中生代初海洋碳—硫循环与氧化还原环境的异常演变
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
古、中生代之交的地质突变期不仅记录了显生宙地球历史上最大的生物灭绝事件,同时也见证了历时最长的生物复苏过程。中生代初迟缓海洋生物复苏和异常海洋环境变化之间的协同演变关系成为当前国内外学者重点关注的研究内容。前人围绕二叠纪-三叠纪之交生物灭绝时期的海洋碳、硫循环和缺氧事件进行了大量研究工作,但对中生代初生物迟缓复苏时期的海洋碳、硫循环和氧化还原条件开展的研究工作相对薄弱。本文选取生物地层研究程度较高的南盘江大贵州滩(打讲、关刀、明塘、边阳)和扬子台地(煤山、大峡口、湖山、平顶山西坡、马家山南坡)早、中三叠世地层,开展高分辨率的碳同位素、硫同位素、铁组分、莓状黄铁矿大小分布等研究工作,尝试探讨该时期异常的海洋碳-硫循环、氧化还原环境与生物迟缓复苏的相互关系。
     为了探讨华南早三叠世海洋碳同位素水深梯度(△δ13C=δ’3C浅水-δ13C深水)的变化情况及其古海洋意义,选择扬子和南盘江地区代表不同水深的8条剖面,在精细的生物地层学研究基础上进行碳同位素分析和对比、Aδ13C重建及其古海洋意义探讨工作。研究结果表明:(1)浅水剖面δ13Ccarb组成相对偏重,并且记录了早三叠世较为完整的δ13Ccarb标志性漂移事件;深水剖面δ13Ccarb组成相对较轻,“缺失”个别的δ13Ccarb标志性漂移事件。Griesbachian至Spathian早期,δ13Ccarb波动频繁且幅度较大,说明该时期动荡的海洋碳循环;Spathian中晚期,δ13Ccarb的波动频度和幅度均有所减缓,反映该时期海洋碳循环趋于稳定;(2)扬子和南盘江地区均具有较大的A813C(3%0~δ%o),Griesbachian至Smithian晚期Aδ13C较高, Spathian早期Aδ13C发生了显著的变化。通过探讨海洋高生产力和海水停滞分层对Aδ13C贡献,发现海水停滞分层是导致Aδ13C增大的主要原因;(3)早三叠世持续的高pC02和高温背景导致该时期的海水停滞分层、缺氧,温室气候的元凶可能是同时期频繁的火山活动。Griesbachian早期、Dienerian晚期至Smithian晚期较高的Aδ13C指示这两个时期火山活动频繁,海水分层程度严重;(4)Smithian-Spathian之交Aδ13C的转变指示该时期海洋循环发生剧变,海水循环增强,海水分层减缓,与该时期的降温事件相吻合;(5)综合早三叠世δ13Ccarb和A813C的变化情况,对该时期海洋循环,火山活动,生产力变化情况进行了详细划分,为探讨该时期生物与环境的相互关系提供了一定的科学依据。
     为了恢复中生代初海水硫同位素演化情况和探讨该时期异常的海洋碳-硫循环,对大贵州滩打讲、关刀剖面下、中三叠统进行了高分辨率的碳酸盐晶格硫(CAS)硫同位素研究。以牙形石生物地层为基础对早、中三叠世δ13Ccarb和δ34SCAS进行精细对比,取得以下进展:(1)建立了早、中三叠世高精度完整的δ34SCAS演化曲线。早三叠世δ34SCAS组成(平均值:~26%o)相比晚二叠世(~22%o)和中三叠世(~17‰)偏重,指示早三叠世海洋缺氧严重,硫酸盐还原作用(BSR)较强;(2) Griesbachian至Spathian早期,δ34SCAS波动剧烈,并且与δ13Ccatb具有明显的正相关关系,说明该时期海水硫酸盐浓度很低,导致海水硫酸盐和碳酸盐的滞留时间相当,模拟结果显示该时期硫酸盐浓度为现代海洋的十分之一,小于3mM;(3) Spathian期的δ13Ccarb和δ34SCAS变化率同步减小,并且δ13Ccarb和δ34SCAS之间呈现一定的负相关关系,可能是由于海水循环加强引起的,这与△δ13C的指示意义相吻合:(4)δ13C和δ34SCAS在Griesbachian早期、Dienerian-Sm ithian之交、Smithian-Spathian之交同步正漂,这是由于有机碳、黄铁矿埋藏在缺氧硫化环境中增强造成的,指示这三个时期存在着严重的海洋缺氧、硫化事件;(5)中三叠世,δ34SCAS下降至15‰左右,其变化率也进一步降低,反映该时期海洋以正常的氧化状态为主,硫酸盐浓度进一步升高,碳-硫同位素的正相关关系逐渐消失;(6)中生代初海洋碳-硫循环变化与生物复苏辐射过程相吻合,早三叠世动荡的海洋碳-硫循环及缺氧环境导致生物迟缓复苏,中三叠世正常的海洋碳-硫循环与氧化环境为生物提供适宜的生存环境,促进生物快速复苏、辐射。
     中生代初的生物复苏过程中,在Smithian-Spathian之交还发生了一次规范不大,但意义深远的次级大灭绝事件。为了探究这一关键时期海洋环境变化与生物灭绝事件的相互关系,我们对地层研究基础较好的巢湖马家山南坡剖面Smithian-Spathian地层进行高精度采样,开展碳、硫同位素、铁组分、莓状黄铁矿大小分布等研究。结果表明:(1)Smithian-Spathian之交δ13Ccarb组成出现高达6‰的正漂,这次正漂事件具有全球可对比性;(2)铁组分、莓状黄铁矿大小分布以及硫同位素组成同时指示Smithian-Spathian之交曾发生严重的海洋缺氧和硫化事件;(3)δ34Spy在硫化环境中明显偏轻,组成相对稳定,根据同时期海水硫酸盐硫同位素组成可推断BSR分馏达到理论最大值。δ34Spy在贫氧-氧化环境中相对较重,分布较为离散,可能受到后期成岩作用的影响;(4)基于Smithian-Spathian之交海洋缺氧与同时期海洋降温、上升流频繁相对应,提出了该时期海洋生物环境事件的发展机理:降温事件引发海洋循环加强,上升流频繁发生并携带大量的深海营养物质促使海洋表层初级生产力升高,δ13Ccarb明显正漂,碳埋藏的加剧和有机质分解引起海洋的缺氧硫化,引发生物灭绝。生产力升高和碳埋藏加强进一步促使大气pC02降低,引发Spathian早期的降温事件。同时,降温事件可能指示该时期火山作用明显减弱;(5)海洋循环的变化与△δ13C变化及碳和硫循环变化情况相吻合,同时说明海洋环境在Spathian早期发生了明显的转变。
     为深入探索二叠纪-三叠纪之交浅水相区海洋缺氧的演变过程和形成机理,对位于“大贵州滩”台地内部打讲剖面的二叠系-三叠系界线地层中的生物组成和关键地球化学指标进行了系统研究,结果表明:(1)生物大灭绝之前的浅水碳酸盐岩台地表现出低硫(总硫和黄铁矿硫)、低黄铁矿硫/有机碳比值(S,黄铁矿/C有机)、低黄铁矿化系数(DOP)的特征,同时记录了碳同位的负漂和硫化氢气体释放事件,表明该时期浅水台地以氧化环境为主;(2)生物大灭绝之后的各种地球化学指标显示浅水台地开始向贫氧-缺氧环境转变,但整体缺氧程度不高,主要为贫氧-缺氧相;(3)以此为基础,本文提出该时期南盘江盆地缺氧事件的基本演变模式,即大灭绝前频繁的火山活动释放大量有毒气体导致陆地生态系统瓦解,陆地风化加强,从而引起δ13Ccarb负偏;与此同时,陆源物质输入的加强导致海洋贫氧层(OMZ)扩张。OMZ间歇性入侵透光带时,导致H2S气体向浅水台地释放,从而引发黄铁矿硫埋藏脉冲式上升的现象。但该时期浅水台地仍以氧化环境为主。大灭绝之后,陆地风化作用加剧,OMZ急剧扩张,浅水台地开始向贫氧-缺氧相转变;(4)新的地球化学数据也进一步证实了该区微生物岩形成于缺氧环境,“大贵州滩”二叠纪-三叠纪之交氧化还原环境的演变历程也与新近报道的铀同位素研究结果相吻合,从而为进一步探讨该时期海洋缺氧事件与该时期的重大生物突变关系提供了新的认识。
     综上,本论文建立了中生代初海水δ34SCAS的演化曲线,探明了该时期异常的碳-硫循环状态与氧化还原环境,为探讨该时期生物与环境的相互作用提供了重要的科学依据。
The Palaeozoic-Mesozoic transition witnessed the largest mass extinction and the longest biotic recovery of Earth life during the Phanerozoic. Recently, an increasing number of geologists focus on the relationship between the delayed marine ecosystem recovery and perturbed ocean conditions. The marine carbon-sulfur cycles and oceanic anoxic events across the Permian-Tirassic boundary have been long concerned, but little has been published on the same extreme events in the aftermath of the Great Dying. To reconstruct marine carbon-sulfur cycles and determine the redox conditions of the Early Mesozoic oceans, several important Lower and Middle Triassic sections (including the Dajiang, Guandao, Mingtang and Bianyang sections in the Nanpanjiang Basin; the Meishan, Daxiakou, Hushan, West Pingdingshan, and South Majiashan sections in the Yangtze platform) in South China have been sampled to study several important gepchemical proxies (including carbon isotope, sulfur isotope, iron species, and distribution of pyrite framboids).
