在氯盐介质中同时电解铅和二氧化锰的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
从氯化铅水溶液中电解提取铅和从氯化锰水溶液中电解提取二氧化锰是湿法冶金的两个研究热点。为了实现电解槽的阳极上不析出氯气的铅电解过程,本文首次研究了从氯化铅和氯化锰混合溶液中同时电解铅和二氧化锰的过程。这种铅和二氧化锰同时电解过程不仅能避免氯气在阳极上析出,而且还能同时得到两种电解产品,并导致电解过程电能消耗的降低。
     本研究首先开展了从氯化铅溶液中电解提取铅和从氯化锰溶液中电解提取二氧化锰两组单独电解试验,然后进行了在氯盐介质中铅和二氧化锰同时电解的试验工作。铅和二氧化锰同时电解包括两种方法:电解槽中阴、阳极之间有隔膜和没有隔膜两种电解。试验结果表明,铅和二氧化锰同时电解,特别是有隔膜的同时电解过程是可行的。
     无隔膜同时电解的最佳工艺条件概括如下:电解液中Pb2+和Mn2+浓度分别为15g/L和50g/L,电解液中HCl和NaCl浓度分别为4g/L和2mol/L,电解液温度为90℃,电流密度为80A/m2。在最佳工艺条件下电解2h的阴、阳极的电流效率分别为98%和92%,电极上产生的铅和二氧化锰的重量之比为2.61:1,平均槽电压为1.667V,产生2.61kg铅和1kg二氧化锰的直流电消耗为1.131kWh,与铅和二氧化锰单独电解相比,电能节省55.47%。阳极产物为γ-MnO2,产物中二氧化锰的含量大于91%。
     有隔膜同时电解的最佳工艺条件被确定为:隔膜材质为涤棉布,阳极液面比阴极液面高20mm,阴极液中Pb2+和NaCl浓度分别为25g/L和4.5mol/L,阳极液中Mn2+和HCl浓度分别为50g/L和8g/L。在最佳工艺条件下电解2h,阴、阳极电流效率均达到99%,电解5h的阴、阳极电流效率分别达到96%和99%,平均槽电压为1.701V,电极上得到的铅和二氧化锰的重量之比为2.39:1,产生2.39kg铅和1kg二氧化锰的直流电耗为1.056kWh,与铅和二氧化锰单独电解相比,节省电能56.58%。阳极产物为γ-MnO2,二氧化锰含量达92%以上。
     虽然基于试验结果,无隔膜和有隔膜两种电解方法都是可行的,但无隔膜电解过程的阳极电流效率只达92%。这表明,必然有一些氯气从阳极上析出。因此,有隔膜电解过程是在氯盐介质中电解提取铅和二氧化锰的最佳工艺方案。扩大试验结果与小型试验结果基本相同。根据本研究的结果,本文的第五章给出了从铅精矿和碳酸锰矿提取铅和二氧化锰的推荐原则工艺流程。
Electrowinning of lead from aqueous solution of PbCl2 and electrowinning of manganese dioxide from aqueous solution of MnCl2 are two research focuses in hydrometallurgy. To realize the electrowinning of lead without liberation of chlorine at anodes in cell, simultaneous electrowinning of lead and manganese dioxide from a mixture solution of PbCl2 and MnCl2 was investigated for the first time. This simultaneous electrowinning of lead and manganese dioxide not only can prevent chlorine from liberating at anodes but also obtain two electrolysis products simultaneously, which result in decrease of electric energy consumption for the electrowinning process.
     Firstly two separate electrowinning tests, electrowinning of lead from PbCl2 solution and electrowinning of manganese dioxide from MnCl2 solution, were carried out. And then, tests for simultaneous electrowinning of lead and manganese dioxide in chloride medium were conducted. The simultaneous electrowinning of lead and manganese dioxide includes two methods:electrowinning processes without and with diaphragm between anode and cathode in cell. Experimental results indicated that simultaneous electrowinning process, especially the simultaneous electrowinning process with diaphragm is feasible.
     The optimum process conditions of simultaneous electrowinning without diaphragm are summarized as follows:concentration of Pb2+and Mn2+in electrolyte is 15 g/L and 50g/L respectively, concentration of HCl and NaCl in electrolyte is 4g/L and 2mol/L respectively, temperature of electrolyte is 90℃, and current density is 80A/m2. By electrowinning for 2 hours under the optimum process conditions, current efficiency of cathode and anode is 98% and 92% respectively, weight ratio of lead and manganese dioxide produced at electrodes is 2.61:1, average cell voltage is 1.667V, direct current consumption to produce 2.61 kg of lead and lkg of manganese dioxide is 1.131kWh, the save of electric energy reaches 55.47% by comparison with the separate electrowinning of lead and manganese dioxide. Anode products are y-MnO2, content of MnO2 in the products is more than 91%.
