate increases with increasing temperature and initial concentration of sulfuric acid. It was found that the reaction kinetic model follows the shrinking core model of the diffusion process of the solid film.
     Microwave alkaline roasting-water dissolving process was proposed to further improve the germanium extraction. The germanium extraction is consistent with the linear polynomial model type. Alkali-material ratio, microwave heating temperature and leaching temperature are the significant factors for the process. By analyzing each factors significance and the correlation, the optimized conditions were obtained as follows, alkali-material ratio of1g·g-1, aging time of1day, microwave heating at408℃, microwave alkaline roasting holding time of10min, liquid-solid ratio of6.4mL·g-1, leaching temperature at66℃, leaching time of67min with the germanium extraction about97.38%. The predictive value was97.16%. The relative error is0.23%between the forecast value and the actual value. Compared with the existing methods, the alkaline roasting temperature was reduced from1080℃to408℃and the alkaline roasting holding time was greatly reduced from60min to10min.The kinetics of germanium leaching by microwave alkaline roasting-water dissolving was studied. It was found that the dissolution reaction kinetic model follows diffusion control. The apparent activation energy is15.46kJ/mol.
     Basing on the study of Artificial Neural Network, the neural models were established for the prediction of microwave calcination-sulfuric acid leaching and microwave alkaline roasting-water dissolving. The results indicated that the neural network prediction model of microwave calcination-sulfuric acid leaching and microwave alkaline roasting-water dissolving were reliable, the forecast and actual values fitted well. The model could be used to predict the regeneration experiments with high credibility and practical significance. The accuracy of convergence of two models has reached10-5.
引文
[1]Sangsingkeow Pat, Berry Kevin D, Dumas Edward J. Advances in germanium detector technology[J]. Nuclear Instruments and Methods in Physics Research Section A:Accelerators,Spectrometers,Detectors and Associ ated Equipment.2003,505(1-2):183.
    [2]Das N C,Monroy C,Jhabvala M. Germanium junction field effect tran si stor for cryogenic applications[J]. Solid-StateElectronics,2000, 44(6):937.
    [3]石和清.锗业发展的新机遇[J].中国金属通报,2012,12:16-21.
    [4]http://business.sohu.com/20090703/n264948564.shtml.
    [5]王珍.褐煤中提取锗的工艺研究[D].河北:河北工学院,2004.
    [6]http://guba.eastmoney.com/look,002428,4016946391.htm1.
    [7]http://www.cmmri.com/Price/Metal-t27.html
    [8]宣宁.锗:新材料之骄子[J].中国金属通报,2010,(30): 14.
    [9]邓明国,秦德先,雷振,等.滇西褐煤中锗富集规律及远景评价[J].昆明理工大学学报(理工版),2003,28(1):1.
    [10]雷霆,张玉林,王少龙.锗的提取方法[M]北京:冶金工业出版社.2007.
    [11]http://baike.baidu.com/View/34272.htm.
    [12]唐海龙.锌锗分离萃取过程的工艺研究[D].贵州:贵州大学,2008.
    [13]周令治.稀散金属冶金[M]北京:冶金工业出版社.1988.
    [14]孙家跃等.无机材料制造与应用.化学工业出版社.1986.
    [15]刘宝芬.国内外锗浓缩物提取工艺现状[J].锗提出冶金专辑.1986,18-25.
    [16]龙来寿.从冶锌工业废渣中综合回收镓、铟、锗的研究[D].广州.广州工业大学.2004.
    [17]罗星,张泽彪,彭金辉,等.拌酸熟化法从含锗渣中浸出锗的实验研究[J].稀有金属,2012,36(2):311-315.
    [18]罗星.从含锗渣中浸出锗的实验研究[D].昆明.昆明理工大学. 2011.
    [19]张家敏,雷霆,张玉林,等.从含锗褐煤中干馏提锗和制取焦炭的实验研究[J].稀有金属,2007,31(3):371-376.
    [20]张亚平.从浸锌渣还原铁粉中回收镓锗的工艺及机理[D].长沙.中南大学.2003.
    [21]陈兴龙.从硫酸锌溶液中萃取回收锗的研究[D].长沙.中南大学.2004.
    [22]周兆安.从湿法炼锌系统中富集回收锗的新工艺研究[D].长沙.中南大学.2012.
    [23]吴慧.从氧化锌粉中综合回收铟-锗的实践应用[D].昆明.昆明理工大学.2007.