     In this study, eight Lower Triassic sections from the northern Yangtze area and Nanpanjiang basin, representing several different depositional settings with various water depths, have been sampled to reconstruct δ813C (Δδ13C=δ13Cshallow water-δ13Cdeep water) of the Early Trissic seas. Of these,δ13Ccarb recorded in shallow marine facies sections are enriched in13C. These sections have recorded distinct δ13Ccarb excursions throughout the Early Triassic. However,δ13Ccarb recorded in deep-water facies sections are delepted in13C. These sections also lost some parts of the δ13Ccarb excursions. The δ13Ccarb excursions exbihit three pronounced negative-positive shifting cycles from the early Griesbachian to early Spathian (<2Ma), implying the large perturbation of the contemporaneous marine carbon cycles. There is a positive-negative cycle of δ13Ccarb during middle-late Spatian (-3Ma), indicating the mitigative carbon cycle. Both the Yangtze platform and Nanpanjiang Basin have recorded some large Δδ13C (3‰~8‰) during the Griesbachian to late Smithian. Compared with the high primary productivity, the stratified and stagnant ocean conditions were likely the primary cause of the large Δδ13C. The stratified and anoxic ocean conditions were attributed to the persistent high temperature and high content of pCO2. The strong volcanic activity might have resulted in the high pCO2and high seawater temperature. The large Δδ13C values during the early Griesbachian and late Dienerian to late Smithian, respectively imply the enhanced volcanic activity and seriously stratified ocean conditions during these periods. During the Smithian-Spathian transition, the overturned Δδ13C value indicates the stratified ocean began to circulate and it is agree with the cooling event in that time. An oceanographic model throughout the Early Triassic has been developed by integrating the δ13Ccarb, Δδ13C and chemical weathering results.
     The Lower and Middle Triassic strata of the Dajiang, Upper Guandao and Lower Guandao sections, located at the Great Bank of Guizhou, have been sampled to undertake the δ34SCAS study during the Early Mesozoic. The δ34SCAS compositions of the Early Triassic (average:~26‰) are more positive than the Late Permian (~22‰) and Middle Triassic (~17‰) counterparts and reflect the enhanced ocean anoxia and bacteria sulfate reduction during the Early Triassic. Based on the conodont stratigraphy and radiometric dating, the relationship between the δ13Ccarb and δ34SCAS has been established. The δ34SCAS compositions show great change rates and strong positive relationship with the δ13Ccarb values through the Griesbachian-early Spathian. These phenomenona indicate that the sulfate concentrations of the contemporaneous seawater were very low and the residence time of the sulfate was equal to the carbonate. Simple modeling shows that the sulfate concentrations during the Early Triassic decreased to one tenth of the modern ocean (<3Ma). During the Spathian, the change rates of δ13Ccarb and δ34SCAS decreased abruptly, and there is a negative relationship between them. These changes may be attributed to the enhanced ocean circulation. Both δ13Ccarb and δ34SCAS exhibit distinct positive excursion during the early Griesbachian, Dienerian-Smithian boundary and Smithian-Spathian boundary, respectively. Both enhanced organic carbon and pyrite in anoxic (euxinic) conditions resulted in the positive excursion events. Thus, the δ13Ccarb and δ34SCAS excursions indicate three super ocean anoxic (euxinic) events during these periods. The δ34SCAS values decreased to15‰in the Middle Triassic, indicate that the oxic conditions dominated the ocean. The increased sulfate concentration resulted in the small change rate of the δ34SCAS.The marine sulfur-carbon cycles coincide with the delayed biotic recovery. The large perturbed sulfur-carbon cycles during the Early Triassic represent the periodic ocean anoxic (euxinic) events that resulted in the mass extinctions and delayed recovery. The normal sulfur-carbon cycles in the Middle Triassic indicate the hospitable ocean conditions for the biotic radiation.
     The Smithian-Spathian boundary coincides with a second-order mass extinction, global cooling, and large positive C-isotope excursions. However, the causes of these biotic and environmental changes have not been resolved. In order to evaluate the changes in oceanic redox and environmental conditions, petrographic and geochemical analyses were undertaken in this study, including the distribution of pyrite framboids and carbon and sulfur isotopes, and iron species across the Smithian-Spathian boundary at the southern Majiashan section. An~6‰positive shift in δ13Ccarb across the Smith-Spathian boundary indicates a global event. The iron speciation, sulfur isotopes and pyrite framboid data provide unambiguous evidence for an intense but transient episode of euxinia around the Smithian-Spathian boundary. In the euxinic interval, the pyrite sulfur isotopes (δ34Spy) are negative and agminated. The difference between the δ34SCAS and δ34Spy implies the largest of the fractionation in the bacterial sulfur reduction. The δ34Spy in suboxic and oxic conditions are positive and scattered. The scattered compositions are attribute to the subsequent diagenesis. Based on the ocean anoxia, abrupt cooling and upwelling events during the Smithian-Spathian boundary, this study infers that these events were due to the reinvigorated oceanic thermohaline circulation and a resultant increase in marine primary productivity. Enhanced organic carbon burial and drawdown of atmospheric pCO2resulted in global cooling and concomitant changes in marine and terrestrial ecosystems. This hypothesis agrees with the Δδ13C and carbon-sulfur cycles.
     Mutil-geochemical proxies, including the total sulfur (TS), pyrite sulfur concentrations, Spyirte/Corg ratios, the degree of pyritization (DOP), and carbon isotopes through the Permian-Triassic boundary strata at the Dajiang section have been analysed. The results show that the TS, pyrite sulfur concentration, Spyirte/Corg ratio and DOP are in low values below the Late Permian mss extinction (LPME) horizon, indicating oxic condition dominated the shallow water facies. Besides, the geochemical data presented a negative excursion of carbon isotope and a hydrogen sulfide release event during this period. The increase of sulfur concentration, Spyirte/Corg ratio and DOP following the LPME demonstrates the dyoxic-anoxic condition in the shallow water facies. Consequently, the ocean anoxia developed in the Nanpanjiang Basin during Permian-Triassic transition. During the Late Permian, the enhanced volcanic activity released huge CO2and SO2, destroyed the terrestrial ecosystem, and resulted in the increased terrestrial weathering. Strong terrestrial weathering brought a large amount of organic carbon into the ocean and lead to the carbon isotopic negative excursion and the expansion of the oxygen minimum zone (OMZ). The H2S would diffuse into the shallow water periodically when the OMZ expanded into the euphotic zone, and further resulted in the pulse of enhanced pyrite burial. Nevertheless, the shallow water was still in oxic condition during this period. During the LPME and its aftermath, enhanced terrestrial weathering caused the further expansion of the OMZ and resulted in the dyoxic-anoxic condition of the shallow water. In addition, the microbialites that occurred in the immediate aftermath of the LPME were formed in anoxic condition.
     In conclusion, this study has established a high resolution δ34SCAS curve in the early Mesozoic, and clarified the unusual carbon-sulfur cycles and marine redox conditions. This provide important evidence for further understanding of the biotic and environmental events in the aftermath of the great end-Permian mass extinction.
引文
[1]Erwin D. The Permo-Triassic Extinction. Nature,1994,367(6460):231-236.
    [2]Jin Y, Wang Y, Wang W,et al. Pattern of marine mass extinction near the Permian-Triassic boundary in South China. Science,2000,289(5478):432-436.
    [3]Xie S, Pancost R D, Yin H,et al. Two episodes of microbial change coupled with Permo/Triassic faunal mass extinction. Nature,2005,434(7032):494-497.
    [4]Grice K, Cao C, Love G D,et al. Photic zone euxinia during the Permian-Triassic superanoxic event. Science,2005,307(5710):706-709.
    [5]Shen S, Crowley J L, Wang Y,et al. Calibrating the end-Permian mass extinction. Science,2011,334(6061):1367-1372.
    [6]Payne J L, Lehrmann D J, Wei J,et al. Large perturbations of the carbon cycle during recovery from the end-Permian extinction. Science,2004,305(5683):506-509.
    [7]Brayard A, Escarguel G, Bucher H,et al. Good genes and good luck:ammonoid diversity and the end-Permian mass extinction. Science,2009,325(5944):1118-1121.
    [8]Sun Y, Joachimski M M, Wignall P B,et al. Lethally hot temperatures during the early Triassic greenhouse. Science,2012,338(6105):366-370.
    [9]Stanley S M. Evidence from ammonoids and conodonts for multiple Early Triassic mass extinctions. Proceedings of the National Academy of Sciences,2009,106(36): 15264-15267.
    [10]Brayard A, Vennin E, Olivier N,et al. Transient metazoan reefs in the aftermath of the end-Permian mass extinction. Nature geoscience,2011,4(10):693-697.
    [11]Chen Z Q, Benton M J. The timing and pattern of biotic recovery following the end-Permian mass extinction. Nature geoscience,2012,5(6):375-383.
    [12]Romano C, Goudemand N, Vennemann T W,et al. Climatic and biotic upheavals following the end-Permian mass extinction. Nature geoscience,2012,6(1):57-60.
    [13]Shen Y, Buick R, Canfield D E. Isotopic evidence for microbial sulphate reduction in the early Archaean era. Nature,2001,410(6824):77-81.
