凝血酶电化学适体传感器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
凝血酶是一种由凝血酶前体形成的丝氨酸蛋白质水解酶,具有催化纤维蛋白元变成纤维蛋白,促进血液凝固和调控凝血等作用,在揭示肿瘤的发生机制及作为早期诊断、疗效及愈后判断依据等方面有着非常重大的意义。由于血液中凝血酶的浓度达nmol·L-1,建立简单、快速、高灵敏度检测凝血酶的方法具有非常重要的意义。将SELEX技术筛选出的适体作为识别元件与电化学生物传感器相结合构建电化学适体传感器,集成了适体和电化学传感器两方面的优势,既具有电化学传感器的高灵敏度、快响应、简单操作、低成本,又具有适体的高选择性和特异性,在凝血酶检测方面具有广阔的应用前景。本文的研究目的是构建简单、可靠、快速、高灵敏度的电化学适体传感器用于凝血酶的检测。围绕本研究目的主要从电化学适体传感器敏感界面的构建,多功能化复合纳米材料的制备以及新型电化学信号放大策略等进行了探索和研究。本文分以下几个部分组成:
     第一章绪论简要对适体的体外筛选方法、适体的特点、适体与凝血酶的相互作用进行了概述。详细介绍了电化学适体传感器的基本原理和其分类,适体的固定化方法以及相关的电化学分析技术,重点评述了纳米粒子、酶催化、杂交链式反应和目标循环信号放大技术在电化学适体传感器中的应用。最后引出本论文的选题背景、研究意义、研究目的和研究内容。
     第二章由于适体本身为非电活性,或者适体中A、G和C碱基的电氧化还原信号低,且电化学调制不利于适体亲合性质的保持,大部分电化学适体传感器都需要功能性标记物以得到可定量检测的电化学信息。然而标记物的标记过程复杂、耗时、成本较高,且标记过程可能会影响其生物活性。基于层层自组装技术在金电极表面组装了{nano-Au/Thi}n多层膜,并以此为氧化还原探针和凝血酶适体固载基质构建了一种signal-off型免标记电化学适体传感器用于凝血酶的检测。该方法无需对适体进行电活性物质标记,一定程度上大大增加了电活性物质在电极表面的固载量和减少了电活性物质与电极表面的距离,具有操作简单、响应快、特异性强等特点。同时,该适体传感器的构建方法适用于其他各种适体的固载,在蛋白质检测和疾病诊断等领域都有很广的应用前景。
     第三章G-四链体-卟啉铁(hemin/G-quadruplex)作为酶催化标记能有效放大电化学响应信号。与普通的蛋白酶相比较它更易于标记、成本低,稳定性好和抗水解性强。利用凝血酶适体富含G碱基能与卟啉铁hemin结合形成具有类似辣根过氧化物酶电催化增强性质的催化结构hemin/G-quadruplex,构建了电催化放大信号的signal-off型电化学适体传感器用于凝血酶的检测。并首次提出使用HRP封闭电化学适体传感器表面的非特异性吸附位点,且同时催化放大响应电流信号,进而提高电化学适体传感器的灵敏度的新方法。该传感器实现了对凝血酶高特异性和高灵敏度的识别,免去了电活性物质和酶的标记。经实验研究表明,该传感器构建方法简单,切实可行,大大提高了电化学适体传感器的灵敏度。
     第四章金属纳米催化信号放大与酶相比,其热稳定性有很大的改善。以电惰性物质十八酸OCA和具有双功能的Au-PtNPs电催化双重放大响应信号制备了目标物引起的signal-on型电化学适体传感器用于凝血酶的检测。在测试底液中存在H2O2情况下,Au-PtNPs对亚甲蓝MB的氧化还原反应起到明显的增强作用。进行定量分析时,传感器表面阻碍电子传输的十八酸OCA修饰的凝血酶适体捕获目标分子后离开电极表面,电极表面空间位阻减少,同时Au-PtNPs的催化活性增加,使所得的响应信号进一步增加,从而有效地提高了电极灵敏度。该适体传感器构建方法简单、响应快、灵敏度高、稳定性好,将其用于临床样品检测,得到满意结果。
     第五章通过π-π堆垛制备了具有一对很好氧化还原峰和类似辣根过氧化物酶催化作用的苝四甲酸/卟啉铁复合纳米材料(PTCA/hemin)。并结合葡萄糖氧化酶(GOx)作为封闭剂构建了一种基于PTCA/hemin纳米复合材料为氧化还原探针及催化剂的仿双酶放大信号signal-on型电化学适体传感器用于凝血酶的检测。PTCA/hemin复合纳米材料良好的成膜性避免了传统固载电活性物质和酶的复杂过程,同时也减少了固载电活性物质过程中电惰性物质的加入,操作简单、灵敏度高。GOx作为封闭剂封闭传感器表面的非特异性吸附位点,且同时构建了仿双酶催化放大响应电流信号,进而进一步提高了电化学适体传感器的灵敏度。
     第六章双酶催化放大信号优于单酶催化体系,通过将hemin/G-quadruplex同时作为辣根过氧化物模拟酶和NADH氧化酶构建了仿双酶夹心式电化学适体传感器用于凝血酶的检测。与传统的酶标适体传感器相比,该传感器更易于标记,成本低,稳定性好、抗水解性强。更为重要的是hemin/G-quadruplex同时作为辣根过氧化物模拟酶和NADH氧化酶避免了繁琐的酶标记过程、解决了酶分布比例,多少及活性等问题,为构建简单、高灵敏的传感器提供了新的构建方法。
Thrombin, a kind of serine protease that involved in thrombosis and hemostasis, plays an important role in revealing tumorigenesis mechanism and judgment of early diagnosis, curative effect and prognosis. Since the concentration of thrombin in blood reaches to nmol·L-1, create a simple, rapid and high-sensitivity method for detection of thrombin is extremely important. Electrochemical aptasensor, the combination of SELEX-screened aptamers and electrochemical sensors, integrates the advantages of high sensitivity, fast response, simple operation and low cost of electrochemical sensors as well as high selectivity and specificity of aptamer, which thus provids very broad application prospects in the field of thrombin detection. The aim of present work is to develop simple, reliable, fast, high-sensitivity electrochemical aptasensor for the detection of thrombin. Therefore, this work focuses on the construction of the sensitive interface, the preparation of multi-functionalized nanoparticles and the development of novel electrochemical signal amplificatory strategy. The detail contents are as follows:
     In chapter one, after general introduction of aptamer including its in vitro selection, characteristic and interaction with thrombin, the principles, classification, immobilization method and associated electrochemical analysis techniques of the electrochemical aptasensor were described in detail. Moreover, the application of signal amplificatory strategy for electrochemical aptasenor was highlighted. Lastly, the aim and the significance of this thesis were briefly introduced.
     In chapter two, since the aptamers are intrinsically unable to act as redox partners in an electrochemical reaction, most electrochemical aptasensors are relied on the label of either aptamer or its complementary strand. The labeling process, however, is complicated, time-consuming, and may affect the biological activity of aptamer. In this experiment, we described a signal-off and label-free electrochemical aptasensor for the detection of thrombin based on{nano-Au/Thi}n multilayer films acted as redox probe and thrombin aptamer (TBA) immobilized matrix. Herein, the {nano-Au/Thi}n multilayer films are formed on the electrode surface via the layer-by-layer self-assembly technique, which avoids the fuzzy labeling process of aptamer, thus leads to a great increase of redox probe amount on electrode surface and a decrease of distance between the redox probe and electrode surface to a certain extent. This approach possesses some dramatic advantages, such as simple operation, fast response, high specificity and so on. At the same time, the constructing method of this aptasensor is applicable to many other aptamers, providing very broad application prospects in the field of protein detection and disease diagnosis.