    [24]易飞鸿.从冶锌废渣中提取锗-铟的研究[D].广州.广州工业大学.2003.
    [25]常连举.单宁络合提取稀有金属锗镓的研究[D].北京.中国林业科学研究院.2010.
    [26]皮义仁.富锗-铜铅渣硫酸浸出锗、铜实验及动力学研究单宁络合提取稀有金属锗镓的研究[D].南昌.南昌大学.2010.
    [27]周娟.富锗硫化锌精矿加压浸出-萃取综合回收锗的工艺研究[D].昆明.昆明理工大学.2008.
    [28]梁铎强.富锗闪锌矿氧压酸浸过程中锗的行为研究[D].昆明.昆明理工大学.2008.
    [29]王玲.褐煤中提取锗的工艺研究[D].石家庄.河北理工学院.2006.
    [30]马喜红.浸锌渣中锗的综合回收基础研究[D].长沙.中南大学.2012.
    [31]文剑.浸锌渣综合回收利用研究[D].长沙.中南大学.2004.
    [32]刘福财,袁琴,王铁艳.煤烟尘制取四氯化锗的研究[J].稀有金属,2011,35(4):623-626.
    [33]黎伟文.铅锌硫化矿中锗的回收利用[D].长沙.中南大学.2004.
    [34]顾利坤,田振菊,李云.锌冶炼过程中锗综合回收技术的研究[J].中国有色金属学会第八届学术年会论文集,2242-247.
    [35]张爱华,谢天敏,许金斌,等.有机锗废液中锗的回收[J].矿业工程,2011,31(6): 95-97.
    [36]刘菲.微乳液萃取金属锗的研究[D].济南.山东大学.2011.
    [37]唐海龙.锌锗分离萃取过程的工艺研究[D].贵州.贵州大学.2008.
    [38]Li Zaijun, Pan Jiaomai, Tang Jan. Spectrophotometric method for determination of germanium in foods with new color reagent trimethoxylphenylfluorone[J]. Analytica Chimica Acta,2001,445(2): 153-159.
    [39]Changqing Sun, Qian Gao, Jiubai Xi, Hongding Xu. Determination of germanium(Ⅳ) by catalytic cathodic stripping voltammetry [J].Analytica Chimica Acta,1995,305(1-3):89-93.
    [40]Xiao-wei Guo, Xu-ming Guo. Interference-free atomic spectrometric method for the determination of trace amounts of germanium by utilizing the vaporization of germanium tetrachloride [J].Analytica Chimica Acta,1995,330(2-3):237-243.
    [41]Xu-ming Guo,Xiao-wei Guo. Optimization of hydride generation atomic fluorescence spectrometry for the determination of trace amounts of germanium:emphasis on acidity and interferences [J].Analytica Chimica Acta,1998,373(2-3):303-310.
    [42]Shi Jinhui, Jiao Kui. Adsorptive complex catalytic polarographic determination of germanium in soils and vegetables [J].Analytica Chimica Acta,1995,309(1-3):103-109.
    [43]Yoshinari Inukai, Yasuhiko Kaida, Seiji Yasuda. Selective adsorbents for germanium(Ⅳ) derived from chitosan[J].Analytica Chimica Acta,1997, 343(3):275-279.
    [44]J.C. Florez Menendez, A. Menendez Garcia, J.E. Sanchez Uria, etal. Continuous tandem on-line separation inductively coupled plasma optical emission spectrometry selective determination of germanium in zinc electrolytic solutions[J].Analytica Chimica Acta,1999,402(1-3):319-326.
    [45]I. Lopez-Garcia, N. Campillo, I. Arnau-Jerez,etal. Electrothermal atomic absorption spectrometric determination of germanium in soils using ultrasound-assisted leaching[J]. Analytica Chimica Acta,2005,531(1): 125-129.
    [46]Neena Nashine, R.K. Mishra. Selective extractive spectrophotometric determination of germanium with N-hydroxy-N,N'-diphenylbenzamidine and [J]. Analytica Chimica Acta,1994,285(3):365-368.
    [47]A.M. Garcia-Campana, F.Ales Barrero, A.Lupianez Gonzalez, M.Roman Ceba. Non-ionic micellar solubilization-spectrofluorimetric determination of trace of germanium(Ⅳ) with quercetin in real samples[J].Analytica Chimica Acta,2001,447(1-2):219-228.
