纳米二氧化钛的合成,改性及光催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光催化技术作为最有发展前景的环境污染治理技术之一,越来越受到人们的重视。TiO2由于其自身优点,如无毒,光稳定,化学稳定,价廉,对反应底物的光催化降解彻底等,已经成为了目前最为常用的光催化剂。但是到目前为止,TiO2光催化技术仍然存在两方面问题没有解决:较低的可见光利用率和较低的量子效率。因此,如何通过改性有效地提高TiO2对可见光的利用,降低光生电子-空穴对的复合几率,提高量子效率,是今后TiO2光催化技术研究的重点。本论文通过多种方法改性纳米TiO2,致力于提高TiO2的可见光利用率和量子效率。主要研究内容如下:
     以MCM-41为硬模板,溶胶凝胶法合成了Fe3+掺杂的TiO2,并考察了合成样品的光催化活性。UV-Vis结果表明,Fe3+掺杂TiO2的吸收边界向可见光区移动,对可见光的吸收明显增强。TiO2颗粒是在MCM-41表面形成,而非孔道内。TiO2与MCM-41之间以Ti-O-Si键相连,而非简单的物理混合。此Ti-O-Si键使TiO2晶体颗粒固定在MCM-41的表面,抑制了其在焙烧过程中的团聚与晶粒增长。Fe不是以氧化物的形式存在于样品中,而是取代了部分晶格Ti,生成了Ti-O-Fe键。以MCM-41为硬模板合成的样品的粒径明显小于未引入MCM-41所合成的样品,且光催化活性也明显有所提高。Fe3+的掺杂量对催化剂的催化活性有显著影响。
     以TiCl4为原料,低温水热法合成了高分散氮掺杂纳米TiO2,并考察了合成样品的光催化活性。合成样品为锐钛矿与金红石相的混合晶相,两相比例约为1:1。合成样品颗粒尺寸约为5 nm,且具有良好的分散性和较窄的粒径分布。N掺杂并没有降低TiO2的带隙能,而是在TiO2的价带上方形成了一个独立的掺杂能级。紫外光下反应结果表明,催化剂颗粒尺寸对其催化活性有着显著的影响。量子尺寸效应也起着重要的作用。而样品在可见光下表现出的催化活性主要来自于N的掺杂作用。
     利用微结构反应器合成了离子液体1-丁基3-甲基咪唑溴([Bmim]Br),离子交换法合成了离子液体1-丁基3-甲基咪唑羟基([Bmim]OH),并采用水热法合成了[Bmim]OH改性的纳米TiO2。实验结果表明,[Bmim]OH的改性没有改变合成样品的晶相,但却减小了合成样品的粒径,提高了样品对可见光的吸收。[Bmim]OH的最高满轨道能级和最低空轨道能级与TiO2的价带和导带匹配完好。[Bmim]OH以化学键形式存在于TiO2表面而不是单纯的吸附在TiO2表面。Bx-TiO2样品在可见光下表现出良好的催化活性,这可能是由于[Bmim]OH改性后增强了催化剂对可见光的吸收,抑制了光生电子空穴的复合以及增强了对反应底物的吸收能力而引起的。
     采用H2S/H2等离子体法制备了硫掺杂TiO2,并考察了合成样品的光催化活性。等离子体处理没有改变合成样品的晶相比例和颗粒尺寸,并成功地将S元素以负价形式取代了部分晶格氧,掺入TiO2的晶格。UV-Vis结果表明,制备的硫掺杂TiO2的吸收边界向可见光区发生移动,且带隙能明显降低。在可见光下的反应结果表明,制备的硫掺杂TiO2催化活性显著提高,这可能是由于等离子体处理后降低了样品的带隙能,提高了可见光区的吸收所引起的。
Photocatalysis, as one of the most popular technologies for controlling environmental pollution, has received more and more attention. Now, TiO2 has become one of the most common photocatalysts due to its various merits, such as non-toxicity, photo stability, chemical stability, and low-cost. Although it has been widely investigated in the past decade, some problems such as the low photo-quantum efficiency and low photocatalytic activity under visible light still render its practical application. Therefore, modification of TiO2 to extend its absorption edge toward the visible light region and to decrease the recombination of photogenerated electrons and holes has been the hot topic of recent research. In this dissertation, the modified TiO2 nanoparticles have been synthesized by different procedures to improve the utilization efficiency of the visible light.
     Iron doped TiO2 was prepared by the sol-gel process using MCM-41 as hard template. UV-Vis diffuse reflectance spectroscopy result showed that a red-shift and an enhanced absorption in the visible region were observed in all the prepared samples. TiO2 was not synthesized in the pore of MCM-41 but on its surface. The Ti-O-Si bond was formed between TiO2 and MCM-41. This Ti-O-Si bond fixed the TiO2 on the MCM-41, which restrained the aggregation between TiO2 particles. Fe did not exist as Fe2O3 but substitute Ti to form Ti-O-Fe bond. The particle size and photocatalytic activity of Fe-doped TiO2 prepared using MCM-41 as hard template was smaller and higher than that of TiO2 prepared without MCM-41. The amount of doped iron ion played an important role in affecting its photocatalytic activity.
     Ultrafine nitrogen-doped TiO2 nanoparticles with narrow particle size distribution and good dispersion were synthesized in the presence of urea and PEG-4000 via a hydrothermal procedure. It was shown that the synthesized TiO2 particles were a mixture of 49.5% anatase and 50.5% rutile with a size of around 5 nm and narrow particle size distribution. The N doping did not narrow the band gap of AR50 but formed an isolated N impurity level above the valence band. The photocatalytic activities were tested in the degradation of an aqueous solution of a dyestuff, methylene blue, under both UV and visible light. The synthesized TiO2 particles showed much higher photocatalytic activity than the commercial TiO2 powders under both UV and visible light irradiations. The high performance may be related to the N doping effect, the reduced particle size, good dispersion, high surface area, and the quantum size effect.
     Ionic liquid [Bmim]OH was synthesized by ion exchange method using [Bmim]Br as row material, which was synthesized using micro-structured reactor. TiO2 nanocomposites modified with [Bmim]OH were synthesized via a hydrothermal procedure. The TiO2 nanocomposites consisted of pure anatase particles of about 10 nm. The modification of [Bmim]OH on the surface of the TiO2 particles extended the TiO2 absorption edge to the visible light region. The electrochemical redox potentials indicated that the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) of [Bmim]OH match well with the valence band (VB) and conduction band (CB) of the TiO2 semiconductor. The TiO2 surface is modified by the formation of Ti-O-C bonds rather than by physical adsorption of [Bmim]OH. [Bmim]OH modified TiO2 was much more active than pristine TiO2 under visible light irradiation in photocatalytic degradation of methylene blue in aqueous solution. The improvement of the photocatalytic activity by [Bmim]OH modification may result from the enhanced absorption of visible light, decreased recombination of the photoinduced electrons and holes and enhanced adsorption capacity to MB.
     A new and facile method for preparing visible light responsive S doped TiO2 has been developed by nonthermal H2S (10%)/H2-plasma treatment. The plasma treatment did not change the catalysts in their phase composition and particle sizes, but successfully doped S in the TiO2 lattice. UV-Vis result indicated that the plasma treatment extended their absorption edges to the visible light region and decreased the band gap energy. The performance in photocatalytic degradation of methylene blue indicated that the plasma treated TiO2 showed much higher activity than the pristine TiO2 under visible light. The increased photocatalytic activity was possible attributed to the enhanced absorption in the visible region and decreased band gap energy which caused by the sulfur doping.
引文
[1]SERPONE N. Brief introductory remarks on heterogeous photocatalysis [J]. Sol. Energy Mater. Sol. Cells 1995,38(1-4):369-379.
    [2]YU J C, HO W, YU J G et al. Efficient visible-light-induced photocatalytic disinfection on sulfur-doped nanocrystalline titania [J]. Environ. Sci. Technol.2005,39(4): 1175-1179.
    [3]GRIEKEN R V, MARUGAN J, SORDO C et al. Photocatalytic inactivation of bacteria in water using suspended and immobilized silver-TiO2 [J]. Appl. Catal. B 2009,93(1-2):112-118.
    [4]HERRMANN J M, GUILLARD C, PICHAT P. Heterogeneous photocatalysis:an emerging technology for water treatment [J]. Catal. Today 1993,17(1-2):7-20.
    [5]KHALIL L B, MOURAD W E, ROPHAEL M W. Photocatalytic reduction of environmental pollutant Cr(VI) over some semiconductors under UV/visible light illumination [J]. Appl. Catal. B 1998,17(3):267-273.
    [6]YAMASHITA H, ICHIHASHI Y, HARADA M et al. Photocatalytic degradation of 1-octanol on anchored titanium oxide and on TiO2powder catalysts [J]. J. Catal.1996,158(1):97-101.