     In chapter three, hemin/G-quadruplex used for enzyme catalysis can effectively amplify the electrochemical signal. Compared with protein enzymes, hemin/G-quadruplex is relatively easy to label, less expensive to produce, and more stable against hydrolysis and heat treatment. Take advantage of the G base-riched thrombin aptamer can combine with hemin to form a horseradish peroxidase-like hemin/G-quadruplex catalytic structure, we described a signal-off electrochemical aptasensor with electrocatalytic amplification for the detection of thrombin. Moreover, the new strategy of employing HRP to block the possible remaining active sites and thus then amplify the response of the TBA-thrombin recognition was proposed. The proposed electrochemical aptasensor realized the recognition to thrombin with high specificity and high sensitivity, and avoided the fuzzy labeling process of electroactive substance and the enzyme. Experimental studies have shown that this approach is simple, practical and greatly improved the sensitivity of electrochemical aptasensor.
     In chapter four, compared with protein enzyme, the nano-metals for electrocatalytic amplification possess better thermal stability. In this experiment, we described a target-induced signal-on electrochemical aptasensor for the detection of thrombin based on the dual-amplification of inert material stearic acid OCA and dual-functional Au-PtNPs. With the addition of H2O2to the electrolytic cell, the Au-PtNPs on the aptasensor surface effectively electrocatalyzed the oxidation-reduction reaction of methylene blue MB, which provided an extremely amplified electrochemical signal. When the quantitative analysis was carried out, the OCA label TBA on electrode surface captured thrombin and followed with the leave of the electrode surface, which led to a decrease in steric hindrance of electrode surface and an increase in catalytic efficiency of Au-PtNPs, significantly amplified the electrochemical signal, and thereby effectively improved the sensitivity of electrochemical aptasensor. The proposed aptasensor has been demonstrated to offer a simple, rapid and sensitive method for the detection of thrombin, providing a satisfactory result in clinical detection.
     In chapter five, a novel3,4,9,10-perylenetetracarboxylic acid/hemin nanocomposites (PTCA/hemin) with a pair of well-defined redox peaks and intrinsic horseradish peroxidase-like activity was prepared through π-π interactions. And a pseudobienzyme-channeling amplified signal-on electrochemical aptasensor based on glucose oxidase (GOx) as blocking reagent and PTCA/hemin nanocomposites simultaneously as redox probes and electrocatalysts was prepared for the detection of thrombin. The superior membrane-forming property of PTCA/hemin nanocomposites not only avoids the conventional fussy process for redox probe immobilization, but also reduces the participation of the membrane materials that act as a barrier of electron transfer, providing a simple and sensitive method of detection of thrombin. Moreover, the new strategy of employing GOx to block the possible remaining active sites and thus then construct pseudobienzyme-channeling amplified system for amplifying the response of the TBA-thrombin recognition was proposed, which further improved the sensitivity of electrochemical aptasensor.
     In chapter six, since bienzyme catalytic signal amplification is obviously larger that of single enzyme catalytic system, we described a pseudobienzyme amplifying sandwich-type electrochemical aptasensor for the detection of thrombin with hemin/G-quadruplex simultaneously serve as NADH oxidase and an HRP-mimicking DNAzyme. Compared with protein enzymes labeled aptasensor, the proposed aptasensor are relatively easy to label, less expensive to produce, and more stable against hydrolysis and heat treatment. More importantly, this strategy realized the simultaneous action of the hemin/G-quadruplex as an NADH oxidase and HRP-mimicking DNAzyme in bioelectrocatalytic amplification, which avoided the fussy labeling process, resolved the spatial distribution of each sequentially acting enzyme and provided a new strategy for constructing simple and sensitive aptasensor for the detection of thrombin.
引文
[1]Ellington, A. D., Szostak, J. W., In vitro selection of RNA molecules that bind specific ligands. Nature 1990,346 (6287),818-822.
    [2]Tuerk, C., Gold, L., Systematic evolution of ligands by exponential enrichment:RNA ligands to bacteriophage T4 DNA polymerase. Science 1990,249 (4968),505-510.
    [3]Jayasena, S. D., Aptamers:An emerging class of molecules that rival antibodies in diagnostics. Clinical Chemistry 1999,45 (9),1628-1650.
    [4]Song, S., Wang, L., Li, J., Zhao, J., Fan, C., Aptamer-based biosensors. Trac-Trends in Analytical Chemistry 2008,27 (2),108-117.
    [5]Wu, Z. S., Guo, M. M., Zhang, S. B., Chen, C. R., Jiang, J. H., Shen, G. L., Yu, R. Q., Reusable electrochemical sensing platform for highly sensitive detection of small molecules based on structure-switching signaling aptamers. Analytical Chemistry 2007,79 (7), 2933-2939.
    [6]Virno, A., Randazzo, A., Giancola, C., Bucci, M., Cirino, G., Mayol, L., A novel thrombin binding aptamer containing a G-LNA residue. Bioorganic & Medicinal Chemistry 2007,15 (17),5710-5718.
    [7]Ling, J., Morley, S. J., Pain, V. M., Marzluff, W. F., Gallie, D. R., The histone 3'-terminal stern-loop-binding protein enhances translation through a functional and physical interaction with eukaryotic initiation factor 4G (eIF4G) and eIF3. Molecular and Cellular Biology 2002, 22 (22),7853-7867.
    [8]Kensch, O., Connolly, B. A., Steinhoff, H. J., McGregor, A., Goody, R. S., Restle, T., HIV-1 reverse transcriptase-pseudoknot RNA aptamer interaction has a binding affinity in the low picomolar range coupled with high specificity. Journal of Biological Chemistry 2000,275 (24),18271-18278.
    [9]Liu, Y, Tuleouva, N., Ramanculov, E., Revzin, A., Aptamer-based electrochemical biosensor for interferon gamma detection. Analytical Chemistry 2010,82 (19),8131-8136.
    [10]Drabovich, A. P., Berezovski, M., Okhonin, V., Krylov, S. N., Selection of smart aptamers by methods of kinetic capillary electrophoresis. Analytical Chemistry 2006,78 (9),3171-3178.
    [11]Huang, Y F., Chang, H. T., Tan, W. H., Cancer cell targeting using multiple aptamers conjugated on nanorods. Analytical Chemistry 2008,80 (3),567-572.
    [12]Jiang, Y. X., Zhu, C. F., Ling, L. S., Wan, L. J., Fang, X. H., Bai, C., Specific aptamer-protein interaction studied by atomic force microscopy. Analytical Chemistry 2003,75 (9), 2112-2116.
    [13]王成刚,莫志宏,核酸适体技术研究进展.生物医学工程学杂志2006,23,463-466.
    [14]谢海燕,陈薛钗,邓玉林,核酸适配体及其在化学领域的相关应用.化学进展2007,19,1026-1033.
    [15]De Cristofaro, R., Akhavan, S., Altomare, C., Carotti, A., Peyvandi, F., Mannucci, P. M., A natural prothrombin mutant reveals an unexpected influence of A-chain structure on the activity of human alpha-thrombin. Journal of Biological Chemistry 2004,279 (13), 13035-13043.
    [16]DiCera, E., Dang, Q. D., Ayala, Y. M., Molecular mechanisms of thrombin function. Cellular and Molecular Life Sciences 1997,53 (9),701-730.
    [17]Pineda, A. O., Savvides, S. N., Waksman, G., Di Cera, E., Crystal structure of the anticoagulant slow form of thrombin. Journal of Biological Chemistry 2002,277 (43), 40177-40180.
    [18]Singh, R. R., Chang, J. Y., Structural stability of human alpha-thrombin studied by disulfide reduction and scrambling. Biochimica Et Biophysica Acta-Proteins and Proteomics 2003, 1651 (1-2),85-92.
    [19]Pirkle, H., Theodor, I. Thrombin-like venom enzymes structure and function. Advances in Experimental Medicine and Biology 1990,281,165-175.