    [14]Planavsky N J, Bekker A, Hofmann A,et al. Sulfur record of rising and falling marine oxygen and sulfate levels during the Lomagundi event. Proceedings of the National Academy of Sciences,2012,109(45):18300-18305.
    [15]Gill B C, Lyons T W, Saltzman M R. Parallel, high-resolution carbon and sulfur isotope records of the evolving Paleozoic marine sulfur reservoir. Palaeogeography, Palaeoclimatology, Palaeoecology,2007,256(3):156-173.
    [16]Gill B C, Lyons T W, Young S A,et al. Geochemical evidence for widespread euxinia in the Later Cambrian ocean. Nature,2011,469(7328):80-83.
    [17]Planavsky N J, Rouxel O J, Bekker A,et al. The evolution of the marine phosphate reservoir. Nature,2010,467(7319):1088-1090.
    [18]Paytan A, Kastner M, Campbell D,et al. Sulfur isotopic composition of Cenozoic seawater sulfate. Science,1998,282(5393):1459-1462.
    [19]Paytan A, Kastner M, Campbell D,et al. Seawater sulfur isotope fluctuations in the Cretaceous. Science,2004,304(5677):1663-1665.
    [20]Luo G, Kump L R, Wang Y,et al. Isotopic evidence for an anomalously low oceanic sulfate concentration following end-Permian mass extinction. Earth and Planetary Science Letters,2010,300(1):101-111.
    [21]Coplen T B, Krouse H R. Sulphur isotope data consistency improved. Nature,1998, 392(6671):32-32.
    [22]Ault W U. Isotopic fractionation of sulfur in geochemical processes. Researches in geochemistry,1959,1:241-259.
    [23]Thode H, Monster J, Dunford H. Sulphur isotope geochemistry. Geochimica et Cosmochimica Acta,1961,25(3):159-174.
    [24]Kaplan I, Rittenberg S. Microbiological fractionation of sulphur isotopes. Journal of General Microbiology,1964,34(2):195-212.
    [25]Chambers L, Trudinger P. Microbiological fractionation of stable sulfur isotopes:a review and critique. Geomicrobiology Journal,1979,1(3):249-293.
    [26]Nielsen H. Sulfur isotopes in nature. Handbook of geochemistry, Part B,1978,16:1-40.
    [27]Ohmoto H. Biogeochemistry of sulfur and the mechanisms of sulfide-sulfate mineralization in Archean oceans. Early organic evolution:implications for mineral and energy resources Springer, Berlin,1992:378-397.
    [28]Strauss H. The isotopic composition of sedimentary sulfur through time. Palaeogeography, Palaeoclimatology, Palaeoecology,1997,132(1):97-118.
    [29]Bottrell S H, Newton R J. Reconstruction of changes in global sulfur cycling from marine sulfate isotopes. Earth-Science Reviews,2006,75(1):59-83.
    [30]Hoefs J. Stable isotope geochemistry.6th. Berlin:Springer,2009..
    [31]格里年科;赵瑞.硫同位素地球化学.北京:科学出版社,1980..
    [32]J(?)rgensen B B. A thiosulfate shunt in the sulfur cycle of marine sediments. Science (New York, NY),1990,249(4965):152.
    [33]Canfield D E, Thamdrup B. The production of 34S-depleted sulfide during bacterial disproportionation of elemental sulfur. Science (New York, NY),1994,266:1973.
    [34]Holser W, Kaplan I. Isotope geochemistry of sedimentary sulfates. Chemical Geology, 1966,1:93-135.
    [35]Li Y H. Geochemical mass balance among lithosphere, hydrosphere, and atmosphere. American Journal of Science,1972,272(2):119-137.
    [36]Schidlowski M, Junge C, Pietrek H. Sulfur isotope variations in marine sulfate evaporites and the Phanerozoic oxygen budget. Journal of Geophysical Research,1977, 82(18):2557-2565.
    [37]Garrels R M, Lerman A. Phanerozoic cycles of sedimentary carbon and sulfur. Proceedings of the National Academy of Sciences,1981,78(8):4652-4656.
    [38]Garrels R M, Lerman A. Coupling of the sedimentary sulfur and carbon cycles; an improved model. American Journal of Science,1984,284(9):989-1007.
    [39]Berner R A, Raiswell R. Burial of organic carbon and pyrite sulfur in sediments over Phanerozoic time:a new theory. Geochimica et Cosmochimica Acta,1983,47(5): 855-862.
    [40]Bottrell S H, Newton R J. Reconstruction of changes in global sulfur cycling from marine sulfate isotopes. Earth-Science Reviews,2006,75(1-4):59-83.
    [41]D'Hondt S, Rutherford S, Spivack A J. Metabolic activity of subsurface life in deep-sea sediments. Science,2002,295(5562):2067-2070.
    [42]Turchyn A V, Schrag D P. Oxygen isotope constraints on the sulfur cycle over the past 10 million years. Science,2004,303(5666):2004-2007.
    [43]Bottrell S, Raiswell R. Sulphur isotopes and microbial sulphur cycling in sediments. Microbial Sediments Springer, Berlin,2000:96-104.
    [44]Meybeck M. Major elements contents of river waters and dissolved inputs to the oceans. Revue de Geologie Dynamique et de Geographie Physique,1979,21(3):215-246.
    [45]Walker J C. Global geochemical cycles of carbon, sulfur and oxygen. Marine Geology, 1986,70(1):159-174.
    [46]Strauss H. Geological evolution from isotope proxy signals-sulfur. Chemical Geology, 1999,161(1):89-101.
    [47]Kampschulte A, Bruckschen P, Strauss H. The sulphur isotopic composition of trace sulphates in Carboniferous brachiopods:implications for coeval seawater, correlation with other geochemical cycles and isotope stratigraphy. Chemical Geology,2001,175(1): 149-173.
    [48]Kampschulte A, Strauss H. The sulfur isotopic evolution of Phanerozoic seawater based on the analysis of structurally substituted sulfate in carbonates. Chemical Geology,2004, 204(3):255-286.
    [49]W Burdett J, A Arthur M, Richardson M. A Neogene seawater sulfur isotope age curve from calcareous pelagic microfossils. Earth and Planetary Science Letters,1989,94(3): 189-198.
    [50]Thode H, Monster J. Sulfur-isotope geochemistry of petroleum, evaporites and ancient seas, in:Fluids in Subsurfaces Environments:A Symposium, Memoir No.4. American Association of Petroleum Geologists,1965. McMaster Univ., Hamilton, Ont.,1967, 367-377.
    [51]Brimblecombe P, Hammer C, Rodhe H,et al. Human influence on the sulphur cycle. Evolution of the global biogeochemical sulphur cycle,1989,39:77.
    [52]Holser W, Schidlowski M, Mackenzie F,et al. Geochemical cycles of carbon and sulfur. Chemical Cycles in the Evolution of the Earth,1988:105-173.
    [53]Claypool G E, Holser W T, Kaplan I R,et al. The age curves of sulfur and oxygen isotopes in marine sulfate and their mutual interpretation. Chemical Geology,1980,28: 199-260.
    [54]Mekhtiyeva V. Sulfur isotopic composition of fossil molluscan shells as an indicator of hydrochemical conditions in ancient basins. Geochemistry International,1974,11(6): 1188-1192.
    [55]Kaplan I, Emery K, Rittenbebg S. The distribution and isotopic abundance of sulphur in recent marine sediments off southern California. Geochimica et Cosmochimica Acta, 1963,27(4):297-331.
    [56]Lyons T W, Walter L M, Gellatly A M,et al. Sites of anomalous organic remineralization in the carbonate sediments of South Florida, USA:The sulfur cycle and carbonate-associated sulfate. Special Papers-Geological society of America,2004: 161-176.
    [57]Gill B C, Lyons T W, Frank T D. Behavior of carbonate-associated sulfate during meteoric diagenesis and implications for the sulfur isotope paleoproxy. Geochimica et Cosmochimica Acta,2008,72(19):4699-4711.
    [58]Kah L C, Lyons T W, Frank T D. Low marine sulphate and protracted oxygenation of the Proterozoic biosphere. Nature,2004,431(7010):834-838.
    [59]Kaiho K, Kajiwara Y, Nakano T,et al. End-Permian catastrophe by a bolide impact: evidence of a gigantic release of sulfur from the mantle. Geology,2001,29(9):815-818.
    [60]Newton R, Pevitt E, Wignall P,et al. Large shifts in the isotopic composition of seawater sulphate across the Permo-Triassic boundary in northern Italy. Earth and Planetary Science Letters,2004,218(3):331-345.
    [61]Riccardi A L, Arthur M A, Kump L R. Sulfur isotopic evidence for chemocline upward excursions during the end-Permian mass extinction. Geochimica et Cosmochimica Acta, 2006,70(23):5740-5752.
    [62]Marenco P J, Corsetti F A, Kaufman A J,et al. Environmental and diagenetic variations in carbonate associated sulfate:An investigation of CAS in the Lower Triassic of the western USA. Geochimica et Cosmochimica Acta,2008,72(6):1570-1582.
    [63]Kaiho K, Oba M, Fukuda Y,et al. Changes in depth-transect redox conditions spanning the end-Permian mass extinction and their impact on the marine extinction:Evidence from biomarkers and sulfur isotopes. Global and Planetary Change,2012,94-95:20-32.
    [64]Gorjan P, Kaiho K. Correlation and comparison of seawater δ34Ssulfate records at the permian-triassic transition. Chemical Geology,2007,243(3):275-285.