    [7]JANG J S, KIM H G, BORSE P H et al. Simultaneous hydrogen production and decomposition of H2S dissolved in alkalinewater over CdS-TiO2 composite photocatalysts under visible light irradiation [J]. Int. J. Hydrogen Energy 2007,32(18):4786-4791.
    [8]WU Z B, SHENG Z Y, LIU Y et al. Characterization and activity of Pd-modif ied TiO2 catalysts for photocatalytic oxidation of NO in gas phase [J]. J. Hazard. Mater.2009,164(2-3): 542-548.
    [9]SREETHAWONG T, LAEHSALEE S, CHAVADEJ S. Comparative investigation of mesoporous-and non-mesoporous-assembled TiO2 nanocrystals for photocatalytic H2 production over N-doped TiO2 under visible light irradiation [J]. Int. J. Hydrogen Energy,2008,33(21): 5947-5957.
    [10]WU G P, CHEN T, ZONG X et al. Suppressing CO formation by anion adsorption and Pt deposition on TiO2 in H2 production from photocatalytic reforming of methanol [J]. J. Catal.2008,253(1):225-227.
    [11]ZHANG J, XU Q, FENG Z, et al. Importance of the relationship between surface phases and photocatalytic activity of TiO2 [J]. Angew. Chem. Int. Ed.2008,47(9):1766-1769.
    [12]0'REGAN B, GRATZEL M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films [J]. Natrue 1991,353:737-740.
    [13]ADACHI M, MMRATA Y,OKADA I et al. Formation of Titania Nanotubes and Applications for Dye-Sensitized Solar Cells [J]. J. Electrochem.1 Soc.2003,150(8):G488-G493.
    [14]SHANKAR K, MOR G K, PRAKASAM H E et al. Highly-ordered TiO2 nanotube arrays up to 220 μm in length:use in water photoelectrolysis and dye-sensitized solar cells [J]. Nanotechnology 2007,18(6):065707.
    [15]KOHLE 0, GRATZEL M, MEYER A F et al. The photovoltaic stability of bis(isothiocyanato)rlutheniurn(II)-bis-2,2'bipyridine-4,4'-dicarboxylic acid and related sensitizers [J]. Adv. Mater.1997,9(11):904-906.
    [16]BARAK D, ORDENTLICH A, SEGALL Y et al. Carbocation-mediated processes in biocatalysts. Contribution of aromatic moieties [J]. J. Am. Chem. Soc.1997,119(13):3157-3158.
    [17]NAZEERUDDIN M K, RODICIO A K I, HUMPBRY-BAKER R et al. Conversion of light to electricity by cis-X2Bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X= Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline TiO2 electrodes [J]. J. Am. Chem. Soc.1993,115(14):6382-6390.
    [18]WANG R, HASHIMOTO K, FUJISHIMA A et al. Photogeneration of highly amphiphilic TiO2 surfaces [J]. Adv.Mater.1998,10(2):135-138.
    [19]LAKSHMI B B, PATRISSI C J, MARTIN C R. Sol-gel template synthesis of semiconductor oxide micro-and nanostructures [J]. Chem. Mater.1997,9(11):2544-2550.
    [20]CHOW L L W, YUEN M M F, CHAN P C H et al. Reactive sputtered TiO2 thin film humidity sensor with negative substrate bias [J]. Sens. Actuators B 2001,76(1-3):310-315.
    [21]LI M Q, CHEN Y F. An investigation of response time of Ti02 thin-film oxygen sensors [J]. Sens. Actuators B 1996,32(1):83-85.
    [22]AL-HOMOUDI I A, THAKUR J S, NAIK R et al. Anatase Ti02 films based CO gas sensor:film thickness, substrate and temperature effects [J]. Appl. Surf. Sci.2007253(21): 8607-8614.
    [23]RUIZ A M, SAKAI G, CORNET A et al. Cr-doped TiO2 gas sensor for exhaust N02 monitoring [J]. Sens. Actuators B 2003,93(1-3):509-518.
    [24]TAN 0 K, CAO W, ZHU W et al. Ethanol sensors based on nano-sized α-Fe203 with Sn02, ZrO2, Ti02 solid solutions [J]. Sens. Actuators B 2003,93(1-3):396-401.
    [25]HOFFMANN M R, MARTIN S T, CHOI W et al. Environmental applications of semiconductor photocatalysis [J]. Chem. Rev.1995,95(1):69-96.
    [26]FOX M A, DULAY M T. Heterogeneous photocatalysis [J]. Chem. Rev.1993,93(1):341-357.
    [27]YAN M, CHEN F, ZHANG J et al. Preparation of controllable crystalline titania and study on the photocatalytic properties [J]. J. Phys. Chem. B 2005,109(18):8673-8678.
    [28]YAMASHITA H, KAMADA N, HE H et al. Reduction of CO2 with H20 on TiO2(100) and Ti02(110) Single Crystals under UV-irradiation [J]. Chem. Lett.1994,23(5):855-858.
    [29]SANJINES R, TANG H, BERGER H et al. Electronic structure of anatase TiO2 oxide [J]. J. Appl. Phys 1994,75(6):2945-2951.
    [30]ANPO M, SHIMA T, KODAMA S et al. Photocatalytic hydrogenation of propyne with water on small-particle titania:size quantization effects and reaction intermediates [J]. J. Phys. Chem.1987,91(16):4305-4310.
    [31]SAKAI N, EBINA Y, TAKADA K et al. Electronic band structure of titania semiconductor nanosheets revenled by electrochemical and photoelectrochemical studies [J]. J. Am. Chem. Soc.2004,126(18):5851-5858.
    [32]高濂,郑珊,张青红.纳米二氧化钛光催化材料及应用[M].北京:化学工业出版社,2002.
    [33]NAGAVENI K, HDGDE M S, RAVISHANKAR N et al. Synthesis and structure of nanocrystalline TiO2 with lower band gap showing high photocatalytic activity [J]. Langmuir 2004,20(7): 2900-2907.
    [34]SCLAFANI A, PALMISANO L, SCHIAVELLO M. Influence of the preparation methods of titanium dioxide on the photocatalytic degradation of phenol in aqueous dispersion [J]. J. Phys. Chem.1990,94(2):829-832.
    [35]Augugliaro V, Coluccia S, Loddo V et al. Photocatalytic oxidation of gaseous toluene on anatase TiO2 catalyst:mechanistic aspects and FT-IR investigation [J]. Appl. Catal. B 1999,20(1):15-27.
    [36]CHEN Y, LI D, WANG X et al. H2-02 atmosphere increases the activity of Pt/TiO2 for benzene photocatalytic oxidation by two orders of magnitude [J]. Chem. Commun.2004(20): 2304-2305.
    [37]TURCHI C S, OLLIS D F. Photocatalytic degradation of organic water contaminants: Mechanisms involving hydroxyl radical attack [J]. J. Catal.1990,122(1):178-192.
    [38]RICHARD C, MARTRE A M, Boule P. Photocatalytic transformation of 2,5-furandimethanol in aqueous ZnO suspensions [J]. J. Photochem. Photobiol. A 1992,66(2):225-234.
    [39]CUNNINGHAM J, SRIJARANAI S. Sensitized photo-oxidations of dissolved alcohols in homogenous and heterogeneous systems Part 2. TiO2-sensitized photodehydrogenations of benzyl alcohol [J]. J. Photochem. Photobiol. A 1991,58(3):361-371.
    [40]CAO Y S, CHEN J X, HUANG L et al. Photocatalytic degradation of chlorfenapyr in aqueous suspension of Ti02 [J]. J. Mol. Catal. A.2005,233(1-2):61-66.
    [41]LEE H S, HUR T, KIM S et al. Effects of pH and surface modification of TiO2 with SiOx on the photocatalytic degradation of a pyrimidine derivative [J]. Catal. Today 2003, 84(3-4):173-180.
    [42]YU C H, WU C H, HO T H et al. Decolorization of C. I. Reactive Black 5 in UV/TiO2, UV/oxidant and UV/TiO2/oxidant systems:A comparative study [J]. Chem. Eng. J.2010, 158 (3):578-583
    [43]ELMOLLA E S, CHAUDHURI M. Photocatalytic degradation of amoxicillin, ampicillin and cloxacillin antibiotics in aqueous solution using UV/TiO2 and UV/H202/Ti02photocatalysis [J]. Desalination 2010,252(1-3):46-52.
    [44]WANG K, ZHANG J Y, LOU L P et al. UV or visible light induced photodegradation of A07 on TiO2 particles:the influence of inorganic anions [J]. J. Photochem. Photobio. A 2004,165(1-3):201-207.
    [45]BAHNEMANN D, BOCKELMANN D, GOSLICH R. Mechanistic studies of water detoxification in illuminated TiO2 suspensions [J]. Solar Energy Mater.1991,24(1-4):564-583.