    [20]Tu, Y. H., Cheng, G. F., Li, L., Jing, Z., Wu, Z. R., He, P. G., Fang, Y. Z., Detection of thrombin with a novel nano-biosensor based on aptamer fluorescence. Chemical Journal of Chinese Universities-Chinese 2006,27 (12),2266-2270.
    [21]Tasset, D. M., Kubik, M. F., Steiner, W., Oligonucleotide inhibitors of human thrombin that bind distinct epitopes. Journal of Molecular Biology 1997,272 (5),688-698.
    [22]Pavlov, V., Xiao, Y, Shlyahovsky, B., Willner, I., Aptamer-functionalized Au nanoparticles for the amplified optical detection of thrombin. Journal of the American Chemical Society 2004,126 (38),11768-11769.
    [23]Wei, H., Li, B. L., Li, J., Wang, E. K., Dong, S. J., Simple and sensitive aptamer-based colorimetric sensing of protein using unmodified gold nanoparticle probes. Chemical Communications 2007, (36),3735-3737.
    [24]Bai, L. J., Yuan, R, Chai, Y. Q., Yuan, Y. L., Zhuo, Y, Mao, L., Bi-enzyme functionlized hollow PtCo nanochains as labels for an electrochemical aptasensor. Biosensors & Bioelectronics 2011,26 (11),4331-4336.
    [25]Xiang, Y., Qian, X. Q., Zhang, Y. Y., Chen, Y., Chai, Y. Q., Yuan, R., A reagentless, disposable and multiplexed electronic biosensing platform:application to molecular logic gates. Biosensors & Bioelectronics 2011,26 (6),3077-3080.
    [26]Radi, A. E., Sanchez, J. L. A., Baldrich, E., O'Sullivan, C. K., Reusable impedimetric aptasensor. Analytical Chemistry 2005,77 (19),6320-6323.
    [27]Xu, D. K., Xu, D. W., Yu, X. B., Liu, Z. H., He, W., Ma, Z. Q., Label-free electrochemical detection for aptamer-based array electrodes. Analytical Chemistry 2005,77 (16),5107-5113.
    [28]Hea Yeon, L., Man Bock, G., Yeon Seok, K., Ho Sup, J., Matsuura, T., Kawai, T., Electrochemical detection of 17beta-estradiol using DNA aptamer immobilized gold electrode chip. Biosensors & Bioelectronics 2007,22 (11),2525-2531.
    [29]Rodriguez, M. C., Kawde, A. N., Wang, J., Aptamer biosensor for label-free impedance spectroscopy detection of proteins based on recognition-induced switching of the surface charge. Chemical Communications 2005, (34),4267-4269.
    [30]Degefa, T. H., Kwak, J., Label-free aptasensor for platelet-derived growth factor (PDGF) protein. Analytica Chimica Acta 2008,613 (2),163-168.
    [31]Xiao, Y., Piorek, B. D., Plaxco, K. W., Heeger, A. J., Areagentless signal-on architecture for electronic, aptamer-based sensors via target-induced strand displacement. Journal of the American Chemical Society 2005,127 (51),17990-17991.
    [32]Zuo, X. L., Song, S. P., Zhang, J., Pan, D., Wang, L. H., Fan, C. H., A target-responsive electrochemical aptamer switch (TREAS) for reagentless detection of nanomolar ATP. Journal of the American Chemical Society 2007,129 (5),1042-1043.
    [33]Numnuam, A., Chumbimuni-Torres, K. Y., Xiang, Y., Bash, R., Thavarungkul, P., Kanatharana, P., Pretsch, E., Wang, J., Bakker, E., Aptamer-based potentiometric measurements of proteins using ion-selective microelectrodes. Analytical Chemistry 2008,80 (3),707-712.
    [34]Wang, J., Meng, W. Y., Zheng, X. F., Liu, S. L., Li, G. X., Combination of aptamer with gold nanoparticles for electrochemical signal amplification:application to sensitive detection of platelet-derived growth factor. Biosensors & Bioelectronics 2009,24 (6),1598-1602.
    [35]Lee, J. A., Hwang, S., Kwak, J., Il Park, S., Lee, S. S., Lee, K. C., An electrochemical impedance biosensor with aptamer-modified pyrolyzed carbon electrode for label-free protein detection. Sensors and Actuators B-Chemical 2008,129 (1),372-379.
    [36]Zayats, M., Huang, Y., Gill, R., Ma, C. A., Willner, I., Label-free and reagentless aptamer-based sensors for small molecules. Journal of the American Chemical Society 2006, 128(42),13666-13667.
    [37]Yage, P., Dongdong, Z., Yan, L., Honglan, Q., Qiang, G, Chengxiao, Z., Label-free and sensitive faradic impedance aptasensor for the determination of lysozyme based on target-induced aptamer displacement. Biosensors & Bioelectronics 2009,25 (1),94-99.
    [38]Shen, L., Chen, Z., Li, Y. H., Jing, P., Xie, S. B., He, S. L., He, P. L., Shao, Y. H., A chronocoulometric aptamer sensor for adenosine monophosphate. Chemical Communications 2007, (21),2169-2171.
    [39]Du, Y., Chen, C. G., Yin, J. Y., Li, B. L., Zhou, M., Dong, S. J., Wang, E. K., Solid-State Probe Based Electrochemical Aptasensor for Cocaine:A Potentially Convenient, Sensitive, Repeatable, and Integrated Sensing Platform for Drugs. Analytical Chemistry 2010,82 (4), 1556-1563.
    [40]Du, Y., Chen, C. G., Li, B. L.,Zhou, M.,Wang, E. K.,Dong, S. J., Layer-by-layer electrochemical biosensor with aptamer-appended active polyelectrolyte multilayer for sensitive protein determination. Biosensors & Bioelectronics 2010,25 (8),1902-1907.
    [41]Lai, R. Y., Plaxco, K. W., Heeger, A. J., Aptamer-based electrochemical detection of picomolar platelet-derived growth factor directly in blood serum. Analytical Chemistry 2007, 79(1),229-233.
    [42]Xiao, Y., Lubin, A. A., Heeger, A. J., Plaxco, K. W., Label-free electronic detection of thrombin in blood serum by using an aptamer-based sensor. Angewandte Chemie-International Edition 2005,44 (34),5456-5459.
    [43]Hu, R., Fu, T., Zhang, X. B., Kong, R. M., Qiu, L. P., Liu, Y. R., Liang, X. T., Tan, W. H., Shen, signal-on electrochemical DNAzyme sensing system. Chemical Communications 2012, 48 (76),9507-9509.
    [44]Xu, L. P., Wang, S. Q., Dong, H. F., Liu, G. D., Wen, Y. Q., Wang, S. T., Zhang, X. J., Fractal gold modified electrode for ultrasensitive thrombin detection. Nanoscale 2012,4 (12), 3786-3790.
    [45]McMullan, M., Sun, N. J., Papakonstantinou, P., Li, M. X., Zhou, W. Z., Mihailovic, D., Aptamer conjugated Mo(6)S(9-x)I(x) nanowires for direct and highly sensitive electrochemical sensing of thrombin. Biosensors & Bioelectronics 2011,26 (5),1853-1859.
    [46]Feng, K. J., Sun, C. H., Kang, Y., Chen, J. W., Jiang, J. H., Shen, G. L., Yu, R. Q., Label-free electrochemical detection of nanomolar adenosine based on target-induced aptamer displacement. Electrochemistry Communications 2008,10 (4),531-535.
    [47]Radi, A. E., Sanchez, J. L. A., Baldrich, E., O'Sullivan, C. K., Reagentless, reusable, ultrasensitive electrochemical molecular beacon aptasensor. Journal of the American Chemical Society 2006,128 (1),117-124.
    [48]Zhang, Y. L., Huang, Y, Jiang, J. H., Shen, G L., Yu, R. Q., Electrochemical aptasensor based on proximity-dependent surface hybridization assay for single-step, reusable, sensitive protein detection. Journal of the American Chemical Society 2007,129 (50),15448-15449.