    [65]Gill B C, Lyons T W, Jenkyns H C. A global perturbation to the sulfur cycle during the Toarcian Oceanic Anoxic Event. Earth and Planetary Science Letters,2011,312(3): 484-496.
    [66]Berner R A. Sedimentary pyrite formation. American Journal of Science,1970,268(1): 1-23.
    [67]Ries J B, Fike D A, Pratt L M,et al. Superheavy pyrite (δ34Spyr> δSCAS) in the terminal Proterozoic Nama Group, southern Namibia:A consequence of low seawater sulfate at the dawn of animal life. Geology,2009,37(8):743-746.
    [68]Holser W T. Catastrophic chemical events in the history of the ocean. Nature,1977, 267(2):403-408.
    [69]Cortecci G, Reyes E, Berti G,et al. Sulfur and oxygen isotopes in Italian marine sulfates of Permian and Triassic ages. Chemical Geology,1981,34(1):65-79.
    [70]Chen J, Chu X. Sulfur isotope composition of Triassic marine sulfates of South China. Chemical Geology:Isotope Geoscience section,1988,72(2):155-161.
    [71]陈锦石,赵瑞,霍卫国等.海相石膏的硫同位素.地质科学,1981,3:273-278.
    [72]陈锦石,储雪蕾,邵茂茸.三叠纪海的硫同位素.地质科学,1986,4:334-336.
    [73]林耀庭,宋鹤彬.四川盆地海相三叠系硬石膏和盐卤水的硫同位素组成及意义.化工产地质,1997,19(3):171-176.
    [74]林耀庭.四川盆地三叠纪海相沉积石膏和卤水的硫同位素研究盐湖研究,2003,11(2):1-7.
    [75]Horacek M, Brandner R, Richoz S,et al. Lower Triassic sulphur isotope curve of marine sulphates from the Dolomites, N-Italy. Palaeogeography, Palaeoclimatology, Palaeoecology,2010,290(1):65-70.
    [76]梁汉东,丁悌平.中国煤山剖面二叠/三叠系事件界线地层中石膏的负硫同位素异常.地球学报,2004,25(1):33-37.
    [77]Kajiwara Y, Yamakita S, Ishida K,et al. Development of a largely anoxic stratified ocean and its temporary massive mixing at the Permian/Triassic boundary supported by the sulfur isotopic record. Palaeogeography, Palaeoclimatology, Palaeoecology,1994,111(3): 367-379.
    [78]Nielsen J K, Shen Y. Evidence for sulfidic deep water during the Late Permian in the East Greenland Basin. Geology,2004,32(12):1037-1040.
    [79]Nielsen J K, Shen Y, Piasecki S,et al. No abrupt change in redox condition caused the end-Permian marine ecosystem collapse in the East Greenland Basin. Earth and Planetary Science Letters,2010,291(1):32-38.
    [80]Fenton S, Grice K, Twitchett R J,et al. Changes in biomarker abundances and sulfur isotopes of pyrite across the Permian-Triassic (P/Tr) Schuchert Dal section (East Greenland). Earth and Planetary Science Letters,2007,262(1):230-239.
    [81]Algeo T J, Ellwood B, Nguyen T K T,et al. The Permian-Triassic boundary at Nhi Tao, Vietnam:evidence for recurrent influx of sulfidic watermasses to a shallow-marine carbonate platform. Palaeogeography, Palaeoclimatology, Palaeoecology,2007,252(1): 304-327.
    [82]Algeo T, Shen Y, Zhang T,et al. Association of 4S-depleted pyrite layers with negative carbonate δ13C excursions at the Permian-Triassic boundary:Evidence for upwelling of sulfidic deep-ocean water masses. Geochemistry Geophysics Geosystems,2008,9(4): Q04025.
    [83]Algeo T J, Hinnov L, Moser J,et al. Changes in productivity and redox conditions in the Panthalassic Ocean during the latest Permian. Geology,2010,38(2):187-190.
    [84]Algeo T J, Kuwahara K, Sano H,et al. Spatial variation in sediment fluxes, redox conditions, and productivity in the Permian-Triassic Panthalassic Ocean. Palaeogeography, Palaeoclimatology, Palaeoecology,2011,308(1):65-83.
    [85]Algeo T, Henderson C M, Ellwood B,et al. Evidence for a diachronous Late Permian marine crisis from the Canadian Arctic region. Geological Society of America Bulletin, 2012,124(9-10):1424-1448.
    [86]Shen Y, Farquhar J, Zhang H,et al. Multiple S-isotopic evidence for episodic shoaling of anoxic water during Late Permian mass extinction. Nature Communications,2011,2: 210.
    [87]Zhang J, Liang H, He X,et al. Sulfur Isotopes of Framboidal Pyrite in the Permian-Triassic Boundary Clay at Meishan Section. Acta Geologica Sinica-English Edition, 2011,85(3):694-701.
    [88]Takahashi S, Kaiho K, Hori R,et al. Sulfur isotope profiles in the pelagic Panthalassic deep sea during the Permian-Triassic transition. Global and Planetary Change,2013,105: 68-78.
    [89]Gorjan P, Kaiho K, Kakegawa T,et al. Paleoredox, biotic and sulfur-isotopic changes associated with the end-Permian mass extinction in the western Tethys. Chemical Geology,2007,244(3):483-492.
    [90]Li P, Huang J, Chen M,et al. Coincident negative shifts in sulfur and carbon isotope compositions prior to the end-Permian mass extinction at Shangsi Section of Guangyuan, South China. Frontiers of Earth Science in China,2009,3(1):51-56.
    [91]Lowenstein T K, Timofeeff M N, Kovalevych V M,et al. The major-ion composition of Permian seawater. Geochimica et Cosmochimica Acta,2005,69(7):1701-1719.
    [92]Tong J, Qiu H, Zhao L,et al. Lower Triassic inorganic carbon isotope excursion in Chaohu, Anhui Province. China Journal of China University of Geosciences,2002,13(2): 98-106.
    [93]左景勋,童金南,邱海鸥等.巢湖地区早三叠世碳氧同位素地层对比及其古生态环境意义.地质地球化学,2003,31(3):26-33.
    [94]左景勋,童金南,邱海鸥等.下扬子地区早三叠世碳酸盐岩碳同位素组成的演化特征.中国科学:D辑,2006,36(2):109-122.
    [95]Corsetti F A, Baud A, Marenco P J,et al. Summary of Early Triassic carbon isotope records. Comptes Rendus Palevol,2005,4(6):473-486.
    [96]Payne J L, Kump L R. Evidence for recurrent Early Triassic massive volcanism from quantitative interpretation of carbon isotope fluctuations. Earth and Planetary Science Letters,2007,256(1):264-277.
    [97]Tong J, Zuo J, Chen Z. Early Triassic carbon isotope excursions from South China: proxies for devastation and restoration of marine ecosystems following the end-Permian mass extinction. Geological Journal,2007,42(3-4):371-389.
    [98]Horacek M, Brandner R, Abart R. Carbon isotope record of the P/T boundary and the Lower Triassic in the Southern Alps:evidence for rapid changes in storage of organic carbon. Palaeogeography, Palaeoclimatology, Palaeoecology,2007,252(1):347-354.
    [99]Horacek M, Richoz S, Brandner R,et al. Evidence for recurrent changes in Lower Triassic oceanic circulation of the Tethys:The 813C record from marine sections in Iran. Palaeogeography, Palaeoclimatology, Palaeoecology,2007,252(1):355-369.
    [100]Horacek M, Koike T, Richoz S. Lower Triassic δ13C isotope curve from shallow-marine carbonates in Japan, Panthalassa realm:Confirmation of the Tethys δ 13C curve. Journal of Asian Earth Sciences,2009,36(6):481-490.
    [101]Galfetti T, Bucher H, Brayard A,et al. Late Early Triassic climate change:insights from carbonate carbon isotopes, sedimentary evolution and ammonoid paleobiogeography. Palaeogeography, Palaeoclimatology, Palaeoecology,2007,243(3):394-411.
    [102]Galfetti T, Bucher H, Ovtcharova M,et al. Timing of the Early Triassic carbon cycle perturbations inferred from new U-Pb ages and ammonoid biochronozones. Earth and Planetary Science Letters,2007,258(3):593-604.
    [103]Galfetti T, Hochuli P A, Brayard A,et al. Smithian-Spathian boundary event:Evidence for global climatic change in the wake of the end-Permian biotic crisis. Geology,2007, 35(4):291-294.
    [104]Galfetti T, Bucher H, Martini R,et al. Evolution of Early Triassic outer platform paleoenvironments in the Nanpanjiang Basin (South China) and their significance for the biotic recovery. Sedimentary Geology,2008,204(1):36-60.
    [105]Meyer K, Yu M, Jost A,et al.813C evidence that high primary productivity delayed recovery from end-Permian mass extinction. Earth and Planetary Science Letters,2011, 302(3):378-384.
    [106]Clarkson M, Richoz S, Wood R,et al. A new high-resolution 813C record for the Early Triassic:Insights from the Arabian Platform. Gondwana Research,2013,24:233-242.
    [107]黄思静,黄可可,吕杰等.早三叠世海水的碳同位素组成与演化——来自四川盆地东部的研究.中国科学:地球科学,2012,42(10):1508-1522.
    [108]Meyer K M, Yu M, Lehrmann D,et al. Constraints on Early Triassic carbon cycle dynamics from paired organic and inorganic carbon isotope records. Earth and Planetary Science Letters,2013,361(0):429-435.