    [48]R.Q. Aucelio, V.N. Rubin, E. Becerra, etal. Electrothermal atomization laser-excited atomic fluorescence spectrometry for direct analysis of germanium in water and blood samples[J].Analytica Chimica Acta,1997, 350(1-2):231-239.
    [49]H. Holness. The precipitation of germanium by tannin[J]. Analytica Chimica Acta,1948,2:254-260.
    [50]Yu Vin Yi, S.M. Khopkar. Reversed-phase column extractive separation of germanium with bis (2-ethylhexyl) phosphoric acid[J].Analytica Chimica Acta,1989,221:183-187:
    [51]Yoshiki Mino, Shigeru Shimomura, Nagayo Ota. Determination of germanium in different media by atomic absorption spectrometry with electrothermal atomization [J].Analytica Chimica Acta,1979,107:253-259.
    [52]王吉坤,何蔼平.现代锗冶金[M].北京,冶金工业出版社,2005.
    [53]牟宇.链条炉飞灰中锗富集规律的研究[D].天津.天津大学.2008.
    [54]李吉莲,毛满,俞凌飞.提高湿法炼锌过程中锗的综合回收技术[J].云南冶金,2011,40(1):40-45.
    [55]普世坤,兰尧中,靳林,等.提高含锗煤烟尘氯化蒸馏回收率的工艺研究[J].稀有金属,2012,36(5):817-821.
    [56]梁杰.从含锗烟尘浸出与萃取锗研究[D].昆明.昆明理工大学2009.
    [57]林文军.从烟道灰中综合回收锗-铟的实验研究[D].昆明.昆明理工大学.2006.
    [58]Roozbeh Hoseinzadeh Hesas, Wan Mohd Ashri Wan Daud, J.N. Sahu, etal. The effects of a microwave heating method on the production of activated carbon from agricultural waste:A review[J].Journal of Analytical and Applied Pyrolysis,2013,100:1-11.
    [59]Wenhua Zi,Jinhui Peng,Xiaolong Zhang,etal.Optimization of waste tobacco stem expansion by mi-rowave radiation for biomass material using response surface methodology[J].Journal of the Taiwan Institute of Chemical Engineers,2013.14:In Press.
    [60]王娜.石煤矿提钒绿色工艺的基础研究[D].重庆,重庆大学,2010.
    [61]彭金辉,郭胜惠,张世敏等.微波加热干燥钛精矿研究[J].昆明理工大学学报(理工版),2004,29(4):5-9.
    [62]付润泽.微波辅助磨细惠民铁矿实验研究[D].昆明,昆明理工大学,2011.
    [63]曾翎,姜华昌,赵军子等[A].长春,中国化学会,中国化学会第二十五届学术年会论文摘要集(上册),2006.
    [64]A.Y.Ali,S.M.Brad shaw.Quantifying damage around grain boundaries in microwave treated ore s[J]. Chemical Engineering and Proces sing, 2009(48):1566-1573.
    [65]Tavares, L.M., King, R.P. Micro scale investigation of the rmally assi sted comminution[J]. In:Proceedings of Nineteenth International Mineral Processing Congress,1995,(1):203-208.
    [66]刘洪萍.锌浸出渣处理工艺概述[J].云南冶金,2009,38(4)34-37,47.
    [67]沈立俊,李波,雷德君.锌渣烟化炉连续吹炼生产氧化锌研究[J].云南冶金,2005,34(5):17-23.
    [68]彭金辉,杨显万.微波能技术新应用[M].昆明,云南科技出版社,1997.
    [69]http://baike.baidu.com/view/155896.htm.
    [70]http://baike.baidu.com/view/239847.htm.
    [71]http://baike.baidu.com/view/706.htm?fromId:145075.
    [72]http://baike.baidu.com/view/34566.htm.
    [73]http://baike.baidu.com/view/149315.htm.
    [74]Duan Xin-hui,C.S rinivasakannan,Peng Jin-hui,etal.Compari son of activated carbon prepared from Jatropha hull by conventional heating and microwave heating[J].Biomass and Bioenergy,2011,35(9):3920-3926.
    [75]Wei Li,Jinhui Peng,Libo Zhang,etal.Preparat.ion of activated carbon from coconut shell chars in pilot-scale microwave heating equipment at 60 kW[J].Waste Management,2009,29(2):756-760.
    [76]Fei Liang, Meng Ni, Wenzhong Lu, etal. Microwave dielectric properties and crystal structures of 0.7CaTiO3-0.3[LaxNd(1-x)]AlO3 ceramics[J].Journal of Alloys and Compounds,2013,26:In Press.