    [49]Zuo, X. L., Xiao, Y, Plaxco, K. W., High specificity, electrochemical sandwich assays based on single aptamer sequences and suitable for the direct detection of small-molecule targets in blood and other complex matrices. Journal of the American Chemical Society 2009,131 (20), 6944-6945.
    [50]Lao, R. J., Song, S. P., Wu, H. P., Wang, L. H., Zhang, Z. Z., He, L., Fan, C. H., Electrochemical interrogation of DNA monolayers on gold surfaces. Analytical Chemistry 2005,77 (19),6475-6480.
    [51]Herne, T. M., Tarlov, M. J., Characterization of DNA probes immobilized on gold surfaces. Journal of the American Chemical Society 1997,119 (38),8916-8920.
    [52]Xu, Y., Yang, L., Ye, X. Y., He, P. A., Fang, Y. Z., An aptamer-based protein biosensor by detecting the amplified impedance signal. Electroanalysis 2006,18 (15),1449-1456.
    [53]Ross, S. E., Carson, S. D., Fink, L. M., Effects of detergents on avidin-biotion interaction. Biotechniques 1986,4 (4),350-354.
    [54]Kawde, A. N., Rodriguez, M. C., Lee, T. M. H., Wang, J., Label-free bioelectronic detection of aptamer-protein interactions. Electrochemistry Communications 2005,7 (5),537-540.
    [55]Liao, Y. H., Yuan, R., Chai, Y. Q., Zhuo, Y., Yuan, Y. L., Bai, L. J., Mao, L., Yuan, S. R., In-situ produced ascorbic acid as coreactant for an ultrasensitive solid-state tris(2,2 '-bipyridyl) ruthenium(II) electrochemiluminescence aptasensor. Biosensors & Bioelectronics 2011,26 (12),4815-4818.
    [56]Zhang, S. S., Xia, J. P., Li, X. M., Electrochemical Biosensor for Detection of Adenosine Based on Structure-Switching Aptamer and Amplification with Reporter Probe DNA Modified Au Nanoparticles. Analytical Chemistry 2008,80 (22),8382-8388.
    [57]Wang, J. L., Wang, F., Dong, S. J., Methylene blue as an indicator for sensitive electrochemical detection of adenosine based on aptamer switch. Journal of Electroanalytical Chemistry 2009,626 (1-2),1-5.
    [58]Katz, E., Willner, I., Probing biomolecular interactions at conductive and semiconductive surfaces by impedance spectroscopy:Routes to impedimetric immunosensors, DNA-Sensors, and enzyme biosensors. Electroanalysis 2003,15 (11),913-947.
    [59]Deng, C. Y., Chen, J. H., Nie, Z., Wang, M. D., Chu, X. C., Chen, X. L., Xiao, X. L., Lei, C. Y., Yao, S. Z., Impedimetric Aptasensor with Femtomolar Sensitivity Based on the Enlargement of Surface-Charged Gold Nanoparticles. Analytical Chemistry 2009,81 (2), 739-745.
    [60]Kuang, H., Chen, W., Xu, D. H., Xu, L. G., Zhu, Y. Y, Liu, L. Q., Chu, H. Q., Peng, C. F., Xu, C. L., Zhu, S. F., Fabricated aptamer-based electrochemical "signal-off' sensor of ochratoxin A. Biosensors & Bioelectronics 2010,26 (2),710-716.
    [61]Du, Y, Chen, C. G., Li, B. L., Zhou, M., Wang, E. K., Dong, S. J., Layer-by-layer electrochemical biosensor with aptamer-appended active polyelectrolyte multilayer for sensitive protein determination. Biosensors & Bioelectronics 2010,25 (8),1902-1907.
    [62]Ding, C. F., Ge, Y, Lin, J. M., Aptamer based electrochemical assay for the determination of thrombin by using the amplification of the nanoparticles. Biosensors & Bioelectronics 2010, 25 (6),1290-1294.
    [63]Tang, D. P., Yuan, R., Chal, Y. Q., Ultrasensitive electrochemical immunosensor for clinical immunoassay using thionine-doped magnetic gold nanospheres as labels and horseradish peroxidase as enhancer. Analytical Chemistry 2008,80 (5),1582-1588.
    [64]Fu, Y. C., Wang, T., Bu, L. J., Xie, Q. J., Li, P. H., Chen, J. H., Yao, S. Z., A post-labeling strategy based on dye-induced peeling of the aptamer off single-walled carbon nanotubes for electrochemical aptasensing. Chemical Communications 2011,47 (9),2637-2639.
    [65]Xiang, Y., Zhang, Y. Y, Qian, X. Q., Chai, Y. Q., Wang, J., Yuan, R., Ultrasensitive aptamer-based protein detection via a dual amplified biocatalytic strategy. Biosensors & Bioelectronics 2010,25 (11),2539-2542.
    [66]Li, Y, Qi, H. L., Gao, Q. A., Yang, J., Zhang, C. X., Nanomaterial-amplified "signal off/on" electrogenerated chemiluminescence aptasensors for the detection of thrombin. Biosensors & Bioelectronics 2010,26 (2),754-759.
    [67]Zhao, J., Lin, F. B., Yi, Y. H., Huang, Y, Li, H. T., Zhang, Y. Y., Yao, S. Z., Dual amplification strategy of highly sensitive thrombin amperometric aptasensor based on chitosan-Au nanocomposites. Analyst 2012,137 (15),3488-3495.
    [68]Centi, S., Tombelli, S., Minunni, M., Mascini, M., Aptamer-based detection of plasma proteins by an electrochemical assay coupled to magnetic beads. Analytical Chemistry 2007, 79 (4),1466-1473.
    [69]Bai, L. J., Yuan, R., Chai, Y. Q., Yuan, Y. L., Wang, Y, Xie, S. B., Direct electrochemistry and electrocatalysis of a glucose oxidase-functionalized bioconjugate as a trace label for ultrasensitive detection of thrombin. Chemical Communications 2012,48 (89),10972-10974.
    [70]Travascio, P., Li, Y. F., Sen, D., DNA-enhanced peroxidase activity of a DNA aptamer-hemin complex. Chemistry & Biology 1998,5 (9),505-517.
    [71]Tang, J., Hou, L., Tang, D. P., Zhang, B., Zhou, J., Chen, G. N., Hemin/G-quadruplex-based DNAzyme concatamers as electrocatalysts and biolabels for amplified electrochemical immunosensing of IgGl. Chemical Communications 2012,48 (66),8180-8182.
    [72]Zhou, Y. L., Wang, M., Meng, X. M., Yin, H. S., Ai, S. Y, Amplified electrochemical microRNA biosensor using a hemin-G-quadruplex complex as the sensing element. Rsc Advances 2012,2 (18),7140-7145.
    [73]Shen, B. J., Wang, Q., Zhu, D., Luo, J. J., Cheng, G F., He, P. A., Fang, Y. Z., G-quadruplex-based DNAzymes aptasensor for the amplified electrochemical detection of thrombin. Electroanalysis 2010,22 (24),2985-2990.
    [74]Zhang, H. X., Jiang, B. Y, Xiang, Y, Chai, Y. Q., Yuan, R., Label-free and amplified electrochemical detection of cytokine based on hairpin aptamer and catalytic DNAzyme. Analyst 2012,137 (4),1020-1023.
    [75]Dirks, R. M., Pierce, N. A., Triggered amplification by hybridization chain reaction. Proceedings of the National Academy of Sciences of the United States of America 2004,101 (43),15275-15278.
    [76]Chen, Y., Xu, J., Su, J., Xiang, Y., Yuan, R., Chai, Y. Q., In situ hybridization chain reaction amplification for universal and highly sensitive electrochemiluminescent detection of DNA. Analytical Chemistry 2012,84 (18),7750-7755.