    [46]LIVAGE J, SANCHEZ C. Sol-gel chemistry [J]. J Non-Cryst. Solids 1992,145(1-3):11-19.
    [47]AHN Y U, KIM E J, KIM H T et al Variation of structural and optical properties of sol-gel TiO2 thin films with catalyst concentration and calcination temperature [J]. Mater. Lett.2003,57(30):4660-4666.
    [48]ARCONADA N, DURAN A, SUAREZ S. Synthesis and photocatalytic properties of dense and porous TiO2-anatase thin films prepared by sol-gel [J]. Appl. Catal. B 2009,86(1-2): 1-7.
    [49]YANG H M, SHI R R, ZHANG K. Synthesis of W03/TiO2 nanocomposites via sol-gel method [J]. J. Alloys Compd.2005,398(1-2):200-202.
    [50]毋登辉,高子伟,高玲香.溶胶凝胶法制备β-环糊精聚合物/二氧化钛有机-无机杂化材料[J].化学学报,2006,64(8):716-720.
    [51]HUANG D G, LIAO S J, QUAN S Q et al. Synthesis and characterization of visible light responsive N-TiO2 mixed crystal by a modified hydrothermal process [J]. J. Non-Cryst. Solids 2008,354(33):3965-3972.
    [52]REN L, HUANG X T, SUN F L, Preparation and characterization of doped TiO2 nanodandelion [J]. Materials Letters 2007,61(2):427-431.
    [53]KASUGA T, HIRAMATSU M, HOSON A et al. Titania nanotubes prepared by chemical processing [J]. Adv. Mater.1999,11(15):1307-1311.
    [54]YOSHIDA R, SUZUKI Y, YOSHIKAWA S, Syntheses of Ti02 (B) nanowire and TiO2 anatase nanowire by hydrothermal and post-heat treatments [J]. J. Solid State Chem.2005,178(7): 2179-2185.
    [55]KIM D S, KWAK S Y. The hydrothermal synthesis of mesoporous TiO2 with high crystallinity, thermal stability, large surface area, and enhanced photocatalytic activity [J]. Appl. Catal. A 2007,323(1):110-118.
    [56]LIU H, LIANG Y G, HU H J. Hydrothermal synthesis of mesostructured nanocrystalline TiO2 in an ionic liquid-water mixture and its photocatalytic performance [J]. Solid State Sci.2009,11(9):1655-1660.
    [57]CHEN X, MAO S S. Titanium dioxide nanomaterials:synthesis, property, modifications, and applications [J]. Chem. Rev.2007,107(7):2891-2959.
    [58]JOKANOVIC V, SPASIC A M, USKOKOVIC D. Designing of nanostructured hollow TiO2 spheres obtained by ultrasonic spray pyrolysis [J]. J. Colloid Inter. Sci.2004,278(2): 342-352.
    [59]LEE J, DONG X L, DONG X W. Ultrasonic synthesis and photocatalytic characterization of H3PW12O40/TiO2 (anatase) [J]. Ultrason. Sonochem.2010,17(4):649-653.
    [60]BESSERGENEV V G, KHMELINSKII I V, PEREIRA R J F et al. Preparation of TiO2 films by CVD method and its electrical, structural and optical properties [J]. Vacuum 2002, 64(3-4):275-279.
    [61]GUTIERREZ-TAUSTE D, DOMENECH X, DOMINGO C et al. Dopamine/TiO2 hybrid thin films prepared by the liquid phase deposition method [J].Thin Solid Films 2008,516(12): 3831-3835.
    [62]HERBIG B, LOBANN P. TiO2 photocatalysts deposited on fiber substrates by liquid phase deposition [J]. J. Photochem. Photobiol. A 2004,163(3):359-365.
    [63]SHOJAIE A F, LOGHMANI M H. La3+and Zr4+co-doped anatase nano TiO2 by sol-microwave method [J]. Chem. Eng. J.2010,157(1):263-269.
    [64]ADDAMO M, BELLARDITA M, CARRIAZO D et al. Inorganic gels as precursors of TiO2 photocatalysts prepared by low temperature microwave or thermal treatment [J]. Appl. Catal. B 2008,84(3-4):742-748.
    [65]BOUTONNET M, KIZLING J, STENIUS P et al. The preparation of monodisperse colloidal metal particles from microemulsions [J]. Colloid. Surf.1982,5(3):209-225.
    [66]LEE M S, PARK S S, LEE G D et al. Synthesis of TiO2 particles by reverse microemulsion method using nonionic surfactants with different hydrophilic and hydrophobic group and their photocatalytic activity [J]. Catal. Today,2005,101(3-4):283-290.
    [67]贺进明,彭旭红,吕辉鸿等.微乳液法制备纳米金红石型二氧化钛的研究[J].无机化学学报2008,24(2):191-194.
    [68]ZHANG Q H, GAO L, GUO J K. Effect of hydrolysis conditions on morphology and crystallization of nanosized TiO2 powder [J]. J. Europ. Cream. Soc.2000,20(12): 2153-2158.
    [69]MAHSHID S, ASKARI M, GHAMSARI M S. Synthesis of TiO2 nanoparticles by hydrolysis and peptization of titanium isopropoxide solution [J]. J. Mater. Process. Technol.2007, 189(1-3):296-300.
    [70]ZHANG Q H, GAO L, GUO J K. Effects of calcination on the photocatalytic properties of nanosized TiO2 powders prepared by TiCl4 hydrolysis [J]. Appl. Catal. B 2000,26(3): 207-215.
    [71]WU J M, Low-temperature preparation of titania nanorods through direct oxidation of titanium with hydrogen peroxide [J]. J. Cryst. Growth 2004,269(2-4):347-355.
    [72]PENG X, CHEN A, Aligned TiO2 nanorod arrays synthesized by oxidizing titanium with acetone [J]. J. Mater. Chem.2004,14(16):2542-2548.
    [73]BRINKERC J, LU Y F, SELLINGER A et al. Evaporation-induced self-assembly:nanostructures made easy [J]. Adv. Mater.1999,11(7):579-585.
    [74]YANG P D, ZHAO D Y, MARGOLESE D I et al. Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks [J]. Nature 1998,396(6707):152-155.
    [75]TAN T T Y, YIP C K, BEYDOUN D et al. Effects of nano-Ag particles loading on TiO2 photocatalytic reduction of selenate ions [J]. Chem. Eng. J.2003,95(1-3):179-186.
    [76]SIEMON U, BAHNEMANN D, TESTA J et al. Heterogeneous photocatalytic reactions comparing TiO2 and Pt/TiO2 [J]. J. Photochem. Photobio. A 2002,148(1-3):247-255.
    [77]SATO S, WHITE J M. Photodecomposition of water over Pt/TiO2 catalysts [J]. Chem. Phys. Lett.1980,72(1):83-86.
    [78]TAKEDA K, FUJIWARA K. Characteristics on the determination of dissolved organic nitrogen compounds in natural waters using titanium dioxide and platinized titanium dioxide mediated photocatalytic degradation [J]. Water Res.1996,30(2):323-330.
    [79]AGUADO M A, ANDERSON M A. Degradation of formic acid over semiconducting membranes supported on glass:effects of structure and electronic doping [J]. Sol. Energ. Sol. C 1993,28(4):345-361.
    [80]WANG C M, HELLER A, HEINZ G. Palladium catalysis of O2 reduction by electrons accumulated on HiO2 particles during photoassisted oxidation of organic compounds [J]. J Am. Chem. Soc.1992,114(2):5230-5234.
    [81]ALBERICI R M, JARDIM W F, Photocatalytic degradation of phenol and chlorinated phenols using Ag-TiO2 in a slurry reactor [J]. Water Res.1994,28(8):1845-1849.
    [82]CHEN L C, CHOU T C. Photodecolorization of methyl orange using silver ion modified TiO2 as photocataltst [J]. Ind. Eng. Chem. Res.1994,33(6):1426-1443.
    [83]GAO Y M, LEE W, TREHAN R et al. Improvement of photocatalytic activity of titanium (IV) oxide by dispersion of Au on TiO2 [J]. Mater. Res. Bull.1991,26(12):1247-1254.
    [84]RUFUS I B, RAMAKRISHNAN V, VISWANATHAN B et al. Rhodium and rhodium sulfide coated cadmium sulfide as a photocatalyst for photochemical decomposition of aqueous sulfide [J]. Langmuir 1990,6(3):565-567.
    [85]SHI J, LENG W, ZHU W et al. Electrochemically assisted photocatalytic oxidation of nitrite over Cr-doped TiO2 under visible light [J]. Chem. Eng. Technol.200629(1): 146-154.
    [86]IWASAKI M, HARA M, KAWADA H et al. Cobalt ion-doped TiO2 photocatalyst response to visible light [J]. J. Colloid Inter. Sci.2000,224(1):202-204.