    [77]Geng-Geng Luo, Rui-Bo Wu, Di Sun, etal. Microwave-assisted synthesis, crystal structures and DFT calculations of two novel silver(I) dimers [Ag2(μ-X)2(μ-dppm)(PPh3)2] (X=Br, I) with butterfly-shaped dinuclear cores[J].Journal of Molecular Structure,2009,930(1-3):9-14.
    [78]Sheng-hui GUO, Guo CHEN, Jin-hui PENG, etal. Microwave assisted grinding of ilmenite ore[J].Transactions of Nonferrous Metals Society of China,2011,21(9):2122-2126.
    [79]Xiao-jun HE, Ting WANG, Jie-shan QIU, etal. Effect of microwave-treatment time on the properties of activated carbons for electrochemical capacitors[J]. New Carbon Materials,2011,26(4):313-319.
    [80]Zhengyong Zhang, Wenwen Qu, Jinhui Peng, etal. Comparison between microwave and conventional thermal reactivations of spent activated carbon generated from vinyl acetate synthesis[J]. Desalination,2009,249(1): 247-252.
    [81]Shenghui Guo, Wei Li, Jinhui Peng, etal. Microwave-absorbing characteristics of mixtures of different carbonaceous reducing agents and oxidized ilmenite[J].International Journal of Mineral Processing,2009, 93(3-4):289-293.
    [82]Lucio Cesar Almeida, Sergi Garcia-Segura, Nerilso Bocchi, etal. Solar photoelectro-Fenton degradation of paracetamol using a flow plant with a Pt/air-diffusion cell coupled with a compound parabolic collector:Process optimization by response surface methodology[J]. Applied Catalysis B: Environmental,2011,103(1-2):21-30.
    [83]Ashvin J. Makadia, J.I. Nanavati. Optimisation of machining parameters for turning operations based on response surface methodology [J].Measurement,2013,46(4):1521-1529.
    [84]Oscar Soto-Cruz, Gerardo Saucedo-Castaneda, Jose Luis Pablos-Hach, etal. Effect of substrate composition on the mycelial growth of Pleurotus ostreatus. An analysis by mixture and response surface methodologies [J].Process Biochemistry,1999,35(1-2):127-133.
    [85]Huixia Liu, Kai Wang, Pin Li, Cheng Zhang etal. Modeling and prediction of transmission laser bonding process between titanium coated glass and PET based on response surface methodology[J].Optics and Lasers in Engineering,2012,50(3):440-448.
    [86]Xiao Wang, Xinhua Song, Minfeng Jiang, etal. Modeling and optimization of laser transmission joining process between PET and 316L stainless steel using response surface methodology[J]. Optics & Laser Technology,2012,44(3):656-663.
    [87]Helen Kalavathy M, Iyyaswami Regupathi, Magesh Ganesa Pillai, etal. Modelling, analysis and optimization of adsorption parameters for H3PO4 activated rubber wood sawdust using response surface methodology (RSM)[J].Colloids and Surfaces B:Biointerfaces,2009,70(1):35-45.
    [88]S. Ahmadi, M. Manteghian, H. Kazemian, etal. Synthesis of silver nano catalyst by gel-casting using response surface methodology[J].Powder Technology,2012,228:163-170.
    [89]Ranjana Yadav, Archana Devi, Garima Tripathi, etal. Optimization of the process variables for the synthesis of cardanol-based novolac-type phenolic resin using response surface methodology[J].European Polymer Journal,2007,43(8):3531-3537.
    [90]Juan Mao, In-Seob Kwak, Muthuswamy Sathishkumar, etal. Bioresource Technology[J]. Solid State Sciences,2011,102(2):1462-1467.
    [91]R. Azargohar, A. K. Dalai. Production of activated carbon from Luscar char:Experimental and modeling studies[J]. Microporous and Mesoporous Materials,2005,85:219-225.
    [92]Dhanya Gangadharan, Swetha Sivaramakrishnan, K. Madhavan Nampoothiri, etal. Response surface methodology for the optimization of alpha amylase production by Bacillus[J] amyloliquefaciens. Bioresource Technology,2008,99:4597-4602.
    [93]R. V. Muralidhar, R. R. Chirumamila,R. Marchant, etal. A response surface approach for the comparison of lipase production by Candida cylindracea using two different carbon sources[J].Biochemical Engineering Journal,2001,9:17-23.