    [109]Bruhwiler T, Goudemand N, Galfetti T,et al. The Lower Triassic sedimentary and carbon isotope records from Tulong (South Tibet) and their significance for Tethyan palaeoceanography. Sedimentary Geology,2009,222(3):314-332.
    [110]Grasby S, Beauchamp B, Embry A,et al. Recurrent Early Triassic ocean anoxia. Geology, 2013,41:175-178.
    [111]Wignall P B, Twitchett R J. Oceanic anoxia and the end Permian mass extinction. Science (New York, NY),1996,272(5265):1155.
    [112]Isozaki Y. Permo-Triassic boundary superanoxia and stratified superocean:records from lost deep sea. Science,1997,276(5310):235-238.
    [113]Shen J, Algeo T J, Hu Q,et al. Volcanism in South China during the Late Permian and its relationship to marine ecosystem and environmental changes. Global and Planetary Change,2013,105:121-134.
    [114]Shen J, Algeo T, Zhou L,et al. Volcanic perturbations of the marine environment in South China preceding the latest Permian mass extinction and their biotic effects. Geobiology, 2012,10:82-103.
    [115]Li F, Yan J, Algeo T,et al. Palaeoceanographic conditions following the end-Permian mass extinction recorded by giant ooids (Moyang, South China). Global and Planetary Change,2013,105:102-120.
    [116]Liao W, Wang Y, Kershaw S,et al. Shallow-marine dysoxia across the Permian-Triassic boundary:Evidence from pyrite framboids in the microbialite in South China. Sedimentary Geology,2010,232(1):77-83.
    [117]Wignall P, Newton R. Pyrite framboid diameter as a measure of oxygen deficiency in ancient mudrocks. American Journal of Science,1998,298(7):537-552.
    [118]Bond D P G, Wignall P B. Pyrite framboid study of marine Permian-Triassic boundary sections:a complex anoxic event and its relationship to contemporaneous mass extinction. Geological Society of America Bulletin,2010,122(7-8):1265-1279.
    [119]Shen W, Lin Y, Xu L,et al. Pyrite framboids in the Permian-Triassic boundary section at Meishan, China:Evidence for dysoxic deposition. Palaeogeography, Palaeoclimatology, Palaeoecology,2007,253(3):323-331.
    [120]Wignall P B, Bond D P G, Kuwahara K,et al. An 80 million year oceanic redox history from Permian to Jurassic pelagic sediments of the Mino-Tamba terrane, SW Japan, and the origin of four mass extinctions. Global and Planetary Change,2010,71(1):109-123.
    [121]赵来时,吴元保,胡兆初等.牙形石微量元素对生物绝灭事件的响应:以二叠一三叠系全球层型剖面第一幕绝灭事件为例.地球科学:中国地质大学学报,2009,34(005):725-732.
    [122]Song H, Wignall P B, Tong J,et al. Geochemical evidence from bio-apatite for multiple oceanic anoxic events during Permian-Triassic transition and the link with end-Permian extinction and recovery. Earth and Planetary Science Letters,2012,353:12-21.
    [123]Zhao L, Chen Z Q, Algeo T J,et al. Rare-earth element patterns in conodont albid crowns: Evidence for massive inputs of volcanic ash during the latest Permian biocrisis? Global and Planetary Change,2013,105:135-150.
    [124]Brennecka G A, Herrmann A D, Algeo T J,et al. Rapid expansion of oceanic anoxia immediately before the end-Permian mass extinction. Proceedings of the National Academy of Sciences,2011,108(43):17631-17634.
    [125]Kakuwa Y. Evaluation of palaeo-oxygenation of the ocean bottom across the Permian-Triassic boundary. Global and Planetary Change,2008,63(1):40-56.
    [126]Kakuwa Y. Reply to the Comments of Kato and Isozaki on" Evaluation of palaeo-oxygenation of the ocean bottom across the Permian-Triassic boundary"by Y. Kakuwa [Global Planet. Change 63 (2008) 40-56]:Was the Late Permian deep-superocean really oxic? Global and Planetary Change,2009,69:82-86.
    [127]Algeo T J, Chen Z Q, Fraiser M L,et al. Terrestrial-marine teleconnections in the collapse and rebuilding of Early Triassic marine ecosystems. Palaeogeography, Palaeoclimatology, Palaeoecology,2011,308(1):1-11.
    [128]Metcalfe I, Nicoll R, Willink R,et al. Early Triassic (Induan-Olenekian) conodont biostratigraphy, global anoxia, carbon isotope excursions and environmental perturbations:New data from Western Australian Gondwana. Gondwana Research,2013, 23(3):1136-1150.
    [129]Brayard A, Escarguel G, Bucher H,et al. Smithian and Spathian (Early Triassic) ammonoid assemblages from terranes:Paleoceanographic and paleogeographic implications. Journal of Asian Earth Sciences,2009,36(6):420-433.
    [130]Hermann E, Hochuli P A, Mehay S,et al. Organic matter and palaeoenvironmental signals during the Early Triassic biotic recovery:The Salt Range and Surghar Range records. Sedimentary Geology,2011,234(1):19-41.
    [131]Hermann E, Hochuli P A, Bucher H,et al. Terrestrial ecosystems on North Gondwana following the end-Permian mass extinction. Gondwana Research,2011,20(2):630-637.
    [132]Schneebeli-Hermann E, Hochuli P A, Bucher H,et al. Palynology of the Lower Triassic succession of Tulong, South Tibet - Evidence for early recovery of gymnosperms. Palaeogeography, Palaeoclimatology, Palaeoecology,2012,339-341:12-24.
    [133]Schneebeli-Hermann E, Kurschner W M, Hochuli P A,et al. Palynofacies analysis of the Permian-Triassic transition in the Amb section (Salt Range, Pakistan):implications for the anoxia on the South Tethyan Margin. Journal of Asian Earth Sciences,2012,60: 225-234.
    [134]Takahashi S, Oba M, Kaiho K,et al. Panthalassic oceanic anoxia at the end of the Early Triassic:A cause of delay in the recovery of life after the end-Permian mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology,2009,274(3):185-195.
    [135]Kamo S L, Czamanske G K, Amelin Y,et al. Rapid eruption of Siberian flood-volcanic rocks and evidence for coincidence with the Permian-Triassic boundary and mass extinction at 251 Ma. Earth and Planetary Science Letters,2003,214(1):75-91.
    [136]Reichow M K, Pringle M, Al'Mukhamedov A,et al. The timing and extent of the eruption of the Siberian Traps large igneous province:Implications for the end-Permian environmental crisis. Earth and Planetary Science Letters,2009,277(1):9-20.
    [137]Benton M J, Twitchett R J. How to kill (almost) all life:the end-Permian extinction event. Trends in Ecology & Evolution,2003,18(7):358-365.
    [138]Joachimski M M, Lai X, Shen S,et al. Climate warming in the latest Permian and the Permian-Triassic mass extinction. Geology,2012,40(3):195-198.
    [139]Retallack G J, Veevers J J, Morante R. Global coal gap between Permian-Triassic extinction and Middle Triassic recovery of peat-forming plants. Geological Society of America Bulletin,1996,108(2):195-207.
    [140]Fagerstrom J A. The evolution of reef communities. New York:Wiley,1987.
    [141]Stanley Jr G D. The history of early Mesozoic reef communities:a three-step process. Palaios,1988:170-183.
    [142]Racki G. Silica-secreting biota and mass extinctions:survival patterns and processes. Palaeogeography, Palaeoclimatology, Palaeoecology,1999,154(1):107-132.
    [143]赵小明,童金南,姚华舟等.华南早三叠世错时相沉积及其对复苏期生态系的启示.中国科学:D辑,2009,38(12):1564-1574.
    [144]赵小明,牛志军,童金南等.早三叠世生物复苏期的特殊沉积——“错时相”沉积.沉积学报,2010,(2):314-323.
    [145]Pruss S B, Bottjer D J, Corsetti F A,et al. A global marine sedimentary response to the end-Permian mass extinction:examples from southern Turkey and the western United States. Earth-Science Reviews,2006,78(3):193-206.
    [146]Schubert J K, Bottjer D J. Aftermath of the Permian-Triassic mass extinction event: Paleoecology of Lower Triassic carbonates in the western USA. Palaeogeography, Palaeoclimatology, Palaeoecology,1995,116(1):1-39.
    [147]Lehrmann D J. Early Triassic calcimicrobial mounds and biostromes of the Nanpanjiang basin, south China. Geology,1999,27(4):359-362.
    [148]Ezaki Y, Liu J, Adachi N. Microbialites and their responsible microbes following the end-Permian extinction in Sichuan, South China. Gondwana Research,2001,4(4): 614-614.
    [149]Ezaki Y, Liu J, Adachi N. Earliest Triassic microbialite micro-to megastructures in the Huaying area of Sichuan Province, South China:Implications for the nature of oceanic conditions after the end-Permian extinction. Palaios,2003,18(4-5):388-402.
    [1 50]王永标,童金南,王家生等.华南二叠纪末大绝灭后的钙质微生物岩及古环境意义.科学通报,2005,50(6):552-558.
    [151]吴亚生,姜红霞,范嘉松.二叠纪-三叠纪之交缺氧环境的微生物和微生物岩.中国科学:D辑,2007,37(005):618-628.
    [152]Kershaw S, Guo L, Swift A,et al.? Microbialites in the Permian-Triassic boundary interval in central China:Structure, age and distribution. Facies,2002,47(1):83-89.