    [87]CHOI W, TERMIN A, HOFFMANN M R et al. The role of metal ion dopants in quantum-sized TiO2:correlation between photoreactivity and charge carrier recombination dynamics [J]. J Phys. Chem.1994,98(51):13669-13679.
    [88]ZHANG Y H, ZHANG H X, XU Y X et al. Significant effect of lanthanide doping on the texture andproperties of nanocrystalline mesoporous TiO2 [J]. J. Solid State Chem.2004, 177(10):3490-3498.
    [89]ASAHI R, MORIKAWA T, OHWAKI T et al. Visible-light photocatalysis in nitrogen-doped titanium oxides [J]. Science 2001,293(5528):269-271.
    [90]SUN H J, LIU H L, MA J et al. Preparation and characterization of sulfur-doped TiO2/Ti photoelectrodes and their photoelectrocatalytic performance [J]. J. Hazard. Mater. 2008,156(1-3):552-559.
    [91]WU Z B, DONG F, LIU Y et al. Enhancement of the visible light photocatalytic performance of C-doped TiO2 by loading with V205 [J]. Catal. Commun.2009,11(2):82-86.
    [92]WU G S, CHEN A C. Direct growth of F-doped TiO2 particulate thin films with high photocatalytic activity for environmental applications [J]. J. Photochem. Photobiol. A 2008,195(1):47-53.
    [94]BACSA R, KIWI J, OHNO T et al. Preparation, testing and characterization of doped Ti02 active in the peroxidation of biomolecules under visible light [J]. J. Phys. Chem. B 2005,109(12):5994-6003.
    [93]IRIE H, WATANABA Y, HASHIMOTO K. Nitrogen-concentration dependence on photocatalytic activity of TiO2-xNx powders [J]. J. Phys. Chem. B 2003,107(23):5483-5486.
    [95]LINDGREN T, MWABORA J M, AVENDANO E et al. Photoelectrochemical and optical properties of nitrogen doped titanium dioxide films prepared by reactive DC magnetron sputtering [J]. J. Phys. Chem. B 2003,107(24):.5709-5716.
    [96]GHICOV A, MACAK J M, TSUCHIYA H et al. Ion implantation and annealing for an efficient N-doping of Ti02 nanotubes [J]. Nano Lett.2006,6(5):1080-1082.
    [97]SUDA Y, KAWASAKI H, UEDA T et al. Preparation of high quality nitrogen doped Ti02 thin film as a photocatalyst using a pulsed laser deposition method [J]. Thin Solid Films 2004,453-454(1):162-166.
    [98]YAMADA K, NAKAMURA H, MATSUSHIMA S et al. Preparation of N-doped TiO2 particles by plasma surface modification [J]. C. R. Chimie 2006,9(5-6):788-793.
    [99]YIN S, AITA Y, KOMATSU M et al. Visible-light-induced photocatalytic activity of TiO2_xNy prepared by solvothermal process in urea-alcohol system [J]. J. Eur. Ceram. Soc.2006, 26(13):2735-2742.
    [100]PENG F, CAI L F, HUANG L et al. Preparation of nitrogen-doped titanium dioxide with visible-light photocatalytic activity using a facile hydrothermal method [J]. J. Phys. Chem. Solids 2008,69(7):1657-1664.
    [101]KOMETANI N, FUJITA A, YONEZAWA Y. Synthesis of N-doped titanium oxide by hydrothermal treatment [J]. J. Mater. Sci.2008,43(7):2492-2498.
    [102]UMEBAYASHI T, YAMAKI T, YAMAMOTO S et al. Sulfur-doping of rutile-titanium dioxide by ion implantation:Photocurrent spectroscopy and first-principles band calculation studies [J]. J. Appl. Phys.2003,93(9):5156-5120.
    [103]OHNO T, AKIYOSHI M, UMEBAYASHI T et al. Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light [J]. Appl. Catal. A 2004,265(1): 115-123.
    [104]REN W J, Al Z H, JIA F L et al. Low temperature preparation and visible light photocatalytic activity of mesoporous carbon-doped crystalline TiO2 [J], Appl. Catal. B 2007,69(3-4):138-144.
    [105]KANG I, ZHANG Q W, YIN S et al. Preparation of a visible sensitive carbon doped TiO2 photo-catalyst by grinding TiO2 with ethanol and heating treatment [J]. Appl. Catal. B 2008,80(1-2):81-87.
    [106]YU J, HO W, JIANG Z et al. Effects of F- doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powders [J]. Chem. Mater.2002,14(9): 3808-3816.
    [107]LI D, HANEDA H, HISHITA S et al. Fluorine-doped TiO2 powders prepared by spray pyrolysis and their improved photocatalytic activity for decomposition of gas-phase acetaldehyde [J]. J. Fluorine Chem.2005,126(1):69-77.
    [108]RENGIFO-HERRERA J A, PULGARIN C. Photocatalytic activity of N, S co-doped and N-doped commercial anatase TiO2 powders towards phenol oxidation and E. coli inactivation under simulated solar light irradiation [J]. Solar Energy 2010,84(1):37-43.
    [109]LIU S H, YANG L X, XU S H et al. Photocatalytic activities of C-N-doped Ti02 nanotube array/carbon nanorod composite [J]. Electrochem. Commun.2009,11(9):1748-1751.
    [110]KHANA R, KIMA S W, KIM T J et al. Comparative study of the photocatalytic performance of boron-iron Co-doped and boron-doped TiO2 nanoparticles [J]. Mater. Chem. Phys.2008, 112(1):167-172.
    [111]HUANG Y, HO W K, AI Z H et al. Aerosol-assisted flow synthesis of B-doped, Ni-doped and B-Ni-codoped TiO2 solid and hollow microspheres for photocatalytic removal of NO [J]. Appl. Catal. B.2009,89(3-4):398-405.
    [112]张彭义,余刚,蒋展鹏.半导体光催化剂及其改性技术进展[J].环境科学进展,1997,5(3):1-10.
    [113]DESILVESTRO J, GRAETZEL M, KAVEN L et al. Hightly efficiency sensitization of titanium dioxide [J]. J. Am. Chem. Soc.1985,107(10):2988-2990.
    [114]VLACHOPOULOS N, LISKA P, AUGUSTYNSKI J et al. Very efficient visible light energy harvesting and conversion by spectral sensitization of high surface area polycrystalline TiO2 films [J]. J. Am. Chem. Soc.1988,110(4):1216-1220.
    [115]ABE R, SAYAMA K, ARAKAWA H. Efficient hydrogen evolution from aqueous mixture of I-and acetonitrile using a merocyanine dye-sensitized Pt/TiO2 photocatalyst under visible light irradiation [J]. Chem. Phys. Lett.2002,362(5-6):441-444.
    [116]KAMAT P V. Photochemistry on nonreactive and reactive (semiconductor) surface [J]. Chem. Rev.1993,93(1):267-300.
    [117]HOU L R, YUAN C Z, PENG Y. Synthesis and photocatalytic property of Sn02/TiO2 nanotubes composites [J]. J. Hazard. Mater. B 2007,139(2):310-315.
    [118]LIAO D L, BADOUR C A, LIAO B Q. Preparation of nanosized Ti02/ZnO composite catalyst and its photocatalytic activity for degradation of methyl orange [J]. J. Photochem. Photobio. A.2008,194(1):11-19.
    [119]FRANCO A, NEVES M C, RIBEIRO CARROTT M M L et al. Photocatalytic decolorization of methylene blue in the presence of TiO2/ZnS nanocomposites [J]. J. Hazard. Mater.2009, 161(1):545-550.
    [120]SINHA A S K, SAHU N, ARORA M K et al. Preparation of egg-shell type Al203-supported CdS photocatalysts for reduction of H20 to H2 [J]. Catal. Today,2001,69(1-4):297-305.
    [121]BANDARA J, MIELCZARSKI J A, LOPEZ A et al.2. Sensitized degradation of chlorophenols on iron oxides induced by visible light:Comparison with titanium oxide [J]. Appl. Catal. B Environ.2001,34(4):321-333.
    [122]JONGH P E, VANMAEKELBERGH D, KELLY J J. Cu20:a catalyst for the photochemical decomposition of water? [J]. Chem. Commun.1999,1069-1070.
    [123]YANG Y A, CAO Y W, CHEN P et al. Visible-light photochromism in electrolytically pretreated W03 thin films [J]. J. Phys. Chem. Solids 1998,59(9):1667-1670.
    [124]GOPIDAS K R, BOHORGUEZ M, KAMAT P V. Photophysical and photochemical aspects of coupled semiconductors charge-transfer processes in colloidal CdS-TiO, and CdS-AgI systems [J]. J. Phys. Chem.1990,94(16):6435-6440.