    [94]http://baike.baidu.com/view/763955.htm
    [95]Xuin G H,Yu D Y,Su Y F.Leaching of Scheelite by hydrochloric acid in the presence of phosphate[J].Hydrometallurgy,1986,16(1):27-40.
    [96]Pohlman S L,Olson F A.A Kinetic study of acid leaching of Chrysocolla using a weight loss technique[A].Solution Mining Symposium [C].AIME,New York,1974,pp.447-460.
    [97]Wen C.Noncatalytic heterogeneous solid fluid reaction model[J].Ind Eng Chem,1968,60(9):35-54.
    [98]Kunkul A,Muhtar K M,Yapici,M et al.Leaching kinetics of malachite in ammonia solutions[J].Mineral processing,1994,41 (3):167-182.
    [99]李洪桂.冶金原理[M].北京:科学出版社,2004.
    [100]B.只阿布拉莫夫主编,碱法综合处理含铝原料的物理化学原理(陈谦德,唐贤柳译),长沙:中南工业大学出版社,1988.
    [101]华一新.冶金过程动力学[M].北京:冶金工业出版社,2004.
    [102]A. Kunkul, K.M. Muhtar, M. Yapici.Leaching kinetics of malachite in ammonia solutions[J].Mineral processing,1994,41 (3):167-182.
    [103]Ramazan Coban. A context layered locally recurrent neural network for dynamic system identification[J]. Engineering Applications of Artificial Intelligence,2013,60(9):35-54.
    [104]M. Gholami, N. Cai, R.W. Brennan. An artificial neural network approach to the problem of wireless sensors network localization[J]. Robotics and Computer-Integrated Manufacturing,2013,29(1):96-109.
    [105]Hilleke Hulshoff Pol, Edward Bullmorec. Neural networks in psychiatry [J]. European Neuropsychopharmacology,2013,23(1):1-6.
    [106]Bi-Qin Lai, Jun-Mei Wang, Jing-Jing Duan,etal. The integration of NSC-derived and host neural networks after rat spinal cord transection[J]. Biomaterials,2013,34(12):2888-2901.
    [107]Jose P.S. Aniceto, Daniel L.A. Fernandes,etal. Modeling ion exchange equilibrium of ternary systems using neural networks[J]. Desalination, 2013,309(15):267-274.
    [108]Katarina M. Rajkovic, Jelena M. Avramovic, Petar S. Milic,etal. Optimization of ultrasound-assisted base-catalyzed methanolysis of sunflower oil using response surface and artifical neural network methodologies[J]. Chemical Engineering Journal,2013,215-216 (15): 82-89.
    [109]Rasoul Irani, Reza Nasimi. Application of artificial bee colony-based neural network in bottom hole pressure prediction in underbalanced drilling[J]. Journal of Petroleum Science and Engineering,2011,78(1): 6-12.
    [110]P. Gil, J. Henriques, A. Cardoso, A. Dourado. On affine state-space neural networks for system identification:Global stability conditions and complexity management[J]. Control Engineering Practice,2013,21(4): 518-529.
    [111]Patrick Opdenbosch, Nader Sadegh, Wayne Book. Intelligent controls for electro-hydraulic poppet valves[J]. Control Engineering Practice, 2013,21(6):789-796.
    [112]Hong-Gui Han, Jun-Fei Qiao, Qi-Li Chen. Model predictive control of dissolved oxygen concentration based on a self-organizing RBF neural network[J]. Control Engineering Practice,2012,20(4):465-476.
    [113]H.S. Wang, Y.N. Wang, Y.C. Wang. Cost estimation of plastic injection molding parts through integration of PSO and BP neural network[J]. Expert Systems with Applications,2013,40(2):418-428.
    [114]Ivan Marie. Optimization of self-organizing polynomial neural networks[J]. Expert Systems with Applications,2013,31:In Press.
    [115]D. Peteiro-Barral, V. Bolon-Canedo, A. Alonso-Betanzos, etal. Toward the scalability of neural networks through feature selection[J]. Expert Systems with Applications,2013,40(8):2807-2816.
    [116]孙勇,丁慧霞,汪洋,等.浅谈人工神经网络[A].2012年电力通信管理暨智能电网通信技术论坛论文集,北京,2013.
    [117]陆冬娜.基于神经网络的非线性模型预测控制[D].长沙:中南大学,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700