    [153]Kershaw S, Li Y, Crasquin-Soleau S,et al. Earliest Triassic microbialites in the South China block and other areas:Controls on their growth and distribution. Facies,2007, 53(3):409-425.
    [154]Wignall P B, Twitchett R J. Unusual intraclastic limestones in Lower Triassic carbonates and their bearing on the aftermath of the end-Permian mass extinction. Sedimentology, 1999,46(2):303-316.
    [155]Woods A D, Bottjer D J, Mutti M,et al. Lower Triassic large sea-floor carbonate cements: Their origin and a mechanism for the prolonged biotic recovery from the end-Permian mass extinction. Geology,1999,27(7):645-648.
    [156]Baud A, Atudorei V, Richoz S. Sea-floor carbonate fans and calcimicrobial mound in the Lower Triassic red limestone of the Alwa Formation, Baid Exotic, Eastern Oman Mountains, in:eds.24th IAS meeting of Sedimentology, Volume Abstract Volume: Muscat, Oman,2005. p.31.
    [157]黄思静.蠕虫状灰岩及其成因.成都理工大学学报(自然科学版),1984:60-68.
    [158]张杰,童金南.下扬子地区下三叠统蠕虫状灰岩及其成因.古地理学报,2010,12(5):535-548.
    [159]Pruss S B, Corsetti F A, Bottjer D J. The unusual sedimentary rock record of the Early Triassic:A case study from the southwestern United States. Palaeogeography, Palaeoclimatology, Palaeoecology,2005,222(1):33-52.
    [160]Sepkoski Jr J, Bambach R, Droser M. Secular changes in Phanerozoic event bedding and the biological overprint. Cycles and events in stratigraphy Springer, Berlin,1991: 298-312.
    [161]Sepkoski Jr J. Flat-pebble conglomerates, storm deposits, and the Cambrian bottom fauna. Cyclic and event stratification,1982,12:371-385.
    [162]Heydari E, Hassanzadeh J, Wade W,et al. Permian-Triassic boundary interval in the Abadeh section of Iran with implications for mass extinction:Part 1-Sedimentology. Palaeogeography, Palaeoclimatology, Palaeoecology,2003,193(3):405-423.
    [163]Woods A. Anatomy of an anachronistic carbonate platform:Lower Triassic carbonates of the southwestern United States. Australian Journal of Earth Sciences,2009,56(6): 825-839.
    [164]Woods A D, Bottjer D J, Corsetti F A. Calcium carbonate seafloor precipitates from the outer shelf to slope facies of the Lower Triassic (Smithian-Spathian) Union Wash Formation, California, USA:Sedimentology and palaeobiologic significance. Palaeogeography, Palaeoclimatology, Palaeoecology,2007,252(1-2):281-290.
    [165]Erwin D H. Extinction:how life on earth nearly ended 250 million years ago. Princeton: Princeton University Press,2006.
    [166]Bottjer D J, Clapham M E, Fraiser M L,et al. Understanding mechanisms for the end-Permian mass extinction and the protracted Early Triassic aftermath and recovery. GSA Today,2008,18(9):4-10.
    [167]Orchard M J. Conodont diversity and evolution through the latest Permian and Early Triassic upheavals. Palaeogeography, Palaeoclimatology, Palaeoecology,2007,252(1): 93-117.
    [168]Song H, Wignall P B, Chen Z Q,et al. Recovery tempo and pattern of marine ecosystems after the end-Permian mass extinction. Geology,2011,39(8):739-742.
    [169]童金南,殷鸿福.早三叠世生物与环境研究进展.古生物学报,2009,497-508.
    [170]Luo G, Wang Y, Yang H,et al. Stepwise and large-magnitude negative shift in δ13Ccarb preceded the main marine mass extinction of the Permian-Triassic crisis interval. Palaeogeography, Palaeoclimatology, Palaeoecology,2011,299(1):70-82.
    [171]Korte C, Kozur H W. Carbon-isotope stratigraphy across the Permian-Triassic boundary: A review. Journal of Asian Earth Sciences,2010,39(4):215-235.
    [172]Holser W T, Schonlaub H-P, Attrep M,et al. A unique geochemical record at the Permian/Triassic boundary. Nature,1989,337(6202):39-44.
    [173]Krull E S, Lehrmann D J, Druke D,et al. Stable carbon isotope stratigraphy across the Permian-Triassic boundary in shallow marine carbonate platforms, Nanpanjiang Basin, south China. Palaeogeography, Palaeoclimatology, Palaeoecology,2004,204(3): 297-315.
    [174]Heydari E, Wade W J, Hassanzadeh J. Diagenetic origin of carbon and oxygen isotope compositions of Permian-Triassic boundary strata. Sedimentary Geology,2001,143(3): 191-197.
    [175]Xie S, Pancost R D, Huang J,et al. Changes in the global carbon cycle occurred as two episodes during the Permian-Triassic crisis. Geology,2007,35(12):1083-1086.
    [176]Riccardi A, Kump L R, Arthur M A,et al. Carbon isotopic evidence for chemocline upward excursions during the end-Permian event. Palaeogeography, Palaeoclimatology, Palaeoecology,2007,248(1):73-81.
    [177]Mu X, Kershaw S, Li Y,et al. High-resolution carbon isotope changes in the Permian-Triassic boundary interval, Chongqing, South China; implications for control and growth of earliest Triassic microbialites. Journal of Asian Earth Sciences,2009, 36(6):434-441.
    [178]Kaiho K, Chen Z, Sawada K. Possible causes for a negative shift in the stable carbon isotope ratio before, during and after the end-Permian mass extinction in Meishan, South China. Australian Journal of Earth Sciences,2009,56(6):799-808.
    [179]Cao C, Yang Y, Shen S,et al. Pattern of 813Ccarb and implications for geological events during the Permian-Triassic transition in South China. Geological Journal,2010,45(2-3):186-194.
    [180]Richoz S, Krystyn L, Baud A,et al. Permian-Triassic boundary interval in the Middle East (Iran and N. Oman):Progressive environmental change from detailed carbonate carbon isotope marine curve and sedimentary evolution. Journal of Asian Earth Sciences, 2010,39(4):236-253.
    [181]Song H J, Tong J N, Xiong Y L,et al. The large increase of δ13 C carb-depth gradient and the end-Permian mass extinction. SCIENCE CHINA Earth Sciences,2012:1-9.
    [182]Knoll A H, Bambach R K, Payne J L,et al. Paleophysiology and end-Permian mass extinction. Earth and Planetary Science Letters,2007,256(3):295-313.
    [183]Tong J, Zhang S, Zuo J,et al. Events during Early Triassic recovery from the end-Permian extinction. Global and Planetary Change,2007,55(1):66-80.
    [184]冯增昭,鲍志东.中国南方早中三叠世岩相古地理.地质科学,1997,32(002):212-220.
    [185]Yin H, Zhang K, Tong J,et al. The global stratotype section and point (GSSP) of the Permian-Triassic boundary. Episodes,2001,24(2):102-114.
    [186]Zhang K, Tong J, Shi G,et al. Early Triassic conodont-palynological biostratigraphy of the Meishan D Section in Changxing, Zhejiang Province, South China. Palaeogeography, Palaeoclimatology, Palaeoecology,2007,252(1):4-23.
    [187]Jiang H, Lai X, Luo Qet al. Restudy of conodont zonation and evolution across the P/T boundary at Meishan section, Changxing, Zhejiang, China. Global and Planetary Change, 2007,55(1):39-55.
    [188]Tong J, Yang Y. Advance in the study of the Lower Triassic conodonts at Meishan section, Changxing, Zhejiang Province. Chinese science bulletin,1998,43(16): 1350-1353.
    [189]曹长群,王伟,金玉.浙江煤山二叠一三叠系界线附近碳同位索变化.科学通报,2002,47(4):302-306.
    [190]Cao C, Love G D, Hays L E,et al. Biogeochemical evidence for euxinic oceans and ecological disturbance presaging the end-Permian mass extinction event. Earth and Planetary Science Letters,2009,281(3):188-201.
    [191]Tong J, Yin H. The Lower Triassic of South China. Journal of Asian Earth Sciences, 2002,20(7):803-815.
    [192]Zhao L, Xiong X, Yang F,et al. Conodonts from the Lower Triassic in the Nantuowan Section of Daxiakou, Xingshan County, Hubei Province. Albertiana,2005,33(Part II): 111-115.
    [193]童金南,Hansen H J,赵来时等.印度阶-奥伦尼克阶界线层型候选剖面——安徽巢湖平顶山西剖面地层序列.地层学杂志,2005,29(2):205-214.
    [194]Tong J, Zhao L. Lower Triassic and Induan-Olenekian Boundary in Chaohu, Anhui Province, South China. Acta Geologica Sinica-English Edition,2011,85(2):399-407.
    [195]赵来时,童金南,左景勋.安徽巢湖平顶山下三叠统牙形石生物地层序列.地球科学-中国地质大学学报,2003,28(4):414-418.
    [196]童金南,赵来时,左景勋等.安徽巢湖地区下三叠统综合层序.地球科学-中国地质大学学报,2005,30(1):40-46.
    [197]Tong J, Zhou X, Erwin D H,et al. Fossil fishes from the Lower Triassic of Majiashan, Chaohu, Anhui Province, China. Journal of Paleontology,2006,80(1):146-161.
    [198]赵来时,童金南,左景勋.安徽巢湖地区下三叠统牙形石生物地层分带及其全球对比.地球科学:中国地质大学学报,2006,30(5):623-634.