    [125]徐悦华,古国榜,陈小泉等.复合纳米Fe203/TiO2的制备、表征及光催化活性,华南理工大学学报(自然科学版)[J].2001,29(11):76-80.
    [126]FUJII H, OTAKI M, EGUCHI K et al. Photocatalytic activities of CdS crystallites embedded in TiO2 gel as a stable semiconducting matrix [J]. J. Mater. Sci. Lett.1997, 16(13):1086-1088.
    [127]TAQUI K M, NAGESWARA R N, CHATTERJEE D. A novel photosynthetic mimic reaction catalysed by K[Ru(H-EDTA)Cl] · 2H2O; reduction of carbon dioxide to formate and formaldehyde in the presence of an aqueous suspension of Pt-CdS-RuO2 [J]. J. Photochem. Photobiol. A: Chem.1991,60(3):311-318.
    [128]HARADA H, HOSOKI C, KUDOB A. Overall water splitting by sonophotocatalytic reaction: the role of powdered photocatalyst and an attempt to decompose water using a visible-light sensitive photocatalyst [J]. J. Photochem. Photobio. A:Chem.2001, 141(2-3):219-224.
    [129]YE J H, ZOU Z G, OSHIKIRI M et al. A novel hydrogen-evolving photocatalyst InVO4 active under visible light irradiation [J]. Chem. Phys. Lett.2002,356(3-4):221-226.
    [130]ZOU Z G, YE J H, ARAKAWA H. Preparation, structural and optical properties of a new class of compounds, Bi2MNb07 (M=Al, Ga, In) [J]. Mater. Sci. Eng. B 2001,79(1):83-85.
    [131]白树林,付希贤,王俊珍等LaFe03的光催化性[J].应用化学,2000,17(3):343-345.
    [132]ZOU Z G, YE J H, ARAKAWA H. Substitution effects of In3+by Fe3+on photocatalytic and structural properties of Bi2InNbO7 photocatalysts [J]. J. Mol. Catal. A:Chem.2001, 168(1-2):289-297.
    [133]ZOU Z G, YE J H, ARAKAWA H. Photocatalytic and photophysical properties of a novel series of solid photocatalysts, Bi2MNbO7 (M=Al3+, Ga3+and In3+) [J]. Chem. Phys. Lett. 2001,333(1-2):57-62.
    [134]ZOU Z G, YE J H, ARAKAWA H. Photocatalytic decomposition of water with Bi2InNb07 [J]. Catal. Lett.2000,68(3-4):235-239.
    [135]ZOU Z G, YE J H, ARAKAWA H. Substitution effects of In3+by Al3+and Ga3+on the photocatalytic and structural properties of the Bi2InNbO7 photocatalyst [J]. Chem. Mater. 2001,13(5):1765-1769.
    [136]ZOU Z G, YE J H, ARAKAWA H. Role of R in Bi2RNb07 (R=Y, rare earth):effect on band structure and photocatalytic properties [J]. J. Phys. Chem. B 2002,106(3):517-520.
    [137]ZOU Z G, YE J H, ARAKAWA H. Structural properties of InNbO4 and InTaO4:correlation with photocatalytic and photophysical properties [J]. Chem. Phys. Lett.2000332(3-4): 271-277.
    [138]ZOU Z G, YE J H, ARAKAWA H. Photophysical and photocatalytic properties of InMO4 (M = Nb5+, Ta5+) under visible light irradiation [J]. Materials Research Bulletin 2001, 36(7-8):1185-1193.
    [139]ZOU Z G, YE J H, SAYAMA K et al. Photocatalytic hydrogen and oxygen formation under visible light irradiation with M-doped InTaO4 (M=Mn, Fe, Co, Ni and Cu) photocatalysts [J]. J. Photochem. Photobio. A:Chem.2002,148(1-3):65-69.
    [140]ZOU Z G, YE J H, ARAKAWA H. Surface characterization of nanoparticles of NiOx/In0.9Ni0.1TaO4:effects on photocatalytic activity [J]. J. Phys. Chem. B 2002,106(51): 13098-13101.
    [141]ZOU Z G, YE J H, ARAKAWA H. Optical and structural properties of the BiTa1-xNbxO4 (0≦x ≦1) compounds [J]. Solid State Commun.2001119(7):471-475.
    [142]ZOU Z G, YE J H, SAYAMA K et al. Photocatalytic and photophysical properties of a novel series of solid photocatalysts, BiTa1-xNbxO4 (0≦x≦1) [J]. Chem. Phys. Lett.2001 343(3-4):303-308.
    [143]ZOU Z G, YE J H, SAYAMA K et al. Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst [J]. Nature 2001,414(6864): 625-627.
    [144]KUDO A, SEKIZAWA M, Photocatalytic H2 evolution under visible light irradiation on Zn1-xCuxS solid solution [J]. Catal. Lett.1999,58(4):241-243.
    [145]KUDO A, SEKIZAWA M, Photocatalytic H2 evolution under visible light irradiation on Ni-doped ZnS photocatalyst [J]. Chem. Commun.2000,15:1371-1372.
    [146]LIU G J, ZHAO L, MA L J et al. Photocatalytic H2 evolution under visible light irradiation on a novel CdxCuyZn1-x-yS catalyst [J]. Catal. Commun.2008,9(1):126-130.
    [147]TSUJI I, KATO H, KOBAYASHI H et al. Photocatalytic H2 evolution reaction from aqueous solutions over band structure-controlled (AgIn)xZn2(1-x)S2 solid solution photocatalysts with visible-light response and their surface nanostructures [J]. J. Am. Chem. Soc.2004,126(41):13406-13413.
    [148]TSUJI I, KATO H, KOBAYASHI H et al. Photocatalytic H2 evolution under visible-light irradiation over band-structure-controlled (CuIn)xZn2(1-x)S2 solid solutions [J]. J. Phys. Chem. B 2005,109(15):7323-7329.
    [149]SHEN S H, ZHAO L, GUO L J. Cetyltrimethylammoniumbromide (CTAB)-assisted hydrothermal synthesis of ZnIn2S4 as an efficient visible-light-driven photocatalyst for hydrogen production [J]. Int J. Hydrogen Energ.2008,33(17):4501-4510.
    [150]HARA M, HITOKI G, TAKATA T et al. TaON and Ta3N5 as new visible light driven photocatalysts [J]. Catal. Today 78 (2003) 555-560.
    [151]HARA M, TAKATA T, KONDO J N et al. Photocatalytic reduction of water by TaON under visible light irradiation [J]. Catal. Today 90 (2004) 313-317.
    [152]LI F B, LI X Z, HOU M F et al. Enhanced photocatalytic activity of Ce3+-TiO2 for 2-mercaptobenzothiazole degradation in aqueous suspension for odour control [J]. Appl. Catal. A 2005,285(1-2):181-189.
    [153]LI X Y, WANG D S, CHENG G X et al. Preparation of polyaniline-modified TiO2 nanoparticles and their photocatalytic activity under visible light illumination [J]. Appl. Catal. B 2008,81(3-4):267-273.
    [154]LIN J, LIN Y, LIU P et al. Hot-fluid annealing for crystalline titanium dioxide nanoparticles in stable suspension [J]. J. Am. Chem. Soc.2002,124(38):11514-11518.
    [155]SPURR R A, MYERS H. Quantitative analysis of anatase-rutile mixtures with an X-Ray diffractometer [J]. Anal. Chem.1957,29(5):760-762.
    [156]CHOI H, LEE J K, SONG K et al. Novel organic dyes containing bis-dimethylfluorenyl amino benzo[b]thiophene for highly efficient dye-sensitized solar cell [J]. Tetrahedron 2007,63(14):3115-3121
    [157]ISLAM A, SUGIHARA H, ARAKAWA H. Molecular design of ruthenium(II) polypyridyl photosensitizers for efficient nanocrystalline TiO2 solar cells [J]. J. Photochem. Photobiol. A 2003,158(2-3):131-138.
    [158]GHICOV A, MACAK J M, TSUCHIYA H et al. Ion implantation and annealing for an efficient N-doping of TiO2 nanotubes [J]. Nano Lett.2006,6(5):1080-1082.
    [159]WANG J, SUN W, ZHANG Z H et al. Preparation of Fe-doped mixed crystal TiO2 catalyst and investigation of its sonocatalytic activity during degradation of azo fuchsine under ultrasonic irradiation [J]. J. Colloid Inter. Sci.2008,320(1):202-209
    [160]ZHANG W J, ZHU S L, Li Y et al. Photocatalytic Zn-doped TiO2 films prepared by DC reactive magnetron sputtering [J]. Vacuum 2008,82(3):328-335.
    [161]YAMAZAKI S, SUGIHARA M, YASUNAGA E et al. Preparation and photocatalytic activity of Cu-deposited TiO2 film with high transparency [J]. J. Photochem. Photobiol. A 2010, 209(1):74-78.
