新型杯芳烃衍生物的合成及在电分析中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
杯芳烃的功能化修饰是目前杯芳烃化学研究的热点之一。本论文将含有氮、硫杂原子的2-巯基-1,3,4-噻二唑引入到母体杯[4]芳烃及硫桥杯[4]芳烃中,合成了10种新的杯[4]芳烃衍生物。对合成的新化合物用多种手段进行了表征,确定了其分子结构和构象。同时,将所合成的杯[4]芳烃衍生物以整齐、有序的LB膜形式修饰到电极表面,制作了新的杯芳烃LB膜修饰电极。作为一种伏安传感器,研究了其本身的电化学性质和对Ag~+离子的选择性识别,建立了测定痕量Ag~+的电化学阳极溶出伏安分析方法。论文具体包括以下几个方面的内容:
     1.含噻二唑基的对叔丁基杯[4]芳烃衍生物的合成与表征
     以对叔丁基杯[4]芳烃(化合物1)为原料,分别与1,2-二溴乙烷、1,3-二溴丙烷在碳酸钾的存在下进行选择性烷基化反应,得到了两种杯[4]芳烃衍生物(化合物2和3)。在氢氧化钠存在下,化合物2和3与过量的含不同官能团的2-巯基噻二唑反应,合成了六种下缘含噻二唑基的杯[4]芳烃衍生物(化合物4a~4c,5a~5c),其结构用~1H NMR,~(13)C NMR,IR,MS和元素分析等表征手段进行了确证。
     2.含噻二唑基的对叔丁基硫桥杯[4]芳烃衍生物的合成及结构
     以对叔丁基硫桥杯[4]芳烃(化合物6)为原料,在碳酸钾存在下与碘甲烷反应,生成1,3二取代硫桥杯[4]芳烃(化合物7),其分别与1,2-二溴乙烷、1,3-二溴丙烷在碳酸钾的存在下进行烷基化反应,得到两种硫桥杯[4]芳烃衍生物(化合物8和9)。在碳酸钾存在下,8和9分别与过量的含不同官能团的2-巯基噻二唑反应,合成出了四种下缘含噻二唑基的硫桥杯[4]芳烃衍生物(化合物10a~10b、11a~11b),并通过了~1H NMR,~(13)C NMR,IR,MS和元素分析等方法对目标化合物进行了确证。同时,X-射线分析确定了硫桥杯[4]芳烃衍生物8和10a的晶体结构。
     3.含噻二唑基的对叔丁基杯[4]芳烃衍生物LB膜修饰电极的电化学性质及对银离子的识别应用
     利用自己合成的硫桥杯[4]芳烃衍生物—25,27-二(3-噻二唑基硫代丙氧基)-26,28-二羟基-5,11,17,23-四叔丁基杯[4]芳烃(TZCA)和LB膜技术,制作了新的杯芳烃LB膜修饰玻碳电极。作为一种新型的电化学伏安传感器,详细研究了该化学修饰电极的电化学性质和它在水溶液中对银离子的识别以及分析应用。建立了一种新的识别银离子的溶出伏安分析方法。在0.1 M HNO_3支持介质中和富集时间为180s下,银离子响应的线性范围为2×10~(-8)~1×10~(-6) M,检测限达8×10~(-9) M。我们用这种方法分析了实际水样(湖水,自来水和合成水样),得到了令人满意的结果。
The functional modified of calixarene has been playing an important role in the research process of calixarene chemistry. In this dissertation, we have synthesized ten kinds of new calix[4]arene derivatives and thiacalix[4]arene derivatives containing thiadiazole functional groups at lower rims, and confirmed the structures and the conformers of them. At the same time, the synthesized calix[4]arene derivative were modified on the electrode surface by the Langmuir-Blodgett(LB) film techniques as a new type of voltammetric sensor. The electrochemical properties and the recognizing mechanism of the film for silver ion were researched. A new stripping voltammetric method for determining of Ag~+ was erected. The main work and results are summarized as following:
     1. Synthesis and Characterization of p-tert-Butylcalix[4]arene Derivatives Containning Thiadiazole Functional Groups at Lower Rims
     The p-tert-butylcalix[4]arene (compound 1) was firstly alkylated with 1,2-dibromoethane and 1,3-dibromopropane to get two kinds calix[4]arene derivatives (compound 2 and 3) in the presence of potassium carbonate, respectively. Six p-tert-butylcalix[4]arene derivatives (compound 4a~4c, 5a~5c) which append thiadiazolidinyl groups at the lower rims were easily synthesized with good yields by the reaction of compounds 2 or 3 with 2-mercaptothiadiazole. All new compounds were characterized by ~1H NMR, ~(13)C NMR, IR, MS spectra and elemental analysis.