    [77]Chen, X., Hong, C. Y, Lin, Y. H., Chen, J. H., Chen, G. N., Yang, H. H., Enzyme-free and label-Free ultrasensitive electrochemical detection of human immunodeficiency virus DNA in biological samples based on long-range self-assembled DNA nanostructures. Analytical Chemistry 2012,84 (19),8277-8283.
    [78]Zhao, J. J., Chen, C. F., Zhang, L. L., Jiang, J. H., Yu, R. Q., An electrochemical aptasensor based on hybridization chain reaction with enzyme-signal amplification for interferon-gamma detection. Biosensors & Bioelectronics 2012,36 (1),129-134.
    [79]Kiesling, T., Cox, K., Davidson, E. A., Dretchen, K., Grater, G., Hibbard, S., Lasken, R. S., Leshin, J., Skowronski, E., Danielsen, M., Sequence specific detection of DNA using nicking endonuclease signal amplification (NESA). Nucleic Acids Research 2007,35 (18), e117.
    [80]Cao, Y, Zhu, S., Yu, J. C., Zhu, X. J., Yin, Y. M., Li, G. X., Protein detection based on small molecule-linked DNA. Analytical Chemistry 2012,84 (10),4314-4320.
    [81]Tong, P., Zhang, L., Xu, J. J., Chen, H. Y, Simply amplified electrochemical aptasensor of Ochratoxin A based on exonuclease-catalyzed target recycling. Biosensors & Bioelectronics 2011,29(1),97-101.
    [82]Robertson, D. L., Joyce, G. F., Selection invitro of an RNA enzyme that specifically cleaves single-stranded DNA. Nature 1990,344 (6265),467-468.
    [83]Smirnov, I., Shafer, R. H., Effect of loop sequence and size on DNA aptamer stability. Biochemistry 2000,39 (6),1462-1468.
    [84]Sazani, P. L., Larralde, R., Szostak, J. W., A small aptamer with strong and specific recognition of the triphosphate of ATP. Journal of the American Chemical Society 2004,126 (27),8370-8371.
    [85]Nobile, V., Russo, N., Hu, G. F., Riordan, J. F., Inhibition of human angiogenin by DNA aptamers:Nuclear colocalization of an angiogenin-inhibitor complex. Biochemistry 1998,37 (19),6857-6863.
    [86]Nimjee, S. M., Rusconi, C. P., Sullenger, B. A., Aptamers:An emerging class of therapeutics. Annual Review of Medicine. Palo Alto, Annual Reviews 2005,56,555-583.
    [87]Balamurugan, S., Obubuafo, A., McCarley, R. L., Soper, S. A., Spivak, D. A., Effect of linker structure on surface density of aptamer monolayers and their corresponding protein binding efficiency. Analytical Chemistry 2008,80 (24),9630-9634.
    [88]Zhou, J., Huang, H. P., Xuan, J., Zhang, J., Zhu, J. J., Quantum dots electrochemical aptasensor based on three-dimensionally ordered macroporous gold film for the detection of ATP. Biosensors & Bioelectronics 2010,26 (2),834-840.
    [89]Du, Y., Li, B. L., Wang, R, Dong, S. J., Au nanoparticles grafted sandwich platform used amplified small molecule electrochemical aptasensor. Biosensors & Bioelectronics 2009,24 (7),1979-1983.
    [90]White, R. J., Phares, N., Lubin, A. A., Xiao, Y., Plaxco, K. W., Optimization of electrochemical aptamer-based sensors via optimization of probe packing density and surface chemistry. Langmuir 2008,24 (18),10513-10518.
    [91]Ricci, F., Bonham, A. J., Mason, A. C., Reich, N. O., Plaxco, K. W., Reagentless, electrochemical approach for the specific detection of double- and single-stranded DNA binding proteins. Analytical Chemistry 2009,81 (4),1608-1614.
    [92]Asaftei, S., Rosemeyer, H., Walder, L., Interaction of viologens with nucleic acid G-tetrades. Langmuir 2008,24 (11),5641-5643.
    [93]Zhang, Y. L., Wang, Y, Wang, H. B., Jiang, J. H., Shen, G L., Yu, R Q., Li, J. H., Electrochemical DNA biosensor based on the proximity-dependent surface hybridization assay. Analytical Chemistry 2009,81 (5),1982-1987.
    [94]Fan, H., Chang, Z., Xing, R, Chen, M. J., Wang, Q., He, P. A., Fang, Y. Z., An electrochemical aptasensor for detection of thrombin based on target protein-induced strand displacement. Electroanalysis 2008,20 (19),2113-2117.
    [95]Feng, K. J., Sun, C. H., Kang, Y, Chen, J. W., Jiang, J. H., Shen, G. L., Yu, R Q., Label-free electrochemical detection of nanomolar adenosine based on target-induced aptamer displacement. Electrochemistry Communications 2008,10 (4),531-535.
    [96]Lu, Y., Li, X. C., Zhang, L. M., Yu, P., Su, L., Mao, L. Q., Aptamer-based electrochemical sensors with aptamer-complementary DNA oligonucleotides as probe. Analytical Chemistry 2008,80(6),1883-1890.
    [97]Kang, Y, Feng, K. J., Chen, J. W., Jiang, J. H., Shen, G. L., Yu, R Q., Electrochemical detection of thrombin by sandwich approach using antibody and aptamer. Bioelectrochemistry 2008,73 (1),76-81.
    [98]Bang, G S., Cho, S., Kim, B. G, A novel electrochemical detection method for aptamer biosensors. Biosensors & Bioelectronics 2005,21 (6),863-870.
    [99]Frens, G, Controlled nucleation for regulation of particle-size in monodisperse gold suspensions. Nature-Physical Science 1973,241 (105),20-22.
    [100]Chen, S. H., Yuan, R., Chai, Y. Q., Yin, B., Li, W. J., Min, L. G, Amperometric hydrogen peroxide biosensor based on the immobilization of horseradish peroxidase on core-shell organosilica@chitosan nanospheres and multiwall carbon nanotubes composite. Electrochimica Acta 2009,54 (11),3039-3046.
    [101]Zhang, L. Y, Yuan, R, Chai, Y. Q., Chen, S. H., Wang, N., Zhu, Q., Layer-by-layer self-assembly of films of nano-Au and Co(bpy)33+ for the determination of Japanese B encephalitis vaccine. Biochemical Engineering Journal 2006,28 (3),231-236.
    [102]Li, C. Z., Liu, Y. L., Luong, J. H. T., Impedance sensing of DNA binding drugs using gold substrates modified with gold nanoparticles. Analytical Chemistry 2005,77 (2),478-485.
    [103]Bardea, A., Patolsky, F., Dagan, A., Willner, I., Sensing and amplification of oligonucleotide-DNA interactions by means of impedance spectroscopy:a route to a Tay-Sachs sensor. Chemical Communications 1999, (1),21-22.
    [104]Doron, A., Katz, E., Willner, I., Oganization of Au cllodids as monolayer films onto ITO glass surface-application of the metal collodid films as base interfaces to construct redox-active monolayers. Langmuir 1995,11 (4),1313-1317.
    [105]Li, X. X., Shen, L. H., Zhang, D. D., Qi, H. L., Gao, Q., Ma, F., Zhang, C. X., Electrochemical impedance spectroscopy for study of aptamer-thrombin interfacial interactions. Biosensors and Bioelectronics 2008,23 (11),1624-1630.
    [106]Sanchez, J. L. A., Baldrich, E., Radi, A. E. G., Dondapati, S., Sanchez, P. L., Katakis, I., O'Sullivan, C. K., Electronic 'off-on' molecular switch for rapid detection of thrombin. Electroanalysis 2006,18 (19-20),1957-1962.
    [107]Porfirieva, A., Evtugyn, G., Hianik, T., Polyphenothiazine modified electrochemical aptasensor for detection of human alpha-thrombin. Electroanalysis 2007,19 (18),1915-1920.