    [162]IRIE H, SHIBANUM T, KAMIYA K et al. Characterization of Cr(III)-grafted TiO2 for photocatalytic reaction under visible light [J]. Appl. Catal. B 2010,96(1-2):142-147.
    [163]WANG J, LV Y H, ZHANG Z H et al. Sonocatalytic degradation of azo fuchsine in the presence of the Co-doped and Cr-doped mixed crystal TiO2 powders and comparison of their sonocatalytic activities [J]. J. Hazard. Mater.2009,170(1):398-404.
    [164]GESENHUES U. Al-doped Ti02 pigments:influence of doping on the photocatalytic degradation of alkyd resins [J]. J. Photochem. Photobiol. A 2001,139(2-3):243-251.
    [165]NEATU S, PARVULESCU V I, EPURE G et al. M/TiO2/SiO2 (M= Fe, Mn, and V) catalysts in photo-decomposition of sulfur mustard [J]. Appl. Catal. B 2009,91 (1-2):546-553.
    [166]NAVIO J, COLON G, LITTER M I et al. Synthesis, characterization and photocatalytic properties of iron-doped titania semiconductors prepared from TiO2 and iron(III) acetylacetonate [J]. J. Mol. Catal. A 1996,106(3):267-276.
    [167]ZHU J F, ZHENG W, HE B et al. Characterization of Fe-Ti02 photocatalysts synthesized by hydrothermal method and their photocatalytic reactivity for photodegradation of XRG dye diluted in water [J]. J. Mol. Catal. A 2004,216(1):35-43.
    [168]YAMASHITA H, HARADA M, MISAKA J et al. Photocatalytic degradation of organic compounds diluted in water using visible light-responsive metal ion-implanted TiO2 catalysts: Fe ionimplanted TiO2 [J]. Catal. Today 2003,84(3-4):191-196.
    [169]ZHANG X W, ZHOU M H, LEI L C. Co-deposition of photocatalytic Fe doped TiO2 coatings by MOCVD [J]. Catal. Commun.2006,7(7):427-431.
    [170]BECK J S, VARTULI J C, ROTH W J et al. A new family of mesoporous molecular sieves prepared with liquid crystal templates [J]. J. Am. Chem. Soc.1992,114(27): 10834-10843.
    [171]ATTARD G S, GOLTNER C G, CORKER J M et al. Liquid-crystal templates for nanostructured metals [J]. Angew. Chem. Int. Ed.1997,36(12):1315-1317.
    [172]TONG T Z, ZHANG J L, TIAN B Z et al. Preparation of Fe3+-doped TiO2 catalysts by controlled hydrolysis of titanium alkoxide and study on their photocatalytic activity for methyl orange degradation [J]. J. Hazard. Mater.2008,155(3):572-579.
    [173]ZHANG J, LI M J, FENG Z C et al. UV Raman spectroscopic study on TiO2. I. phase transformation at the surface and in the bulk [J]. J. Phys. Chem. B 2006,110(2):927-935.
    [174]VARADWAJ K S K, PANIGRAHI M K, GHOSE J. Effect of capping and particle size on Raman laser-induced degradation of g-Fe203 nanoparticles [J]. J. Solid State Chem.2004, 177(11):4286-4292
    [175]PEREZ-ROBLES F, GARCIA-RODRIGUEZ F J, Jimenez-Sandoval S et al. Raman study of copper and iron oxide particles embedded in an Si02 matrix [J]. J. Raman Spectrosc.1999,30(12): 1099-1104
    [176]SAMANTARAY S K, PARIDA K M. Effect of anions on the textural and catalytic activity of titania [J]. J. Mater. Sci.2003,38(14):1835-1848.
    [177]YANG J, ZHANG J, ZHU L W et al. Synthesis of nano titania particles embedded in mesoporous SBA-15:Characterization and photocatalytic activity [J]. J. Hazard. Mater. 2006,137(2):952-958.
    [178]JUNG K Y, PARK S B. Enhanced photoactivity of silica-embedded titania particles prepared by sol-gel process for the decomposition of trichloroethylene [J]. Appl. Catal. B 2000,25(4):249-256.
    [179]KEIN S, THORIMBERT S, MAIER W F. Amorphous microporous titania-silica mixed oxides: preparation, characterization, and catalytic redox properties [J]. J. Catal.1996, 163(2):476-488.
    [180]LEE D W, IHM S K, LEE K H. Mesostructure control using a titania-coated silica nanosphere framework with extremely high thermal stability [J]. Chem. Mater.2005, 17(17):4461-4467.
    [181]ZHU J, CHEN F, ZHANG J et al. Fe3+-Ti02 photocatalysts prepared by combining sol-gel method with hydrothermal treatment and their characterization [J]. J. Photochem. Photobiol. A 2006,180(1-2):196-204.
    [182]LI X Y, YUE P L, KUTAL C. Synthesis and photocatalytic oxidation properties of iron doped titanium dioxide nanosemiconductor particles [J]. New J. Chem.2003,27(8):1264.
    [183]OREGAN B, GRATZEL M. A low-cost, high-efficiency solar-cell based on dye-sensitized colloidal TiO2 films [J]. Nature 1991,353(6346):737-740.
    [184]ANANDAN S, KATHIRAVAN K, MURUGESAN V et al. Anionic (IO3-) non-metal doped TiO2 nanoparticles for the photocatalyticdegradation of hazardous pollutant in water [J]. Catal. Commun.2009,10(6):1014-1019
    [185]GAO B F, MA Y, CAO Y A et al. Effect of ultraviolet irradiation on crystallization behavior and surface microstructure of titania in the sol-gel process [J]. J Solid State Chem.2006,179(1):41-48.
    [186]XU J J, AO Y H, FU D G et al. A simple route to synthesize highly crystalline N-doped TiO2 particles under low temperature [J]. J. Cryst. Growth 2008,310(19):4319-4324.
    [187]YALCIN Y, KILIC M, CINAR Z. Fe3+-doped TiO2:A combined experimental and computational approach to the evaluation of visible light activity [J]. Appl. Catal. B doi:10.1016/j.apcatb.2010.05.013
    [188]GARADE A C, BHARADWAJ M, BHAGWAT S V et al. An efficient γ-Fe2O3 catalyst for liquid phase air oxidation of p-hydroxybenzyl alcohol under mild conditions [J]. Catal. Commun. 2009,10(5):485-489.
    [189]DUDECK D, YANGUAS-GIL A, YUBERO F et al. First nucleation steps during deposition of SiO2 thin films by plasma enhanced chemical vapour deposition [J]. Surf. Sci.2007, 601(10):2223-2231.
    [190]MA Y, ZHANG X T, GUAN Z S et al. Effects of zinc and iron (III) doping of titania films on their photoreactivity to decompose rhodamine B [J]. J. Mater. Res.2001,16(10): 2928-2933.
    [191]ZHOU M H, YU J G, CHENG B. Effects of Fe-doping on the photocatalytic activity of mesoporous TiO2 powders prepared by an ultrasonic method [J]. J. Hazard. Mater.2006, 137(3):1838-1847.
    [192]ZHANG Z B, WANG C C, ZAKARIA R et al. Role of particle size in nanocrystalline TiO2-based photocatalysts [J]. J. Phys. Chem. B 1998,102(52):10871-10878.
    [193]DING Z, LU G Q, GREENFIELD P F. Role of the crystallite phase of TiO2 in heterogeneous photocatalysis for phenol oxidation in water [J]. J. Phys. Chem. B 2000,104(19): 4815-4820.
    [194]OHNO T, TOKIEDA K, HIGASHIDA S et al. Synergism between rutile and anatase Ti02 particles in photocatalytic oxidation of naphthalene [J]. Appl. Catal. A 2003,244(2): 383-391.
    [195]YU J G, XIONG J F, CHENG B et al. Fabrication and characterization of Ag-TiO2 multiphase nanocomposite thin films with enhanced photocatalytic activity [J]. Appl. Catal. B: Environ.2005,60(3-4):211-221.
    [196]IHARA T, MIYOSHI M, IRIYAMA Y et al. Visible-light-active titanium oxide photocatalyst realized by an oxygen-deficient structure and by nitrogen doping [J]. Appl. Catal. B 2003,42(4):403-409.
    [197]XIANG L Q, YIN J B, GAO W S et al. Controllable preparation of quasi-monodispersed spherical titania particles [J]. J. Inorg. Mater.2007,22(1):253-258.
    [198]CHAMBERS S A, CHEUNG S H, SHUTTHANANDAN V et al. Properties of structurally excellent N-doped TiO2 rutile [J]. Chem. Phys.2007,339(1-3):27-35.