     2. Synthesis and Structure of p-tert-Butylthiacalix[4]arene Derivatives Containning Thiadiazole Functional Groups at Lower Rims
     The p-tert-butylthiacalix[4]arene (compound 6) was firstly alkylated with methyl iodide to obtain thiacalix[4]arene derivatives (compound 7), and which reacted with 1,2-dibromoethane and 1,3-dibromopropane to get two kinds thiacalix[4]arene derivatives (compound 8 and 9) in the presence of potassium carbonate, respectively. Four p-tert-butylthiacalix[4]arene derivatives (compound 10a~10b、11a~11b) which append thiadiazolidinyl groups at the lower rims were easily synthesized with good yields by the reaction of dibromoalkoxythiacalix[4]arene intermediates 8 or 9 with 2-mercaptothiadiazole in the presence of potassium carbonate. All new compounds were characterized by ~1H NMR, ~(13)C NMR, IR, MS spectra and elemental analysis. Meanwhile, the structures of thiacalix[4]arene derivatives 8 and 10a were identified by X-ray analysis.
     3. Electrochemical Properties of Electrode Modified with Langmuir-Blodgett Film of p-tert-Butylcalix [4]arene Derivatives and Its Application in Determining of Silver
     The glassy carbon electrode modified with Langmuir-Blodgett film of 5, 11, 17, 23 -tetra -tert-butyl-25, 27-di(3-thiadiazole -propanoxy)-26, 28-dihydroxycalix[4]arene (LB_(TZCA)-GCE) was prepared. As a new type of voltammetric sensor, the electrochemical properties of LB_(TZCA)-GCE were researched in detail and its recognizing mechanism for silver ion in aqueous solution was discussed. Using this voltammetric sensor, a new stripping voltammetric method for determining of Ag~+ was erected. In 0.1 M HNO3 solution, the LB_(TZCA)-GCE shows linear voltammetric response for silver ion in the range of 2×10~(-8)~1×10~(-6) M. The detection limit is 8×10~(-9) M at accumulation time of 180s. By this method, real samples (lake water, tap water and synthesis sample) were analyzed and the results obtained were well satisfactory.
引文
[1] C. D. Gutsche, B. Dhawan, et al. Calixarenes. 4. The Synthesis, Characterization, and Properties of the Calixarenes from p-tert-Butylphenol, J. Am. Chem. Soc. [J], 1981, 103, 3782-3792.
    [2] C. D. Gutsche, M. Iqbal,D. Stewart, Synthesis Procedures for p-tert-Butyl Calix[4]arene, J. org. chem. [J], 1986, 51,742-745.
    [3] C. D. Gutsche, B. Dhawan, M. Leonis, et al, p-tert-Butylcalix[6]arene preparation, Org. Syn. [J]1990, 68, 238-242.
    [4] J. H. Munch, C. D. Gutsche, p-tert-Butylcalix[8]arene preparation, Org. Syn. [J], 1990, 68, 243-246.
    [5] C. D. Gutsche, Calixarenes, Monographs in Supramolecular Chemistry, The Royal Society of Chemistry, Cambridge, England, 1989.
    [6] B. T. Hayes, R. F. Hunter, Studies of the Formation of Calixarenes via Condensation of p-alkylphenols and Formaldehyde, J. Appl. Chem. [J], 1958, 8, 743-752.
    [7] E. Paulus, V. Bohmer, The crystal and molecular structure of two calix[4]arenes bridged at opposite para positions, J. Chem. Soc. [J], 1987, 11, 1609-1615.
    [8] V. Bohmer, P. M. Chhim, A new synthetic access to cyclic oligonuclear phenolic compounds, Makromol. Chem. [J], 1979, 180, 2503-2601.