     The optimum process conditions of simultaneous electrowinning with diaphragm are determined as:material of diaphragm is polyster cotton, height difference between surface of anolyte and surface of catholyte is 20mm, concentration of Pb2+ and NaCl in the catholyte is 25g/L and 4.5mol/L respectively, concentration of Mn2+and HCl in the anolyte is 50g/L and 8g/L respectively, temperature of electrolyte is 80℃, current density is 80A/m2. By electrowinning for 2 hours under the optimum process conditions, current efficiency of cathode and anode is both more than 99%, current efficiency of cathode and anode for 5 hours is 96% and 99% respectively, the average cell voltage is 1.701V, the weight ratio of lead and manganese dioxide produced in electrodes is 2.39:1, direct current consumption to produce 2.39 kg of lead and lkg of manganese dioxide is 1.056kWh, the save of electric energy reaches 56.58% by comparison with the separate electrowinning of lead and manganese dioxide, anode products are y-MnO2, content of which is more than 92%.
     Although two electrowinning process without and with diaphragm are both feasible on the basis of the experimental results, current efficiency of anode for electrowinning process without diaphragm is only 92%, which show that there must be some chlorine liberating from anodes. Therefore, electrowinning process with diaphragm is the optimum technology for extraction of lead and manganese dioxide in chloride medium. The results of expanding test are basically the same with that of laboratory experiment. According to results of present work, a suggested principle flow sheet for the extraction of lead and manganese dioxide from lead concentrate and manganese carbonate ore is given in the fifth chapter of this paper.
引文
1. Peters E. Direct leaching of sulfide:Chemistry and applications [J].Met.Trans.B,1976, 7B:512-513.
    2. Kobayashi M, Kametani H. The E-pH diagram of Pb-S-H2O system and its correlation with lattice imperfection and electronic charge carriers [J].Hydrometallurgy,1989,22: 141-157.
    3.杨显万,张英杰.矿浆电解原理[M].北京:冶金工业出版社,2000.
    4. Awakura Y,Kamei S, Majima H. A kinetic study of nonoxidation dissolution of galena in aqueous acid solution[J].Met.Trans.B,1980,11B:377-381.
    5. Paramgurn R K, Kuzeci E, Kammel R. Direct electro winning of lead from suspension galena concentrate anode in different electrolytes[J].Met.Trans.B,1988,19B:59-65.
    6.吴振寰,朱少华.湿法冶金新技术新工艺实用手册[M].北京:中国环境科学出版社,2005.
    7. Paramgurn R K, Kammel R. Bed performace in the direct electrowinning of lead from suspension galena anodes[J].Met.Trans.B,1988,19B:67-72.
    8.邱定蕃,矿浆电解[M].北京:冶金工业出版社,1999.
    9.王成彦,邱定蕃.脆硫锑铅矿电解过程硫的形成机理[J].有色金属(冶炼部分),2002,54(4):42-46.
    10.王成彦,邱定蕃.复杂锑铅矿矿浆电解电极反应[J].有色金属(冶炼部分),2003,55(1):25-28.
    11.司云森,杨显万.硅氟酸溶液中方铅矿的阳极氧化动力学研究[J].有色金属(冶炼部分),2002,54(4):59-62.
    12. Winad R. Chloride hydrometallurgy[J].Hydrometallurgy,1991,27:285-316.
    13. G.V.K. Puvada, R. Sridhar and V.I. Lakshmanan, Chloride Metallurgy:PGM Recovery and Titanium Dioride Production[J].JOM,August,2003:38-41.
    14. Kobaxashi M, Putrizac J E, Toguri J M. A critical review of the ferric chloride leaching of galena[J].Canadian Metallurgical Quarterly,1990,29(3):201-211.
    15. Dutrizac J E, Chen T T.The effect of the elemental sulfur reaction product on the leaching of galena in ferric chloride midia[J].Met.Trans.B,1990,21B(4):935-943.
    16. Pritzker M. Model for the ferric chloride leaching of galena [J]. Met.Trans.B,1988,29B: 953-960.
    17. Dutrizac J E. The leaching of sulphide minerals in chloride media[J]. Hydrometallurgy, 1992,29:1-45.
    18.吴锡平.湿法炼铅新工艺研究[J].有色矿冶,1996(5):32-37.
    19.陈家越.方铅矿湿法冶金探索[J].宁德师专学报(自然科学版),2000,12(1):47-49.