    [108]Hianik, T., Porfireva, A., Grman, I., Evtugyn, G., Aptabodies-New type of artificial receptors for detection proteins. Protein and Peptide Letters 2008,15 (8),799-805.
    [109]Hianik, T., Grman, I., Karpisova, I., The effect of DNA aptamer configuration on the sensitivity of detection thrombin at surface by acoustic method. Chemical Communications 2009, (41),6303-6305.
    [110]Willner, I., Zayats, M., Electronic aptamer-based sensors. Angewandte Chemie-International Edition 2007,46 (34),6408-6418.
    [111]Wu, Z. S., Zhou, H., Zhang, S. B., Shen, G. L., Yu, R. Q., Electrochemical aptameric recognition system for a sensitive protein assay based on specific target binding-induced rolling circle amplification. Analytical Chemistry 2010,82 (6),2282-2289.
    [112]Yuan, Y. L., Yuan, R., Chai, Y. Q., Zhuo, Y, Bai, L. J., Liao, Y. H., A signal-on electrochemical probe-label-free aptasensor using gold-platinum alloy and stearic acid as enhancers. Biosensors & Bioelectronics 2010,26 (2),881-885.
    [113]Rochelet-Dequaire, M., Djellouli, N., Limoges, B., Brossier, P., Bienzymatic-based electrochemical DNA biosensors:a way to lower the detection limit of hybridization assays. Analyst 2009,134 (2),349-353.
    [114]Teller, C., Shimron, S., Willner, I., Aptamer-DNAzyme hairpins for amplified biosensing. Analytical Chemistiy 2009,81 (21),9114-9119.
    [115]Shlyahovsky, B., Li, D., Katz, E., Willner, I., Proteins modified with DNAzymes or aptamers act as biosensors or biosensor labels. Biosensors & Bioelectronics 2007,22 (11),2570-2576.
    [116]Chen, W. W., Li, B. X., Xu, C. X., Wang, L., Chemiluminescence flow biosensor for hydrogen peroxide using DNAzyme immobilized on eggshell membrane as a thermally stable biocatalyst. Biosensors & Bioelectronics 2009,24 (8),2534-2540.
    [117]Zhang, Y F., Li, B. X., Jin, Y., Label-free fluorescent detection of thrombin using G-quadruplex-based DNAzyme as sensing platform. Analyst 2011,136 (16),3268-3273.
    [118]Travascio, P., Witting, P. K., Mauk, A. G., Sen, D., The peroxidase activity of a hemin-DNA oligonucleotide complex:Free radical damage to specific guanine bases of the DNA. Journal of the American Chemical Society 2001,123 (7),1337-1348.
    [119]Kong, D. M., Xu, J., Shen, H. X., Positive Effects of ATP on G-quadruplex-hemin DNAzyme-mediated reactions. Analytical Chemistry 2010,82 (14),6148-6153.
    [120]Wang, M. D., Han, Y. T., Nie, Z., Lei, C. Y, Huang, Y, Guo, M. L., Yao, S. Z., Development of a novel antioxidant assay technique based on G-quadruplex DNAzyme. Biosensors & Bioelectronics 2010,26 (2),523-529.
    [121]Deng, M. G., Zhang, D., Zhou, Y. Y, Zhou, X., Highly effective colorimetric and visual detection of nucleic acids using an asymmetrically split peroxidase DNAzyme. Journal of the American Chemical Society 2008,130(39),13095-13102.
    [122]Bi, S., Li, L., Zhang, S. S., Triggered polycatenated DNA scaffolds for DNA sensors and aptasensors by a combination of rolling circle amplification and DNAzyme amplification. Analytical Chemistry 2010,82 (22),9447-9454.
    [123]Willner, I., Shlyahovsky, B., Li, D., Katz, E., Proteins modified with DNAzymes or aptamers act as biosensors or biosensor labels. Biosensors & Bioelectronics 2007,22 (11), 2570-25762576.
    [124]Pavlov, V., Xiao, Y, Gill, R., Dishon, A., Kotler, M., Willner, I., Amplified chemiluminescence surface detection of DNA and telomerase activity using catalytic nucleic acid labels. Analytical Chemistry 2004,76 (7),2152-2156.
    [125]Yin, X. B., Xin, Y Y, Zhao, Y, Label-Free electrochemiluminescent aptasensor with attomolar mass detection limits based on a Ru(phen)32+-double-strand DNA composite film electrode. Analytical Chemistry 2009,81 (22),9299-9305.
    [126]Yang, M. H., Yang, Y. H., Li, F. Q., Lu, Y. S., Shen, G. L., Yu, R. Q., Attachment of nickel hexacyanoferrates nanoparticles on carbon nanotubes:Preparation, characterization and bloapplication. Analytica Chimica Acta 2006,571 (2),211-217.
    [127]Cao, L. Y, Liu, Y. L., Zhang, B. H., Lu, L. H., In situ controllable growth of prussian blue nanocubes on reduced graphene oxide:facile synthesis and their application as enhanced nanoelectrocatalyst for H2O2 reduction. Acs Applied Materials & Interfaces 2010,2 (8), 2339-2346.
    [128]Shin-Yi, Y., Kuo-Hsin, C., Ying-Feng, L., Ma, C. C. M., Chi-Chang, H., Constructing a hierarchical graphene-carbon nanotube architecture for enhancing exposure of graphene and electrochemical activity of Pt nanoclusters. Electrochemistry Communications 2010,12 (9), 1206-1209.
    [129]Que-Gewirth, N. S., Sullenger, B. A., Gene therapy progress and prospects:RNA aptamers. Gene Therapy 2007,14 (4),283-291.
    [130]Zhang, H. Q., Li, X. F., Le, X. C., Tunable aptamer capillary electrophoresis and its application to protein analysis. Journal of the American Chemical Society 2008,130 (1), 34-35.
    [131]Hu, J., Zheng, P. C., Jiang, J. H., Shen, G. L., Yu, R. Q., Liu, G. K., Electrostatic interaction based approach to thrombin detection by surface-enhanced raman spectroscopy. Analytical Chemistry 2009,81(1),87-93.
    [132]Zhao, Q., Lu, X., Yuan, C.-G, Li, X.-F., Le, X. C., Aptamer-linked assay for thrombin using gold nanoparticle amplification and inductively coupled plasma-mass spectrometry detection. Analytical Chemistry 2009,81 (17),7484-7489.
    [133]Lao, Y.-H., Peck, K., Chen, L.-C., Enhancement of aptamer microarray sensitivity through spacer optimization and avidity effect. Analytical Chemistry 2009,81 (5),1747-1754.
    [134]Wang, X. Y., Dong, P., Yun, W., Xu, Y., He, P. G, Fang, Y. Z., A solid-state electrochemi-luminescence biosensing switch for detection of thrombin based on ferrocene-labeled molecular beacon aptamer. Biosensors & Bioelectronics 2009,24 (11),3288-3292.
    [135]Qi, Y. Y, Li, B. X., Zhang, Z. J., Label-free and homogeneous DNA hybridization detection using gold nanoparticles-based chemiluiminescence system. Biosensors & Bioelectronics 2009,24(12),3581-3586.
    [136]Hu, L. Z., Bian, Z., Li, H. J., Han, S., Yuan, Y. L., Gao, L. X., Xu, G. B., Ru(bpy)2dppz2+ electrochemiluminescence switch and its applications for DNA interaction study and label-free ATP aptasensor. Analytical Chemistry 2009,81 (23),9807-9811.
    [137]Higuchi, A., Siao, Y. D., Yang, S. T., Hsieh, P. V., Fukushima, H., Chang, Y., Ruaan, R. C., Chen, W. Y., Preparation of a DNA aptamer-Pt complex and its use in the colorimetric sensing of thrombin and anti-thrombin antibodies. Analytical Chemistry 2008,80 (17), 6580-6586.