    [9] V. Bohmer, F. Marschollek, L. Zettat, Calix[4]arenes with Four Differently Substituted Phenolic Units, J. Org. Chem. [J], 1987, 52, 3200-3205.
    [10] S. Shinkai, S. Mori, T. Tsubaki, et al, New water-soluble host molecules derived from calix[6]arene, Tetrahedron Lett. [J], 1984, 25, 5315-5318.
    [11] S. Shinkai, K. Araki, T. Tsubaki, et al, New syntheses of calixarene-p-sulfonates and p-nitrocalixarenes, J. Chem. Soc. [J], 1987, 11, 2297-2299.
    [12] S. Shinkai, T. Tsubaki, T.Sone, et al, A new synthesis of p-nitrocalix[6]arene, Tetrahedron Lett. [J], 1985, 26, 3343-3344.
    [13] K. No, M. Hong, Selective Formylation of Calix [41arenes at the Upper Rim and Synthesis of New Cavitandsl, J. Chem. Soc. [J], Chem. Commun. [J], 1990, 7, 572-574.
    [14] Z. Huang, G. Wang, Friedel-Crafts reaction of calixarenes, Chem. Ber. [J], 1994, 127, 519-524.
    [15] Q. Zheng, C. Chen, Z. Huang, Synthesis and nitration of calix[4](aza) crowns, Chin. J. Chem. [J], 2000, 18, 104-111.
    [16] S. Kumar, H. M. Chawla, R. Varadarajan, One step facile synthesis of bromo calix[n]arenes, Tetrahedron Lett. [J], 2002, 43, 7073-7075.
    [17] A. G. Sverker Hoegberg, Stereoselective synthesis and DNMR study of two 1,8, 15,22-tetraphenyl[14]metacyclophan-3,5,10,12,17,19,24,26-octols, J. Am. Chem. Soc. [J], 1980, 102, 6046-6050.
    [18] C. D. Gutsche, B. Dhawan, J. A. Levine, et al, Calixarenes. 9. Conformationai isomers of the ethers and esters of calix[4]arenas, Tetrahedron [J], 1983, 39,409-426.
    [19] C. Geraci, M. Piattelli, P. Neri, Inherent chirality in calix[8]arenes exploiting the steric constraint of two intercrossing polyether chains, Tetrahedron Lett. [J], 1996, 37, 7627-7630.
    [20] P. D. Beer, J. P. Martin, G. B. D. Michael, Calix[4]arene cryptand and new 1,3-bis-pyridyl,-bipyridyl and-alkylthioether calix[4]arenes designed to coordinatetransition metal cations, Tetrahedron [J], 1992, 48, 9917-9928.
    [21] T. Tuntulani, V. Ruangpornvisuti, N. Tantikunwatthana, et al, Synthesis of the tripodal-amine capped benzo crown p-tert-butylcalix[4]arene and its host-guest chemistry, Tetrahedron Lett. [J], 1997, 38, 3985-3988.
    [22] H. Kumagai, M. Hasegawa, S. Miyano, et al. Facile synthesis of p-tert-butylthiacalix[4]arene by the reaction of p-tert-butylphenol with elemental sulfur in the presence of a base, Tetrahedron Lett. [J], 1997, 38, 3971-3972.
    [23] G. Mislin, E. Graf, et al, Tetrasulfinylcalix[4]arenes: Synthesis and solid state structural analysis, Tetrahedron Lett. [J], 1999, 40, 1129-1132.
    [24] N. Iki, H. Kumagai, et al, Selective oxidation of thiacalix[4]arenes to the sulfinyl-and sulfonylcalix[4]arenes and their coordination ability to metal ions, Tetrahedron Lett. [J], 1998, 39, 7559-7562.
    [25] G. Cafeo, D. Garozzo, et al, From calixfurans to heterocyclophanes containing isopyrazole units, Tetrahedron [J], 2004, 60, 1895-1902.
    [26] M.Y. Song, H. K. Na, et al, et al, Hetero-calix[4]pyrroles: incorporation of furans, thiophenes, thiazoles or fluorenes as a part of the macrocycle, Tetrahedron Lett. [J], 2004, 45,299-301.