    20. Chen A A, Dreisinger D B. The ferric fluosilicate leaching of lead concentrates:Part Ⅰ, Kinetic Studies, Metal[J].Met.Trans.B,1994,25B(8):480-493.
    21. Patrick R. Taylor, Yeonuk Choi and Edgar E. Vidal, Flusilicic acid leaching of galena. Hydrometallurgy 2003-Fifth International Conference volume I:Leaching and Solution Purification[C].Edited by C.A. Young et al., TMS 2003,461-473.
    22.陈建勋,庞锡涛,郭建刚.硫代硫酸钠浸出铅的理论及工艺研究[J].湿法冶金,1997,61(1):36-40.
    23. Exposito E, Gonzalez-Garcia J, Bonete P, et al. Lead electrowinning in a fluoborate medium. Use of hydrogen diffusion anodes [J].Journal of Power Source,2000,87(1-2): 137-143.
    24.张昕红,唐文忠等.湿法炼铅技术进展与FLUBOR工艺[J].矿冶,2006,15(1)47-52.
    25.陈家镛,杨守志等.湿法冶金的研究与进展[M].北京:冶金工业出版社,1998,579-586.
    26. Murphy J.E., Chambers M.F., Eisele, J.A. Molten-salt electrolysis of lead chloride in a 3000 ampers cell with an improved electrode design[J].Electrochemical Socity Extended Abstracts,V.85-2, (1985):744.
    27. Murphy J.E., Chambers M.F. Production of lead metal by molten-salt electrolysis with energy-efficient electrodes[R].Bumines,1991,I R 9335.
    28. Das S.C., Subbaiah T., Sahoo P.K. Electrowinning of lead from its chloride bath containing organic additives[J].Hydrometallurgy,1989,21(3):373-383.
    29. Wang Xiang wen, Martiins, Gerard P. Electrochemical aspects of electrowinning lead metal from brine lead chloride electrolytes in the temperature range 55-80℃ Proceedings of the 1993 EPD Congress[C].TMS,1993,21-25.
    30. D. Andrevs, A. Raxchaudhuri and C. Prias. Environmentally sound technologies for recycling secondary lead[J]. Journal of Power Sources,2000,88:124-129.
    31. E. Exposito et al. Lead electro winning in an.acid chloride medium[J].Journal of Power Sources,2001,92:260-266.
    32.胡全红,许民.铅精矿全湿法工艺研究[J].有色金属(冶炼部分),2003,(2):5-7.
    33. E. Exposito, J. Iniesta and J. Gonzalez-Garcia. Use of hydrogen diffusion anodes during lead electrowinning in a chloride medium[J] Journal of Power Sources,2001,101(1):103-108.
    34. Limpo J L, Figueiredo J M, Amer S, et al. The CENIMLNETI process:A new process for the hydrometallurgical treatment of complex sulphides in ammonium chloride solutions [J].Hydrometallurgy,1992,28:149-161.
    35. Sahoo P K, Rath P C. Recovery of lead from complex sulphide leach residue by cementation with iron[J].Hydrometallurgy,1998,20:169-177.
    36. Kappes D W. Chloride leaching for silver, copper, lead and antimony-Industrial experience in the 600 tonne/day itos, Bolivia, Plant [A]. Chloride Metallurgy [C].2002, Volume:1,69-82.
    37.李同庆.变化中的全球电解二氧化锰市场[J].中国锰业,2006,24(3):6-9.
    38.王绍斌,董孟君.电解二氧化锰的电极过程与影响因素[J].中国锰业,1997,15(1):31-35.
    39.胡德斌,秦兆秀.电流密度对电解产品Mn02的影响[J].重庆师专学报,1999,18(4):90-91.
    40. Ghaemi M, Biglari Z, Binder L. Effect of bath temperature on electrochemical properties of the anodically deposited manganese dioxide [J] Journal of Power Source,2001,102:29-34.
    41. Susana Pilla A, Marta M E Duatte, Carlos E Mayer. Manganese dioxide electrodeposition in sulphate electrolytes:the influence of ferrous ions [J] Journal of Electroanalytical Chemistry,2004,569:7-14.
    42.周元敏,梅光贵,刘荣义.从提Ag废液制取电解二氧化锰的研究[J].中国锰业,2002,20(3):7-10.
    43.本多次德,大内念,中山日博,等.电解二氧化锰用硫酸锰溶液的纯化方法:中国,1160777A[P].1997-10-01.
    44.方平伟.电解Mn02用钛合金阳极:中国,1067455A[P].1991-01-01.
    45.李献凯,舒蒙展.工业电解Mn02用新型钛基钛锰合金阳极[J].中国锰业,1994,12 (5):17-20.