    [199]HU S Z, WANG A J, LI X et al. Hydrothermal synthesis of well-dispersed ultrafine N-doped TiO2 nanoparticles with enhanced photocatalytic activity under visible light [J]. J. Phys. Chem. Solid 2010,71(3):156-162.
    [200]BRUS L. Electronic wave functions in semiconductor clusters:experiment and theory [J]. J. Phys. Chem.1986,90(12):2555-2560.
    [201]CONG Y, ZHANG J L, CHEN F et al. Preparation, photocatalytic activity, and mechanism of nano-Ti02 Co-doped with nitrogen and iron (III) [J]. J. Phys. Chem. C 2007, 111(28):10618-10623.
    [202]SAHA N C, TOMKINS H C. Titanium nitride oxidation chemistry:an x-ray photoelectron spectroscopy study [J]. J. Appl. Phys.1992,72(7):3072-3079.
    [203]WANG X C, YU J C, CHEN Y L et al. Zr02-modified mesoporous nanocrystalline Ti02-xNx as efficient visible light photocatalysts [J]. Environ. Sci. Tech.2006,40(7):2369-2374.
    [204]LI Y Z, HWANG D, LEE N H et al. Synthesis and characterization of carbon-doped titania as an articial solar light sensitive photocatalyst [J]. Chem. Phys. Lett.2005, 404(1-3):25-29.
    [205]SAKTHIVEL S, KISCH H. Daylight photocatalysis by carbon-modified titanium dioxide [J]. Angew. Chem. Int. Ed.2003,42(40):4908-4911.
    [206]LIU B S, WEN L P, ZHAO X J. The structure and photocatalytic studies of N-doped TiO2 films prepared by radio frequency reactive magnetron sputtering [J]. Sol. Energy Mater. Sol. Cells 2008,92(1):1-10.
    [207]LI H X, LI J X, HUO Y N. Highly active TiO2N photocatalysts prepared by treating Ti02 precursors in NH3/ethanol fluid under supercritical conditions [J]. J. Phys. Chem. B 2006,110(4):1559-1565.
    [208]XU J H, DAI W L, LI J X et al. Simple fabrication of thermally stable apertured N-doped TiO2 microtubes as a highly efficient photocatalyst under visible light irradiation [J]. Catal. Commun.2008,9(1):146-152.
    [209]CHEN X B, BURDA C. Photoelectron spectroscopic investigation of nitrogen-doped titania nanoparticles [J]. J. Phys. Chem. B 2004,108(40):15446-15449.
    [210]BERSANI D, LOTTICI P P, DING X Z. Phonon confinement effects in the Raman scattering by TiO2 nanocrystals [J]. Appl. Phys. Lett.1998,72(1):73-75.
    [211]KLOSEK S, RAFTERY D. Visible light driven V-Doped TiO2 photocatalyst and its photooxidation of ethanol [J]. J. Phys. Chem. B 2001,105(14):2815-2819.
    [212]YAMASHITA H, HARADA M, MISAKA J et al. Degradation of propanol diluted in water under visible light irradiation using metal ion-implanted titanium dioxide photocatalysts [J]. J. Photochem. Photobio. A 2002,148(1-3):257-261.
    [213]HUO Y N, BIAN Z F, ZHANG X Y et al. Highly active TiQ2-xNx visible photocatalyst prepared by N-doping in Et3N/EtOH fluid under supercritical conditions [J]. J. Phys. Chem. C 2008,112(16):6546-6550.
    [214]SHI Q, YANG D, JIANG Z Y et al. Visible-light photocatalytic regeneration of NADH using P-doped Ti02nanoparticles [J]. J. Mol. Catal. B 2006,43(1-4):44-48.
    [215]ABE R, SAYAMA K, DOMEN K et al. A new type of water splitting system composed of two different TiO2 photocatalysts (anatase, rutile) and a IO3-/I- shuttle redox mediator [J]. Chem. Phys. Lett.2001,344(3-4):339-344.
    [216]ZALESKA A, SOBCZAK J W, GRABOWSKA E et al. Preparation and photocatalytic activity of boron-modified TiO2 under UV and visible light [J]. Appl. Catal. B 2008,78(1-2): 92-100.
    [217]CHATTERJEE D, MAHATA A. Demineralization of organic pollutants on the dye modified TiO2 semiconductor particulate system using visible light [J]. Appl. Catal. B 2001, 33(2):119-125.
    [218]EL SEOUD 0 A, KOSCHELLA A, FIDALE L C et al. Applications of ionic liquids in carbohydrate chemistry:A window of opportunities [J]. Biomacromolecules 2007,8(9): 2629-2647.
    [219]ENDRES F. Ionic liquids:solvents for the electrodeposition of metals and semiconductors [J]. ChemPhysChem 2002,3(2):144-154.
    [220]ZHAO H, XIA S Q, MA P S. Use of ionic liquids as'green'solvents for extractions [J]. J. Chem. Technol. Biotechnol.2005,80(10):1089-1096.
    [221]BERTHOD A, RUIZ-ANGEL M J, CARDA-BROCH S. Ionic liquids in separation techniques [J]. J. Chromatogr. A 2008,1184(1-2):6-18.
    [222]WASSERSCHEID P, KEIM W. Ionic liquids-new "solutions"for transition metal catalysis [J]. Angew. Chem. Int. Ed.2000,39(21):3772-3789.
    [223]CHIAPPE C, PIERACCINI D. Ionic liquids:solvent properties and organic reactivity [J]. J.Phys. Org. Chem.2005,18(4):275-297.
    [224]MIAO W S, CHAN T H. Ionic-liquid-supported synthesis:a novel liquid-phase strategy for organic synthesis [J]. Acc. Chem. Res.2006,39(12):897-908.
    [225]WELTON T. Ionic liquids in catalysis [J]. Coordination Chemistry Reviews 2004, 248(21-24):2459-2477.
    [226]GALINSKI M, LEWANDOWSKI A, STEPNIAK I. Ionic liquids as electrolytes [J]. Electrochim. Acta 2006,51(26):5567-5580.
    [227]PARAMASIVAM I, MACAK J M, SELVAM T et al. Electrochemical synthesis of self-organized TiO2 nanotubular structures using an ionic liquid (BMIM-BF4) [J]. Electrochim. Acta 2008, 54(2):643-648.
    [228]DING K L, MIAO Z J, LIU Z M et al. Facile synthesis of high quality TiO2 nanocrystals in ionic liquid via a microwave-assisted process [J]. J. Am. Chem. Soc.2007, 129(20):6362-6363.
    [229]YOO K S, LEE T G, KIM J. Preparation and characterization of mesoporous TiO2 particles by modified sol-gel method using ionic liquids [J]. Micro. Meso. Mater.2005, 84(1-3):211-217.
    [230]LIU Y, LI J, WANG M J et al. Preparation and properties of nanostructure anatase TiO2 monoliths using 1-butyl-3-methylimidazolium tetrafluoroborate room-temperature ionic liquids as template solvents [J]. Crys. Growth Des.2005,5(4):1643-1649.
    [231]RENKEN A, HESSEL V, LOB P et al. Ionic liquid synthesis in a microstructured reactor for process intensification [J]. Chem. Eng. Process.2007,46(9):840-845.
    [232]BOWING A G, JESS A. Kinetics of single-and two-phase synthesis of the ionic liquid 1-butyl-3-methylimidazolium chloride [J]. Green Chem.2005,7(4):230-235.
    [233]KOLTHOFF I M, STENGER V A. Volumetric Analysis, vol. Ⅱ,2nd ed., Interscience Publishers Inc., NewYork,1947, pp.256-262
    [234]RANU B C, BANERJEE S. Ionic liquid as catalyst and reaction medium. The dramatic influence of a task-specific ionic liquid, [bmIm]OH, in Michael Addition of active methylene compounds to conjugated ketones, carboxylic esters, and nitriles [J]. Org. Lett.2005,7(14):3049-3052.
    [235]OU Y, LIN J D, ZOU H M et al. Effects of surface modification of TiO2 with ascorbic acid on photocatalytic decolorization of an azo dye reactions and mechanisms [J]. J. Mol. Catal. A 2005,241(1-2):59-64.
    [236]WANG D, YU R B, KUMADA N et al. Hydrothermal synthesis and characterization of a novel one-dimensional titanium glycolate complex single crystal:Ti(OCH2CH2O)2 [J]. Chem. Mater.1999,11(8):2008-2012.
    [237]GUILLARD C, LACHHEB H, HOUAS A et al. Influence of chemical structure of dyes, of pH and of inorganic salts on their photocatalytic degradation by TiO2 comparison of the efficiency of powder and supported TiO2 [J]. J. Photochem. Photobiol. A 2003,158(1): 27-36.
    [238]XU J J, AO Y H, FU D G et al. A simple route to synthesize highly crystalline N-doped TiO2 particles under low temperature [J]. J. Cryst. Growth 2008,310(19):4319-4324.