    [27] Y. S. Jang, H. J. Kim, et al, Synthesis of calix[n]furano[n]pyrroles and calix[n]thieno-[n]pyrroles (n=2,3,4) by '3+1' approach, Tetrahedron Lett. [J], 2000, 41, 2919-2923.
    [28] A. Nagarajan,J. W. Ka, et al. Synthesis of expanded calix[n]pyrroles and their furan or thiophene analogues, Tetrahedron [J], 2001, 57, 7323-7330.
    [29] D. Diamond, G.Svehla, A sodium ion-selective electrodebased on methyl p-t-butylcalix [4]-aryl-acetate as the ionophore, Anal. Chim. Acta. [J], 1988, 204, 223-231.
    [30] R. K. Mahajan, M. Kumar, Cesium ion selective electrode based on calix[4]crown ether-ester, Talanta [J], 2002, 58, 445-450.
    [31] L. X. Chen, J. Zhang, Double-armed calix[4]arene amide derivatives as ionophores for lead ion-selective electrodes, J. Electroanal. Chem. [J], 2006, 589, 106-111.
    [32] F. Kivlehan, W. J. Mace, Potentiometric evaluation of calix[4]arene anion receptors in membrane electrodes: Phosphate detection, Analy. Chim. Acta. [J], 2007, 585, 154-160
    [33] A. Mangia, A. Pochini, R. Ungaro, The 4-tert-butylcalix[8]arene as a stationary phase in-solid chromatography, Anal Lett[J], 1983,16, 1027-1031.
    [34] L. S. Li, S. L. Da, High performance liquid chromatography of aromatic carboxylic acids on p-tert-butyl-calix[8]arene-bonded silica gel stationary phase, Talanta [J], 2004, 62, 643-648.
    [35] L. S. Li, S. L. Da, Study on the chromatographic behavior of water-soluble vitamins on p-tert-butyl-calix[8]arene-bonded silica gel stationary phase by HPLC, Talanta [J], 2004, 64, 373-379
    [36] L. S. Li, S. L. Da, et al, Studies on the chromatographic behavior of nucleosides and bases on p-tert-butyl-calix[8]arene-bonded silica gel stationary phase by HPLC, Talanta [J], 2004, 63, 433-441.
    [37] D. Shohat, E. Grushka, The use of calixarenes to modify selectivities in capillary electrophoresis, Anal. Chem. [J], 1994, 66, 747-750.
    [38] S. Sun, M. J. Sepania1, J. S. Wang, et al, Capillary electrokinetic chromatography employing p-(carboxyethyl)calix[n]arenes as running butter additives, Anal. Chem. [J], 1997, 69, 344-348.
    [39] T. Zhao, J. Cheng et al, Use of calix [4]arene to separate positional isomers in capillary electrophoresis, Anal. Chim. Acta. [J], 1998, 358, 263-268.
    [40] 刘志莲,梁志,江林,高云华,新型杯[4]芳烃衍生物的合成及其对镧系金属离子的识别研究,高等学校化学学报,2006,27,888-890.
    [41] S.Y. Liu, Y. B. He, Yan Q.G, et al. Fluorescent sensors for amino acid anions based on calix[4] arenes bearing two dansyl groups. Tetrahedron [J], 2005, 16, 1527-1534.
    [42] Y. Ohba, K. Moriya, T. Sone, Synthesis and Inclusion Properties of Sulfur-Bridged Analogs of Acyclic Phenol-Formaldehyde Oligomers, Bull. Chem. Soc. Jpn, 1991, 64, 576-582.
    [43] N. Iki, C. Kabuto, S. Miyano, et al, Synthesis of p-tert-Butylthiacalix[4]arene and its Inclusion Property, Tetrahedron [J], 2000, 56, 1437-1443.
    [44] N. Kon, N. Iki, S. Miyano, Synthesis of p-tert-butylthiacalix[n]arenes (n=4, 6, and 8) from a sulfur-bridged acyclic dimer of p-tert-butylphenol. Tetrahedron Lett. [J], 2002, 43, 2231-2234.
    [45] T. Sone, Y. Ohba, K. Moriya, et al, Synthesis and properties of sulfur-bridged analogs of p-tert-Butylcalix[4]arene, Tetrahedron [J], 1997, 53, 10689-10698.