    46.曹凤华,韩明臣.生产电解二氧化锰用钛合金阳极的抗钝化性能[J].稀有金属材料与工程,1996,25(6):40-44.
    47.武正簧,杨冬花,郭彦文,等.金属阳极在电解法生产二氧化锰中的应用[J].太原工业大学学报,1997,28(4):84-87.
    48.武正簧.钌钛阳极生产二氧化锰及钌的回收研究[J].氯碱工业,1999,(6):6-8.
    49.钱伟文.中国电解二氧化锰工业的发展[J].湘潭师范学院学报(自然科学版),2004,26(2): 16-19.
    50.彭凤仙译.用于碱性干电池的二氧化锰制造方法[J].中国锰业,2000,18(4):53-55.
    51.周连亮,张其昕.掺钛电解二氧化锰的制备及其理化性能[J].福建师范大学学报(自然科学版),1990,6(3):59-67.
    52.袁国辉,诸德威,申日辉,等.改性电解二氧化锰研究[J].电化学,1995,1(4):446-450.
    53.舒东,夏熙.改性电解二氧化锰制备及可充性研究[J].电池,1993,23(2):51-57.
    54. Aravamuthan V, Visvanathan S. Electrolytic preparation of Manganese dioxide from chloride bath[J].Indian Ind,1965,9(7):16-18.
    55. Amano Y, et al. Process for electrolytic deposition of manganese dioxide:US, 3535217[P].1970-10-20.
    56. Rethinaraj J P, Chockalingam S C, Kulandaisamy S, et al. Electrolytic manganese dioxide from chloride electrolyte [J].Hydrometallurgy,1993,34(1):119-133.
    57.张其听.纤维态电解二氧化锰的生产工艺及相应装置和专用电极:中国,891037519[P].1989-05-29.
    58.陈震.纤维态电解二氧化锰电沉积条件与放电性能的关系[J].福建师范大学学报(自然科学版),1985,1(1):41-48.
    59.连锦明.盐酸浓度对电析二氧化锰的影响[J].福建师范大学学报(自然科学版),1989,5(4):57-60.
    60.江培海,张寅生,王含渊,等.矿浆电解法制取电解二氧化锰[J].有色金属(冶炼部分),1998,(5):2-5.
    61.梁杰.Zn-MnO2同时电解工艺现状及存在问题[J].有色金属(冶炼部分),1992,3:21-25.
    62.梁琨,陈斌.硫酸体系同时电解Zn-MnO2的研究[J].材料科学,2006,11:41-43.
    63.黄有志.软锰矿-锌精矿常压浸出及二氧化锰-锌同时电解半工业试验[J].有色金属(冶炼部分),1987,1:57-60.
    64.梅光贵,钟竹前.硫化锌精矿与软锰矿同时浸出及二氧化锰-锌同时电解半工业试验[J].有色金属(冶炼部分),1986,5:24-28.
    65.钟竹前,梅光贵,蔡传算,等.Zn-MnO2同时电解工业试验研究(上)[J].中国锰业,1994,12(3):45-50.
    66.李军旗.锌、二氧化锰分步电解新工艺[J].有色金属(冶炼部分),1997,3:7-9.
    67. Pandey V M,Rao P K. Simultaneous Electrodepositof Nickel and γ-parity manganese dioxide from Solution [J]. Chemical Era Block, F105-C,1981,17(3):7.
    68.张颖.同槽电解锰和二氧化锰工艺条件及传质机理的研究[D].重庆:重庆大学,2006.
    69.朱继民,钟竹前,梅光贵,等.镍-二氧化锰同时电解新工艺研究[J].中国锰业,1994,12(5):21-25.
    70.刘荣义,钟竹前,梅光贵,等.Cu-MnO2同槽电解半工业试验研究[J].中国锰业,1995,13(5):27-32.
    71.刘荣义,梅光贵,钟竹前.锰-二氧化锰同槽电解新工艺研究[J].中国锰业,1996,14(3):40-45.
    72.陈安,朱耀华,张其昕.同时电解生产金属锰和纤维态电解二氧化锰的方法[J].福建师范大学学报(自然科学版),1988,3:54-62.
    73. Hzggins Irwin R. Simultaneous electrodeposition of manganese and manganese dioxide[P]. USA, US47O7227,1987.
    74.陈晓洪,傅崇说,郑蒂基.氯化物体系Ni-MnO2同时电沉积[J].中国锰业,1991,2:38-41.
    75.李谦,张元福.氯盐溶液锌-二氧化锰同槽隔膜电解的研究[J].无机盐工业,1999,31(6):14-16.