    [138]Wang, H. X., Liu, Y., Liu, C. C., Huang, J. Y., Yang, P. Y., Liu, B. H., Microfluidic chip-based aptasensor for amplified electrochemical detection of human thrombin. Electrochemistry Communications 2010,12 (2),258-261.
    [139]Polsky, R., Gill, R., Kaganovsky, L., Willner, I., Nucleic acid-functionalized Pt nanoparticles: catalytic labels for the amplified electrochemical detection of biomolecules. Analytical Chemistry 2006,78 (7),2268-2271.
    [140]Golub, E., Pelossof, G., Freeman, R., Zhang, H., Willner, I., Electrochemical, photoelectrochemical, and surface plasmon resonance detection of cocaine using supramolecular aptamer complexes and metallic or semiconductor nanoparticles. Analytical Chemistry 2009,81 (22),9291-9298.
    [141]Li, B. L.,Wang, Y. L., Wei, H., Dong, S. J., Amplified electrochemical aptasensor taking AuNPs based sandwich sensing platform as a model. Biosensors and Bioelectronics 2008,23 (7),965-970.
    [142]Nutiu, R., Li, Y. F., Structure-switching signaling aptamers. Journal of the American Chemical Society 2003,125 (16),4771-4778.
    [143]Kang, X. H., Mai, Z. B., Zou, X. Y., Cai, P. X., Mo, J. Y., A novel glucose biosensor based on immobilization of glucose oxidase in chitosan on a glassy carbon electrode modified with gold-platinum alloy nanoparticles/multiwall carbon nanotubes. Analytical Biochemistry 2007, 369 (1),71-79.
    [144]Lang, H. G., Maldonado, S., Stevenson, K. J., Chandler, B. D., Synthesis and characterization of dendrimer templated supported bimetallic Pt-Au nanoparticles. Journal of the American Chemical Society 2004,126 (40),12949-12956.
    [145]Su, H. L., Yuan, R., Chai, Y. Q., Zhuo, Y., Hong, C. L., Liu, Z. Y, Yang, X., Multilayer structured amperometric immunosensor built by self-assembly of a redox multi-wall carbon nanotube composite. Electrochimica Acta 2009,54 (17),4149-4154.
    [146]Jeykumari, D. R. S., Narayanan, S. S., A novel nanobiocomposite based glucose biosensor using neutral red functionalized carbon nanotubes. Biosensors & Bioelectronics 2008,23 (9), 1404-1411.
    [147]Forrest, S. R., Ultrathin organic films grown by organic molecular beam deposition and related techniques. Chemical Reviews 1997,97(6),1793-1896.
    [148]Eremtchenko, M., Schaefer, J. A., Tautz, F. S., Understanding and tuning the epitaxy of large aromatic adsorbates by molecular design. Nature 2003,425 (6958),602-605.
    [149]Jones, B. A., Ahrens, M. J., Yoon, M. H., Facchetti, A., Marks, T. J., Wasielewski, M. R., High-mobility air-stable n-type semiconductors with processing versatility: Dicyanoperylene-3,4:9,10-bis(dicarboximides). Angewandte Chemie-International Edition 2004,43 (46),6363-6366.
    [150]Gregg, B. A., Cormier, R. A., Doping molecular semiconductors: n-type doping of liquid crystal perylene diimide. Journal of the American Chemical Society 2001,123 (32), 7959-7960.
    [151]Li, X. Y., Sinks, L. E., Rybtchinski, B., Wasielewski, M. R., Ultrafast aggregate-to-aggregate energy transfer within self-assembled light-harvesting columns of zinc phthalocyanine tetrakis(perylenediimide). Journal of the American Chemical Society 2004,126 (35), 10810-10811.
    [152]Feng, L. Y., Chen, Y., Ren, J. S., Qu, X. G., A graphene functionalized electrochemical aptasensor for selective label-free detection of cancer cells. Biomaterials 2011,32 (11), 2930-2937.
    [153]Hu, Y. W., Li, F. H., Bai, X. X., Li, D., Hua, S. C., Wang, K. K., Niu, L., Label-free electrochemical impedance sensing of DNA hybridization based on functionalized graphene sheets. Chemical Communications 2011,47 (6),1743-1745.
    [154]Zhuo, Y., Yuan, P. X., Yuan, R., Chai, Y. Q., Hong, C. L., Nanostructured conductive material containing ferrocenyl for reagentless amperometric immunosensors. Biomaterials 2008,29 (10),1501-1508.
    [155]Weaver, J. E., Dasari, M. R., Datar, A., Talapatra, S., Kohli, P., Investigating photoinduced charge transfer in carbon nanotube-perylene-quantum dot hybrid nanocomposites. Acs Nano 2010,4 (11),6883-6893.
    [156]Wu, B. H., Hu, D., Kuang, Y. J., Yu, Y M., Zhang, X. H., Chen, J. H., High dispersion of platinum-ruthenium nanoparticles on the 3,4,9,10-perylene tetracarboxylic acid-functionalized carbon nanotubes for methanol electro-oxidation. Chemical Communications 2011,47 (18),5253-5255.
    [157]Li, F. H., Yang, H. F., Shan, C. S., Zhang, Q. X., Han, D. X., Ivaska, A., Niu, L., The synthesis of perylene-coated graphene sheets decorated with Au nanoparticles and its electrocatalysis toward oxygen reduction. Journal of Materials Chemistry 2009,19 (23), 4022-4025.
    [158]Asir, S., Demir, A. S., Icil, H., The synthesis of novel, unsymmetrically substituted, chiral naphthalene and perylene diimides:Photophysical, electrochemical, chiroptical and intramolecular charge transfer properties. Dyes and Pigments 2010,84 (1),1-13.
    [159]Yuan, Y. L., Gou, X. X., Yuan, R., Chai, Y. Q., Zhuo, Y., Ye, Y., Gan, X. X., Graphene-promoted 3,4,9,10-perylenetetracarboxylic acid nanocomposite as redox probe in label-free electrochemical aptasensor. Biosensors & Bioelectronics 2011,30 (1),123-127.
    [160]Guo, Y. J., Deng, L., Li, J., Guo, S. J., Wang, E. K., Dong, S. J., Hemin-graphene hybrid nanosheets with intrinsic peroxidase-like activity for label-free colorimetric detection of single-nucleotide polymorphism. Acs Nano 2011,5 (2),1282-1290.
    [161]Genfa, Z., Dasgupta, P. K., Hematin as a peroxidase substitute in hydrogen-peroxide determinations. Analytical Chemistry 1992,64 (5),517-522.
    [162]Xiang, Y, Qian, X. Q., Jiang, B. Y, Chai, Y. Q., Yuan, R., An aptamer-based signal-on and multiplexed sensing platform for one-spot simultaneous electronic detection of proteins and small molecules. Chemical Communications 2011,47 (16),4733-4735.
    [163]Yuan, Y. L., Yuan, R., Chai, Y. Q., Zhuo, Y, Liu, Z. Y., Mao, L., Guan, S., Qian, X. Q., A novel label-free electrochemical aptasensor for thrombin based on the{nano-Au/thionine}n multilayer films as redox probes. Analytica Chimica Acta 2010,668 (2),171-176.
    [164]Qian, X. Q., Xiang, Y., Zhang, H. X., Chen, Y, Chai, Y. Q., Yuan, R., Aptamer/nanoparticle-based sensitive, multiplexed electronic coding of proteins and small biomolecules through a backfilling strategy. Chemistry-A European Journal 2010,16 (48), 14261-14265.
    [165]Li, W. J., Yuan, R., Chai, Y. Q., Determination of glucose using pseudobienzyme channeling based on sugar-lectin biospecific interactions in a novel organic-inorganic composite matrix. Journal of Physical Chemistry C 2010,114 (49),21397-21404.
    [166]Tom, R. T., Pradeep, T., Interaction of azide ion with hemin and cytochrome c immobilized on Au and Ag nanoparticles. Langmuir 2005,21 (25),11896-11902.