    [46] P. Lhota'k, J. Mora'vek, I. Stibor, Diazo coupling: an alternative method for the upper rim amination of thiacalix[4]arenas, Tetrahedron Lett. [J], 2002, 43, 3665-3668.
    [47] P. Lhota'k, M. Himl, I. Stibor, et al, Upper rim substitution of thiacalix[4]arene, Tetrahedron Lett. [J], 2001, 42, 7107-7110.
    [48] P. Lhota'k, T. Smejkal, I. Stibor, et al, Synthesis of a deep-cavity thiacalix[4]arene, Tetrahedron Lett. [J], 2003, 44, 8093-8097.
    [49] N. Iki, T. Fujimoto, S. Miyano, A New Water-Soluble Host Molecule Derived from Thiacalixarene, Chem. Lett. [J], 1998, 27,625-626.
    [50] E. Shokova, V. Tafeenko, V. Kovalev, First synthesis of adamantylated thiacalix[4]arenas, Tetrahedron Lett. [J], 2002, 43, 5153-5156.
    [51] P. Lhota'k, L. Kaplanek, et al, NMR and X-ray analysis of 25,27- dimethoxythia calix[4]arene: unique infinite channels in the solid state, Tetrahedron Lett. [J], 2000, 41, 9339-9344.
    [52] F. W. B. Leeuwen, H. Beijleveld, D. N. Reinhoudt, Cation control on the synthesis of p-t-butyl-thiacalix[4] (bis)crown ethers, Tetrahedron Lett. [J], 2002, 43, 9675-9678.
    [53] V. Bhalla, M. Kumar, S. Miyanoa, Synthesis and binding studies of novel bisthia -calix[4]arenes with diimime linkages, Tetrahedron Lett. [J], 2005, 46, 121-124.
    [54] N. Iki, N. Morohashi, S. Miyano, Novel molecular receptors based on a thiacalix[4]arene platform: Preparation of the di- and tetracarboxylic acid derivatives and their binding properties towards transition metal ions.Tetrahedron Lett. [J], 1999, 40, 7337-7341.
    [55] G. A. Evtugyn, I. I. Stoikov, S. V. Beljyakova, et al, Ag selective electrode based on glassy carbon electrode covered with polyaniline and thiacalix[4]arene as neutral carrier, Talanta [J], 2007, 71, 1720-1727.
    [56] P. Zlatus"kova', I. Stibor, P. Lhota'k, et al, Novel anion receptors based on thiacalix[4]arene derivatives, Tetrahedron [J], 2004, 60, 11383-11390.
    [57] T. Sone, Y. Ohba, K. Ito, et al, Synthesis and properties of sulfur-bridged analogs of p-tert-Butylcalix[4]arene, Tetrahedron. [J], 1997, 53, 10689-10698.
    [58] N. Iki, C. Kabuto, S.Miyano, et al, Synthesis of p-tert-Butylthiacalix[4]arene and its Inclusion Property, Tetrahedron [J], 2000, 56, 1437-1443.
    [59] N. Iki, T. Fujimoto, S. Miyano, et al, Almost Complete Removal of Trace Amount of Halogenated Organic Compounds in Water: An Approach by Use of a Combination of Water-Soluble Thiacalixarene and Ion-Exchange Resins, Chem. Lett. [J], 1999, 28, 777-778.
    [60] M. Ben Ali, C. Bureau, H. Ben Ouada, et al, Comparison of thiacalix [4]arene thin films behaviour on different transducers for copper ion detection, Materials Science and Engineering C. [J], 2000, 7, 83-89.
    [61] Y. Choi, H. Kim, J. S. Kim, et al, Cesium ion-selective electrodes based on 1,3-alternate thiacalix[4]biscrown-6,6, Talanta [J], 2004, 64, 975-980.
    [62] M. Narita, Y. Higuchi, H. Kumagai, et al, Metal sensor of water soluble dansyl-modified thiacalix[4]arenes Tetrahedron Lett. [J], 1998, 39, 8687-8690
    [63] N.Iki, F Narumi, S.Mayino, A New Chiral Stationary Phase for Gas Chromatography by Use of a Chiral Thiacalix[4]arene Derivative, Chem.Lett. [J], 1998, 27, 1065-1066.