    76. Pourbaix M. Atals of electrochemical equilibria in aqueous solutions[M]. Pergamon, London,1966.
    77. Fleischman M, Thirsk H R. The mechanism of processing for electrolytic manganese dioxide [J].J. Electrochem. Soc. Japan (Overseas Edition),1960,28(2):170-175.
    78.杉森正敏,关根太郎.电解二氧化锰的电极过程[J].电气化学,1969,37(2):63-69.
    79.陈家镛主编.湿法冶金手册[M].北京:冶金工业出版社,2005:1242-1296.
    80.傅崇说主编.有色冶金原理[M].北京:冶金工业出版社,1993:251-259.
    81.江培海,张寅生,王含渊,等.矿浆电解法制取电解二氧化锰[J].有色金属(冶炼部分),1998,(5):2-5.
    82.曹世文.电解二氧化锰生产中的质量管理[J].中国锰业,1995,13(2):30-34.
    83.卢兆忠,连锦明,陈明.电解二氧化锰化学活性的实验室评价[J].福建师范大学学报(自然科学版),1991(3):59-63.
    84.张文山,刘荣义,梅光贵,等.提高电解二氧化锰阳极电流效率的研讨[J].中国锰业,2001,19(4):8-10.
    85.曾若姗,连锦明,童庆松.电解条件对电解Mn02电性能的影响[J].福建师范大学学报(自然科学版),1995,11(2):53-57.
    86.朱国祥.采用直接浸出新工艺制备电解二氧化锰[J].南方钢铁,1995(2):10-13.
    87.QB2106-95《电池用电解二氧化锰》,中华人民共和国行业标准,中国轻工总会发布.
    88.东北工学院.铅冶金[M].北京:冶金工业出版社,1976,256-258.
    89.张祥麟,康衡.配位化学[M],湖南:中南工业大学出版社,1985,155-167.
    90.金斗满,朱文祥.配位化学研究方法[M].北京:科学出版社,1996,101-150.
    91.《浸矿技术编委会》.浸矿技术[M].北京:原子能出版社,1994,10,168-170.
    92.曾振欧,王颖,陈丽莉.氯盐溶液中Pb(Ⅱ)离子在汞电极上阴极还原的机理[J].中南矿冶学院学报,1990,21(6):680-684.
    93. Appelt,K., Electrochinica Acta,1968,13:1521-1532.
    94.郑蒂基,傅崇说.关于铅-氯离子-水系在高离子强度及升温条件下的平衡研究[J].中南矿冶学院学报,1981,12(4):1-9.
    95.郑蒂基.铅氯络合离子生产反应的平衡常数[J].中南矿冶学院学报,1981,12(4):10-15.
    96.蒋汉瀛.湿法冶金过程物理化学[M].北京:冶金工业出版社,1984,34-65.
    97.杨显万,邱定蕃.湿法冶金[M].北京:冶金工业出版社,1998,12-18.
    98.钟竹前,梅光贵.湿法冶金过程[M].长沙:中南工业大学出版社,1988,1-15.
    99.杨显万,何蔼平,袁宝州.高温水溶液热力学数据计算手册[M].北京:冶金工业出版社,1983.459-460.
    100.陈国发,王德全.铅冶金学[M].北京:冶金工业出版社,2000,9-12.
    101.株洲冶炼厂《冶金读本》编写小组.铅的生产[M].长沙:湖南人民出版社,1973,171-226.
    102.夏中卫.添加剂在柏兹法铅电解中的应用[J].湖南有色金属,2003,19(4):20-23.
    103.戴军,王德全,姜澜等.铅电解精炼添加剂的应用及进展[J].有色金属,2003,55(1):75-80.
    104.Lucretia G, Oniciu L, Muresan L, et al. Effect of additives on the morphology of lead electrodeposits[J]. J Electroanal Chem,1991,313:303.
    105.刘德育.新添加剂在铅电解中的应用[J].有色金属(冶炼部分),1991(3):7.
    106.钟竹前,梅光贵,蔡传算.铜、锌、镍-二氧化锰(Me-MnO2)同时电解的研究[J].中南大学学报(自然科学版),1987,5:515-521.
    107.江声扬,梁杰.Zn-MnO2同时电解新工艺研究[J].贵州工业大学学报(自然科学版),1989,2:21-30.
    108.罗远辉,郭琳,刘永忠等.硫酸体系中Ni-MnO2同时电沉积的研究[J].有色金属(冶炼部分)2002,4:46-49.
    109.李晓龙.硫酸体系中锌和二氧化锰同时电解的研究[D].西安:西安建筑科技大学,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700