    [199]梁丹,童金南,赵来时.安徽巢湖平顶山西坡剖面早三叠世Smithian-Spathian界线地层研究.中国科学:地球科学,2011,41(2):149-157.
    [200]童金南,吴顺宝.安徽巢湖地区早三叠世菊石序列.古生物学报,2004,43(2): 192-204.
    [201]Jinnan T, Zakharov Y D. Lower Triassic ammonoid zonation in Chaohu, Anhui Province, China. Albertiana,2004,31:65-69.
    [202]Zhao L, Tong J, Sun Z,et al. A detailed Lower Triassic conodont biostratigraphy and its implications for the GSSP candidate of the Induan-Olenekian boundary in Chaohu, Anhui Province. Progress in Natural Science,2008,18(1):79-90.
    [203]Laishi Z, Orchard M J, Jinnan T,et al. Lower Triassic conodont sequence in Chaohu, Anhui Province, China and its global correlation. Palaeogeography, Palaeoclimatology, Palaeoecology,2007,252(1):24-38.
    [204]Sun Z, Hounslow M W, Pei J,et al. Magnetostratigraphy of the Lower Triassic beds from Chaohu (China) and its implications for the Induan-Olenekian stage boundary. Earth and Planetary Science Letters,2009,279(3):350-361.
    [205]Guo G, Tong J N, Zhang S H,et al. Cyclostratigraphy of the Induan (Early Triassic) in West Pingdingshan Section, Chaohu, Anhui Province. Science in China Series D:Earth Sciences,2008,51(1):22-29.
    [206]Lehrmann D J, Wei J, Enos P. Controls on facies architecture of a large Triassic carbonate platform:the Great Bank of Guizhou, Nanpanjiang Basin, South China. Journal of Sedimentary Research,1998,68(2):311-326.
    [207]Song H, Tong J, Chen Z,et al. End-Permian mass extinction of foraminifers in the Nanpanjiang Basin, South China. Journal of Paleontology,2009,83(5):718-738.
    [208]Payne J L, Turchyn A V, Paytan A,et al. Calcium isotope constraints on the end-Permian mass extinction. Proceedings of the National Academy of Sciences,2010,107(19): 8543-8548.
    [209]肖加飞,李荣西,王兴理等.大贵州滩二叠系—三叠系界线附近锶同位素组成特征.地质论评,2009,(5):647-652.
    [210]Chen Z-Q, Tong J, Liao Z-T,et al. Structural changes of marine communities over the Permian-Triassic transition:ecologically assessing the end-Permian mass extinction and its aftermath. Global and Planetary Change,2010,73(1):123-140.
    [21 1]郑淑蕙,郑斯成,莫志超.稳定同位素地球化学分析.北京:北京大学出版社,1986.
    [212]Kaufman A J, Knoll A H. Neoproterozoic variations in the C-isotopic composition of seawater:stratigraphic and biogeochemical implications. Precambrian Research,1995, 73(1):27-49.
    [213]Algeo T J, Wilkinson B H, Lohmann K C. Meteoric-burial diagenesis of middle Pennsylvanian limestones in the Orogrande Basin, New Mexico:water/rock interactions and basin geothermics. Journal of Sedimentary Research,1992,62(4):652-670.
    [214]Irwin H, Curtis C, Coleman M. Isotopic evidence for source of diagenetic carbonates formed during burial of organic-rich sediments. Science,1977,269:209-213.
    [215]Dyrssen D W, Hall P O J, Haraldsson C,et al. Time dependence of organic matter decay and mixing processes in Framvaren, a permanently anoxic fjord in South Norway. Aquatic Geochemistry,1996,2(2):111-129.
    [216]Dyrssen D W. Framvaren and the Black Sea-similarities and differences. Aquatic Geochemistry,1999,5(1):59-73.
    [217]Deuser W G. Carbon-13 in black sea waters and implications for the origin of hydrogen sulfide. Science (New York, NY),1970,168(3939):1575.
    [218]Kroopnick P. The distribution of 13C of ΣCO2 in the world oceans. Deep Sea Research Part A Oceanographic Research Papers,1985,32(1):57-84.
    [219]Jiang G, Kaufman A J, Christie-Blick N,et al. Carbon isotope variability across the Ediacaran Yangtze platform in South China:Implications for a large surface-to-deep ocean δ13C gradient. Earth and Planetary Science Letters,2007,261(1):303-320
    [220]Jiang G Q, Zhang S H, Shi X Y,et al. Chemocline instability and isotope variations of the Ediacaran Doushantuo basin in South China. Science in China Series D:Earth Sciences, 2008,51(11):1560-1569.
    [221]Munnecke A, Samtleben C, Bickert T. The Ireviken Event in the lower Silurian of Gotland, Sweden-relation to similar Palaeozoic and Proterozoic events. Palaeogeography, Palaeoclimatology, Palaeoecology,2003,195(1):99-124.
    [222]Azmy K, Veizer J, Bassett M G,et al. Oxygen and carbon isotopic composition of Silurian brachiopods:implications for coeval seawater and glaciations. Geological Society of America Bulletin,1998,110(11):1499-1512
    [223]Fisher C G, Arthur M A. Water mass characteristics in the Cenomanian US Western Interior seaway as indicated by stable isotopes of calcareous organisms. Palaeogeography, Palaeoclimatology, Palaeoecology,2002,188(3):189-213.
    [224]Algeo T J, Lyons T W. Mo-total organic carbon covariation in modern anoxic marine environments:Implications for analysis of paleoredox and paleohydrographic conditions. Paleoceanography,2006,21(1):PA1016.
    [225]Chester R, Jickells T. Marine geochemistry. USA:Wiley-Blackwell,2012.
    [226]Mundil R, Brack P, Meier M,et al. High resolution U-Pb dating of Middle Triassic volcaniclastics:Time-scale calibration and verification of tuning parameters for carbonate sedimentation. Earth and Planetary Science Letters,1996,141(1):137-151.
    [227]Mundil R, Palfy J, Renne P R,et al. The Triassic timescale:new constraints and a review of geochronological data. Geological Society, London, Special Publications,2010, 334(1):41-60.
    [228]Bowring S A, Erwin D, Jin Y,et al. U/Pb zircon geochronology and tempo of the end-Permian mass extinction. Science,1998,280(5366):1039-1045.
    [229]Mundil R, Ludwig K R, Metcalfe I,et al. Age and timing of the Permian mass extinctions: U/Pb dating of closed-system zircons. Science,2004,305(5691):1760-1763.
    [230]Lehrmann D J, Ramezani J, Bowring S A,et al. Timing of recovery from the end-Permian extinction:Geochronologic and biostratigraphic constraints from south China. Geology,2006,34(12):1053-1056.
    [231]Ovtcharova M, Bucher H, Schaltegger U,et al. New Early to Middle Triassic U-Pb ages from South China:calibration with ammonoid biochronozones and implications for the timing of the Triassic biotic recovery. Earth and Planetary Science Letters,2006,243(3): 463-475.
    [232]Shen S Z, Henderson C M, Bowring S A,et al. High-resolution Lopingian (Late Permian) timescale of South China. Geological Journal,2010,45(2-3):122-134.
    [233]Algeo T J, Henderson C M, Tong J,et al. Plankton and productivity during the Permian-Triassic boundary crisis:An analysis of organic carbon fluxes. Global and Planetary Change,2013,105:52-67.
    [234]Zhang R, Follows M, Grotzinger J,et al. Could the Late Permian deep ocean have been anoxic. Paleoceanography,2001,16(3):317-329.
    [235]Kump L R, Arthur M A. Interpreting carbon-isotope excursions:carbonates and organic matter. Chemical Geology,1999,161(1):181-198.
    [236]Algeo T J, Twitchett R J. Anomalous Early Triassic sediment fluxes due to elevated weathering rates and their biological consequences. Geology,2010,38(11):1023-1026.
    [237]Retallack G J. Postapocalyptic greenhouse paleoclimate revealed by earliest Triassic paleosols in the Sydney Basin, Australia. Geological Society of America Bulletin,1999, 111(1):52-70.
    [238]Song H, Tong J, Algeo T J,et al. Large vertical δ13CDIC gradients in Early Triassic seas of the South China craton:Implications for oceanographic changes related to Siberian Traps volcanism. Global and Planetary Change,2013,105:7-20.
    [239]Retallack G J, Sheldon N D, Carr P F,et al. Multiple Early Triassic greenhouse crises impeded recovery from Late Permian mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology,2011,308(1):233-251.
    [240]Retallack G J, Jahren A H. Methane release from igneous intrusion of coal during Late Permian extinction events. The Journal of Geology,2008,116(1):1-20.
    [241]Saito R, Kaiho K, Oba M,et al. A terrestrial vegetation turnover in the middle of the Early Triassic. Global and Planetary Change,2013,105:151-158.
    [242]Immenhauser A, Della Porta G, Kenter J A,et al. An alternative model for positive shifts in shallow-marine carbonate δ 13C and δ18O. Sedimentology,2003,50(5):953-959.
    [243]Immenhauser A, Holmden C, Patterson W P. Interpreting the carbon-isotope record of ancient shallow epeiric seas:lessons from the Recent. Dynamics of Epeiric Seas,2008, 48:135-174.
    [244]Patterson W P, Walter L M. Depletion of 13C in seawater ΣCO2 on modern carbonate platforms:Significance for the carbon isotopic record of carbonates. Geology,1994, 22(10):885-888.