    [239]JIANG D, XU Y, WU D et al. Visible-light responsive dye-modified TiO2 photocatalyst [J]. J. Solid State Chem.2008,181(3):593-602.
    [240]BINIAK S, SZYMANSKI G, SIEDLEWSKI J et al. The characterization of activated carbons with oxygen and nitrogen surface groups [J]. Carbon 1997,35(12):1799-1810.
    [241]SU B T, LIU X H, PENG X X et al. Preparation and characterization of the TiO2/polymer complex nanomaterial [J]. Mater. Sci. Eng. A 2003,349(1-2):59-62.
    [242]LIU Y, DADAP J I, ZIMDARS D et al. Study of interfacial charge-transfer complex on TiO2 particles in aqueous suspension by second-harmonic generation [J]. J. Phys. Chem. B 1999,103(13):2480-2486.
    [243]REGAZZONI A E, MANDELBAUM P, MATSUYOSHI M et al. Adsorption and photooxidation of salicylic acid on titanium dioxide:a surface complexation description [J]. Langmuir 1998,14(4):868-874.
    [244]IKEDA S, ABE C, TORIMOTO T et al. Photochemical hydrogen evolution from aqueous triethanolamine solutions sensitized by binaphthol-modified titanium(IV) oxide under visible-light irradiation [J]. J. Photochem. Photobiol. A 2003,160(1-2):61-67.
    [245]ROBERTSON N. Optimizing dyes for dye-sensitized solar cells [J]. Angew. Chem. Int. Ed.2006,45(15):2338-2345.
    [246]EDVINSSON T, PSCHIRER N, SCHONEBOOM J et al. Photoinduced electron transfer from a terrylene dye to TiO2:Quantication of band edge shift effects [J]. Chem. Phys.2009, 357(1-3):124-131.
    [247]CONG Y, ZHANG J L, CHEN F et al. Synthesis and characterization of nitrogen-doped TiO2 nanophotocatalyst with high visible light activity [J]. J. Phys. Chem. C 2007, 111(19):6976-6982.
    [248]FA W J, ZAN L, GONG C Q et al. Solid-phase photocatalytic degradation of polystyrene with TiO2 modified by iron (Ⅱ) phthalocyanine [J]. Appl. Catal. B 2008,79(3):216-223.
    [249]PARK H, CHOI W. Photocatalytic reactivities of naf ion-coated TiO2 for the degradation of charged organic compounds under UV or visible light [J]. J. Phys. Chem. B 2005, 109(23):11667-11674.
    [250]WANG D S, WANG Y H, LI X Y et al. Sunlight photocatalytic activity of polypyrrole-Ti02 nanocomposites prepared by'in situ'method [J]. Catal. Commun.2008,9(6): 1162-1166.
    [251]FUJISHIMA A, RAO T N, TRYK D A. Titanium dioxide photocatalysis [J]. J. Photochem. Photobio. C 2000,1(1):1-21.
    [252]UMEBAYASHI T, YAMAKI T, ITOH H et al. Band gap narrowing of titanium dioxide by sulfur doping [J]. Appl. Phys. Lett.2002,81(3):454-456.
    [253]TAKESHITA K, YAMAKATA A, ISHIBASHI T et al. Transient IR absorption study of charge carriers photogenerated in sulfur-doped TiO2 [J]. J. Photochem. Photobiol. A.2006, 177(2-3),269-275.
    [254]COLON G, HIDALGO M C, MUNUERA G et al. Structural and surface approach to the enhanced photocatalytic activity of sulfated TiO2 photocatalyst [J]. Appl. Catal. B.2006, 63(1-2):45-59.
    [255]HO W, YU J C, LEES. Low-temperature hydrothermal synthesis of S-doped TiO2 with visible light photocatalytic activity [J]. J. Solid State Chem.2006,179(4):1171-1176.
    [256]PORE V, RITALA M, LESKELA M et al. H2S modified atomic layer deposition process for photocatalytic TiO2 thin films [J]. J. Mater. Chem.2007,17(14):1361-1371.
    [257]LIU C J, VISSOKOV G P, JANG B W L. Catalyst preparation using plasma technologies [J]. Catal. Today 2002,72(3-4):173-184.
    [258]NAKAMURA I, NEGISHI N, KUTSUNA S et al. Role of oxygen vacancy in the plasma-treated TiO2 photocatalyst with visible light activity for NO removal [J]. J. Mol. Catal. A. 2000,161(1-2):205-212.
    [259]ABE H, KIMITANI T, NAITO M. Influence of NH3/Ar plasma irradiation on physical and photocatalytic properties of TiO2 nanopowder [J]. J. Photochem. Photobio. A.2006, 183(1-2):171-175.
    [260]ZOU J J, HE H, CUI L et al. Highly efficient Pt/TiO2 photocatalyst for hydrogen generation prepared by a cold plasma method [J]. Int. J. Hydrogen Energy 2007,32(12): 1762-1770.
    [261]CHO J, DENES F S, TIMMONS R B. Plasma processing approach to molecular surface tailoring of nanoparticles:improved photocatalytic activity of TiO2 [J]. Chem. Mater. 2006,18(13):2989-2996.
    [262]BORRAS A, BARRANCO A, ESPINOS J P et al. Factors that contribute to the growth of Ag@TiO2 nanofibers by plasma deposition [J]. Plasma Process. Polym.2007,4(5):515-527.
    [263]CHAN M, HO W, WANG D et al. Characterization of Cr-doped TiO2 thin films prepared by cathodic arc plasma deposition [J]. Surf. Coat. Tech.2007,202(4-7):962-966.
    [264]LEE J E, OH S, PARK D. Synthesis of nano-sized Al doped TiO2 powders using thermal plasma [J]. Thin Solid Films 2004,457(1):230-234.
    [265]LICHTMAN D, CRAIG J H, SAILER V et al. AES and XPS spectra of sulfur in sulfur compounds [J]. Appl. Surf. Sci.1981,7(1):325-331.
    [266]ZHANG Q W, WANG J, YIN S et al. Synthesis of a visible-light active TiO2-xSx photocatalyst by means of mechanochemical doping [J]. J. Am. Ceram. Soc.2004,87(6):1161-1163.
    [267]YOSHINAGA M, YAMAMOTO K, SATO N et al. Remarkably enhanced photocatalytic activity by nickel nanoparticle deposition on sulfur-doped titanium dioxide thin film [J]. Appl. Catal. B.2009,87(3-4):239-244.
    [268]HEBENSTREIT E L D, HEBENSTREIT W, DIEBOLD U. Structures of sulfur on TiO2 (110) determined by scanning tunneling microscopy, X-ray photoelectron spectroscopy and low-energy electron diffraction [J]. Surf. Sci.2001,470(3):347-360.
    [269]HU S Z, WANG A J, LI X et al. Hydrothermal synthesis of ionic liquid [Bmim]OH modified TiO2 nanoparticles with enhanced photocatalytic activity under visible light [J]. Chem. Asian J.2010,5(5):1171-1177.
    [270]IHARA T, MIYOSHI M, ANDO M et al. Preparation of a visible-light-active TiO2 photocatalyst by RF plasma treatment [J]. J. Mater. Sci.2001,36(17):4201-4207.
    [271]HAMAL D B, KLABUNDE K J. Synthesis, characterization, and visible light activity of new nanoparticle photocatalysts based on silver, carbon, and sulfur-doped TiO2 [J]. J. Colloid Inter. Sci.2007,311(2):514-522.
    [272]OZAKI H, FUJIMOTO N, IWAMOTO S et al. Photocatalytic activities of NH3-treated titanias modified with other elements [J]. Appl. Catal. B.2007,70(1-4):431-436.
    [273]WANG A J, QIN M L, GUAN J et al. The synthesis of metal phosphides:reduction of oxide precursors in a hydrogen plasma [J]. Angew. Chem. Int. Ed.2008,47(32):6052-6054.
    [274]WANG J, TAFEN D N, LEWIS J P et al. Origin of photocatalytic activity of nitrogen-doped TiO2 nanobelts [J]. J. Am. Chem. Soc.2009,131(34):12290-12297.
    [275]HEBENSTREIT E L D, HEBENSTREIT W, GEISLER H et al. Bulk-defect dependent adsorption on a metal oxide surface:S/TiO2 (110) [J]. Surf. Sci.2001,486(3):L467-L474.
    [276]ROCKAFELLOW E M, STEWART L K, JENKS W S. Is sulfur-doped Ti02 an effective visible light photocatalyst for remediation [J]. Appl. Catal. B.2009,91(1-2):554-562.
    [277]SUN H, BAI Y, CHENG Y et al. Preparation and characterization of visible-light-driven carbon-sulfur-codoped TiO2 photoeatalysts [J]. Ind. Eng. Chem. Res.2006,45(14): 4971-4976.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700