    [167]Jin-Hyon, L., Seon-Mi, Y., Ki Kang, K., In-Sung, C., Young Jun, P., Jae-Young, C., Young Hee, L., Ungyu, P., Exfoliation of single-walled carbon nanotubes induced by the structural effect of perylene derivatives and their optoelectronic properties. Journal of Physical Chemistry C2008,112 (39),15267-15273.
    [168]Solomonov, I., Osipova, M., Feldman, Y, Baehtz, C., Kjaer, K., Robinson, I. K., Webster, G. T., McNaughton, D., Wood, B. R, Weissbuch, L, Leiserowitz, L., Crystal nucleation, growth, and morphology of the synthetic malaria pigment beta-hematin and the effect thereon by quinoline additives:The malaria pigment as a target of various antimalarial drugs. Journal of the American Chemical Society 2007,129 (9),2615-2627.
    [169]Wang, K. Y, Chuang, S. A., Lin, P. C., Huang, L. S., Chen, S. H., Ouarda, S., Pan, W. H., Lee, P. Y, Lin, C. C., Chen, Y. J., Multiplexed immunoassay:quantitation and profiling of serum biomarkers using magnetic nanoprobes and MALDI-TOF MS. Analytical Chemistry 2008, 80 (16),6159-6167.
    [170]Malhotra, R., Patel, V, Vaque, J. P., Gutkind, J. S., Rusling, J. F., Ultrasensitive electrochemical immunosensor for oral cancer biomarker IL-6 using carbon nanotube forest electrodes and multilabel amplification. Analytical Chemistry 2010,82 (8),3118-3123.
    [171]Tang, L. H., Liu, Y, Ali, M. M., Kang, D. K., Zhao, W. A., Li, J. H., Colorimetric and ultrasensitive bioassay based on a dual-amplification system using aptamer and DNAzyme. Analytical Chemistry 2012,84 (11),4711-4717.
    [172]Velde, F., Lourenco, N. D., Bakker, M., Rantwijk, F., Sheldon, R. A., Improved operational stability of peroxidases by coimmobilization with glucose oxidase. Biotechnology and Bioengineering 2000,69 (3),286-291.
    [173]Mousty, C., Bergamasco, J. L., Wessel, R., Perrot, H., Cosnier, S., Elaboration and characterization of spatially controlled assemblies of complementary polyphenol oxidase-alkaline phosphatase activities on electrodes. Analytical Chemistry 2001,73 (13), 2890-2897.
    [174]Xiao, Y., Pavlov, V., Niazov, T., Dishon, A., Kotler, M., Willner, I., Catalytic beacons for the detection of DNA and telomerase activity. Journal of the American Chemical Society 2004, 126(24),7430-7431.
    [175]Freeman, R., Liu, X. Q., Willner, I., Chemiluminescent and Chemiluminescence Resonance Energy Transfer (CRET) Detection of DNA, Metal Ions, and Aptamer-Substrate Complexes Using Hemin/G-Quadruplexes and CdSe/ZnS Quantum Dots. Journal of the American Chemical Society 2011,133 (30),11597-11604.
    [176]Yuan, Y. L., Gou, X. X., Yuan, R., Chai, Y. Q., Zhuo, Y, Mao, L., Gan, X. X., Electrochemical aptasensor based on the dual-amplification of G-quadruplex horseradish peroxidase-mimicking DNAzyme and blocking reagent-horseradish peroxidase. Biosensors & Bioelectronics 2011,26 (10),4236-4240.
    [177]Lin, Z. Y., Yang, W. Q., Zhang, G. Y, Liu, Q. D., Qiu, B., Cai, Z. W., Chen, G. N., An ultrasensitive colorimeter assay strategy for p53 mutation assisted by nicking endonuclease signal amplification. Chemical Communications 2011,47 (32),9069-9071.
    [178]Li, T., Dong, S. J., Wang, E., Label-free colorimetric detection of aqueous mercury ion (Hg2+) using Hg2+-modulated G-quadruplex-based DNAzymes. Analytical Chemistry 2009,81 (6), 2144-2149.
    [179]Wang, N., Kong, D. M., Shen, H. X., Amplification of G-quadruplex DNAzymes using PCR-like temperature cycles for specific nucleic acid and single nucleotide polymorphism detection. Chemical Communications 2011,47 (6),1728-1730.
    [180]Fu, R., Jeon, K., Jung, C., Park, H. G., An ultrasensitive peroxidase DNAzyme-associated aptasensor that utilizes a target-triggered enzymatic signal amplification strategy. Chemical Communications 2011,47 (35),9876-9878.
    [181]Shimron, S., Wang, F., Orbach, R., Willner, I., Amplified detection of DNA through the enzyme-free autonomous assembly of hemin/G-quadruplex DNAzyme nanowires. Analytical Chemistry 2012,84 (2),1042-1048.
    [182]Bi, S., Zhang, J. L., Zhang, S. S., Ultrasensitive and selective DNA detection based on nicking endonuclease assisted signal amplification and its application in cancer cell detection. Chemical Communications 2010,46 (30),5509-5511.
    [183]Chen, J. H., Zhang, J., Guo, Y, Li, J., Fu, F. F., Yang, H. H., Chen, G. N., An ultrasensitive electrochemical biosensor for detection of DNA species related to oral cancer based on nuclease-assisted target recycling and amplification of DNAzyme. Chemical Communications 2011,47 (28),8004-8006.
    [184]Song, Y. J., Chen, Y, Feng, L. Y, Ren, J. S., Qu, X. G., Selective and quantitative cancer cell detection using target-directed functionalized graphene and its synergetic peroxidase-like activity. Chemical Communications 2011,47 (15),4436-4438.
    [185]Zhang, L. B., Zhu, J. B., Li, T., Wang, E. K., Bifunctional colorimetric oligonucleotide probe based on a G-quadruplex DNAzyme molecular beacon. Analytical Chemistry 2011,83 (23), 8871-8876.
    [186]Golub, E., Freeman, R., Willner, I., A hemin/G-quadruplex acts as an NADH oxidase and NADH peroxidase mimicking DNAzyme. Angewandte Chemie-International Edition 2011, 50(49),11710-11714.
    [187]Zhu, D., Luo, J. J., Rao, X. Y, Zhang, J. J., Cheng, G. F., He, P. G., Fang, Y. Z., A novel optical thrombin aptasensor based on magnetic nanoparticles and split DNAzyme. Analytica Chimica Acta 2012,711,91-96.
    [188]Chen, J. H., Zhang, J., Li, J., Yang, H. H., Fu, F. F., Chen, G. N., An ultrasensitive signal-on electrochemical aptasensor via target-induced conjunction of split aptamer fragments. Biosensors & Bioelectronics 2010,25 (5),996-1000.
    [189]Chen, Y, Jiang, B. Y, Xiang, Y, Chai, Y. Q., Yuan, R., Aptamer-based highly sensitive electrochemiluminescent detection of thrombin via nanoparticle layer-by-layer assembled amplification labels. Chemical Communications 2011,47 (27),7758-7760.
    [190]Guo, C. X.,Hu, F. P., Li, C. M., Shen, P. K., Direct electrochemistry of hemoglobin on carbonized titania nanotubes and its application in a sensitive reagentless hydrogen peroxide biosensor. Biosensors & Bioelectronics 2008,24 (4),825-830830.
    [191]Bini, A., Minunni, M., Tombelli, S., Centi, S., Mascini, M., Analytical performances of aptamer-based sensing for thrombin detection. Analytical Chemistry 2007,79 (7), 3016-3019.
    [192]Polonschii, C., David, S., Tombelli, S., Mascini, M., Gheorghiu, M., A novel low-cost and easy to develop functionalization platform. Case study:Aptamer-based detection of thrombin by surface plasmon resonance.Talanta 2010,80 (5),2157-2164.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700