    [245]Erwin D H, Bowring S A, Yugan J. End-Permian mass extinctions:a review. Special Papers-Geological society of America,2002:363-384.
    [246]Twitchett R, Krystyn L, Baud A,et al. Rapid marine recovery after the end-Permian mass-extinction event in the absence of marine anoxia. Geology,2004,32(9):805-808.
    [247]Hallam A. Why was there a delayed radiation after the end-Palaeozoic extinctions? Historical Biology,1991,5(2-4):257-262.
    [248]王红梅,王兴理,李荣西等.贵州罗甸边阳镇关刀剖面三叠纪牙形石序列及阶的划分.古生物学报,2005,44(4):611-626.
    [249]左景勋,童金南,赵来时.中国南方早三叠世岩相古地理分异演化与板块运动的关系.地质科技情报,2003,22(2):29-34.
    [250]Marenco P J, Corsetti F A, Hammond D E,et al. Oxidation of pyrite during extraction of carbonate associated sulfate. Chemical Geology,2008,247(1):124-132.
    [251]Wotte T, Shields-Zhou G A, Strauss H. Carbonate-associated sulfate:Experimental comparisons of common extraction methods and recommendations toward a standard analytical protocol. Chemical Geology,2013,326-327:132-144.
    [252]王大波,宋虎跃,邱海鸥等.碳酸盐晶格硫同位素分析前处理的影响.地质科技情报,2011,30(1):31-33.
    [253]Mazumdar A, Goldberg T, Strauss H. Abiotic oxidation of pyrite by Fe (Ⅲ) in acidic media and its implications for sulfur isotope measurements of lattice-bound sulfate in sediments. Chemical Geology,2008,253(1):30-37.
    [254]Veizer J, Holser W T, Wilgus C K. Correlation of 13C12C and 34S32S secular variations. Geochimica et Cosmochimica Acta,1980,44(4):579-587.
    [255]戎嘉余,方宗杰.生物大灭绝与复苏:来自华南古生代和三叠纪的证据.合肥:中国科学技术大学出版社,2004.
    [256]Canfield D E, Raiswell R, Westrich J T,et al. The use of chromium reduction in the analysis of reduced inorganic sulfur in sediments and shales. Chemical Geology,1986, 54(1):149-155.
    [257]Poulton S W, Canfield D E. Development of a sequential extraction procedure for iron: implications for iron partitioning in continentally derived particulates. Chemical Geology, 2005,214(3):209-221.
    [258]Wilkin R, Barnes H, Brantley S. The size distribution of framboidal pyrite in modern sediments:An indicator of redox conditions. Geochimica et Cosmochimica Acta,1996, 60(20):3897-3912.
    [259]Raiswell R, Canfield D E. Sources of iron for pyrite formation in marine sediments. American Journal of Science,1998,298(3):219-245.
    [260]Lyons T W, Severmann S. A critical look at iron paleoredox proxies:New insights from modern euxinic marine basins. Geochimica et Cosmochimica Acta,2006,70(23): 5698-5722.
    [261]Li C, Love G D, Lyons T W,et al. A stratified redox model for the Ediacaran ocean. Science,2010,328(5974):80-83.
    [262]Shen Y, Zhang T, Hoffman P F. On the coevolution of Ediacaran oceans and animals. Proceedings of the National Academy of Sciences,2008,105(21):7376-7381.
    [263]Wilkin R T, Barnes H. Pyrite formation in an anoxic estuarine basin. American Journal of Science,1997,297(6):620-650.
    [264]Raiswell R. Pyrite texture, isotopic composition and the availability of iron. American Journal of Science,1982,282(8):1244-1263.
    [265]Sweeney R, Kaplan I. Pyrite framboid formation; laboratory synthesis and marine sediments. Economic Geology,1973,68(5):618-634.
    [266]常华进,储雪蕾.草莓状黄铁矿与古海洋环境恢复.地球科学进展,2011,26(5):475-481.
    [267]Wang L, Shi X, Jiang G. Pyrite morphology and redox fluctuations recorded in the Ediacaran Doushantuo Formation. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012,338:218-227.
    [268]Hammarlund E U, Dahl T W, Harper D A T,et al. A sulfidic driver for the end-Ordovician mass extinction. Earth and Planetary Science Letters,2012,331:128-139.
    [269]Berner R A. Sedimentary pyrite formation:an update. Geochimica et Cosmochimica Acta,1984,48(4):605-615.
    [270]Canfield D E, Lyons T W, Raiswell R. A model for iron deposition to euxinic Black Sea sediments. American Journal of Science,1996,296(7):818-834.
    [271]Schidlowski M, Hayes J, Kaplan I. Isotopic inferences of ancient biochemistries-Carbon, sulfur, hydrogen, and nitrogen. Earth's earliest biosphere:Its origin and evolution(A 84-43051 21-51) Princeton, NJ, Princeton University Press,1983,1983:149-186.
    [272]Vaynshteyn M, Tokarev V, Shakola V,et al. The geochemical activity of sulfate-reducing bacteria in sediments in the western part of the Black Sea. Geochemistry International, 1986,23(1):110-122.
    [273]Lyons T W. Sulfur isotopic trends and pathways of iron sulfide formation in upper Holocene sediments of the anoxic Black Sea. Geochimica et Cosmochimica Acta,1997, 61(16):3367-3382.
    [274]Fry B, Jannasch H W, Molyneaux S J,et al. Stable isotope studies of the carbon, nitrogen and sulfur cycles in the Black Sea and the Cariaco Trench. Deep Sea Research Part A Oceanographic Research Papers,1991,38:S1003-S1019.
    [275]Becker L, Poreda R J, Hunt A G,et al. Impact event at the Permian-Triassic boundary: Evidence from extraterrestrial noble gases in fullerenes. Science,2001,291(5508): 1530-1533.
    [276]Kump L R, Pavlov A, Arthur M A. Massive release of hydrogen sulfide to the surface ocean and atmosphere during intervals of oceanic anoxia. Geology,2005,33(5): 397-400.
    [277]Wignall P. The link between large igneous province eruptions and mass extinctions. Elements,2005,1(5):293-297.
    [278]Yin H, Feng Q, Lai X,et al. The protracted Permo-Triassic crisis and multi-episode extinction around the Permian-Triassic boundary. Global and Planetary Change,2007, 55(1):1-20.
    [279]Wignall P B, Newton R, Brookfield M E. Pyrite framboid evidence for oxygen-poor deposition during the Permian-Triassic crisis in Kashmir. Palaeogeography, Palaeoclimatology, Palaeoecology,2005,216(3):183-188.
    [280]Kakuwa Y, Matsumoto R. Cerium negative anomaly just before the Permian and Triassic boundary event-The upward expansion of anoxia in the water column. Palaeogeography, Palaeoclimatology, Palaeoecology,2006,229(4):335-344.
    [281]Wignall P B, Twitchett R J. Extent, duration, and nature of the Permian-Triassic superanoxic event. Special Papers-Geological society of America,2002:395-414.
    [282]刘建波,杨守仁,王海峰.贵州罗甸二叠纪末生物大灭绝事件后沉积的微生物岩的时代和沉积学特征.古地理学报,2007,9(5):473-486.
    [283]Chen J, Beatty T W, Henderson C M,et al. Conodont biostratigraphy across the Permian-Triassic boundary at the Dawen section, Great Bank of Guizhou, Guizhou Province, South China:implications for the Late Permian extinction and correlation with Meishan. Journal of Asian Earth Sciences,2009,36(6):442-458.
    [284]Forel M, Crasquin S, Kershaw S,et al. Ostracods (Crustacea) and water oxygenation in the earliest Triassic of South China:implications for oceanic events at the end-Permian mass extinction. Australian Journal of Earth Sciences,2009,56(6):815-823.
    [285]Song H, Wignall P B, Tong J,et al. Two pulses of extinction during the Permian-Triassic crisis. Nature geoscience,2012,6(1):52-56.
    [286]余素玉.化石碳酸盐岩微相.北京:地质出版社,1989.
    [287]Fliigel E. Microfacies of carbonate rocks:analysis, interpretation and application. Berlin: Springer Verlag,2004.
    [288]王钦贤,童金南,宋海军等.湖南慈利康家坪剖面二叠纪-三叠纪之交的生态系演变.中国科学:D辑,2009,9:1239-1247.
    [289]Raiswell R, Canfield D, Berner R. A comparison of iron extraction methods for the determination of degree of pyritisation and the recognition of iron-limited pyrite formation. Chemical Geology,1994,111(1):101-110.
    [290]Korte C, Pande P, Kalia P,et al. Massive volcanism at the Permian-Triassic boundary and its impact on the isotopic composition of the ocean and atmosphere. Journal of Asian Earth Sciences,2010,37(4):293-311.
    [291]Shen J, Algeo T J, Hu Q,et al. Negative C-isotope excursions at the Permian-Triassic boundary linked to volcanism. Geology,2012,40:963-966.
    [292]Raiswell R, Buckley F, Berner R A,et al. Degree of pyritization of iron as a paleoenvironmental indicator of bottom-water oxygenation. Journal of Sedimentary Research,1988,58(5):812-819.
    [293]Kershaw S, Zhang T, Lan G. A? microbialite carbonate crust at the Permian-Triassic boundary in South China, and its palaeoenvironmental significance. Palaeogeography, Palaeoclimatology, Palaeoecology,1999,146(1):1-18.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700