    [64] 林奇,张有明,魏太保,高黎明,2,5-二乙氧甲酰氨基-1,3,4-噻二唑超分子化合物的合成和晶体结构,有机化学,2005,25,290-294.
    [1] Takeshita, M; Shinkai, S. Recent Topics on Functionalization and Recognition Ability of Calixarenes: The 'Third Host Molecule', Bull. Chem. Soc. Jpn,. 1995,68, 1088-1097.
    [2] S. Shinkai, Calixarenes-the third generation of supramolecules, Tetrahedron [J], 1993, 49, 8933-8968.
    [3] A. Ikeda, S. Shinkai, Novel Cavity Design Using Calix[n]arene Skeletons: Toward Molecular Recognition and Metal Binding, Chem. Rev. [J], 1997, 97, 1713-1734.
    [4] 郭兵,冯青山,周立山,洪学传,新型主体分子——杯芳烃的研究进展,合成化学,2000,8(5),395-399.
    [5] 林奇,张有明,魏太保,高黎明,2,5-二乙氧甲酰氨基-1,3,4-噻二唑超分子化合物的合成和晶体结构,有机化学,2005,25,290-294.
    [6] C. D.Gutsche, M. Iqbal, Calixarenes. 19: Syntheses procedures for p-tert-butylcalix[4]arene, J. Org. Chem. [J], 1986, 51, 742-745.
    [7] Z. T. Li, G. Z. Ji, et al. Self-Assembling Calix[4]arene [2]Catenanes. Preorganization, Conformation, Selectivity, and Efficiency, J. Org. Chem. [J], 1999, 64, 3572-3584.
    [8] K. Iwamoto, K. Araki, S. Shinkai, Conformations and structures of tetra-O-alkyl-p-tert-butylcalix[4]arenes. How is the conformation of calix[4]arenes immobilized? J. Org. Chem. [J], 1991, 56, 4955-4962.
    [9] M. Iqbal, T. Mangiafico, C. D. Dutsche, Calixarenes 21: The conformations and structures of the products of aroylation of the calix[4]arenas, Tetrahedron [J], 1987, 43, 4917-4930.
    [1] Y. Ohba, K. Moriya, T. Sone, Synthesis and Inclusion Properties of Sulfur-Bridged Analogs of Acyclic Phenol-Formaldehyde Oligomers, Bull. Chem. Soc. Jpn, 1991, 64, 576-582.
    [2] H. Kumagai, M. Hasegawa, S. Miyano, et al. Facile synthesis of p-tert-butylthiacalix[4]arene by the reaction of p-tert-butylphenol with elemental sulfur in the presence of a base, Tetrahedron Lett. [J], 1997, 38, 3971-3972.
    [3] P. Lhotak, Chemistry of Thiacalixarenes, Eur. J. Org. Chem.. [J], 2004, 8, 1675-1692.
    [4] 褚惠虹,王谨,潘志刚,胡晓钧,顾金英,施宪法,硫杂杯芳烃及其衍生物的合成与表征,有机化学,2003,23,1255-1259.
    [5] N. Morohashi, F. Narumi, S. Miyano, et al, Thiacalixarenes, Chem. Rev. [J], 2006, 106, 5291-5316.
    [6] 林奇,张有明,魏太保,高黎明,2,5-二乙氧甲酰氨基-1,3,4-噻二唑超分子化合物的合成和品体结构,有机化学,2005,25,290-294.
    [7] 赵邦屯,王璐,冶保献,含噻二唑基的对叔丁基杯[4]芳烃衍生物的合成及表征,有机化学,2006,26,1562-1565.
    [8] L.Wang, B. T. Zhao, B. X. Ye, Electrochemical Properties of Electrode Modified with Langmuir-Blodgett Film of p-tert-Butylcalix [4]arene Derivatives and its Application in Determining of Silver, Electroanalysis[J], 2007, 19, 923-927.
    [9] P. Lhota'k, L. Kaplanek, et al, NMR and X-ray analysis of 25,27-dimethoxythia calix[4]arene: unique infinite channels in the solid state, Tetrahedron Lett. [J], 2000, 41, 9339-9344.
    [10] G. M. Sheldrick, SHELXS97, Program for the Solution of Crystal Structures, University of Gottingen, Germany, 1997.
    [11] G. M. Sheidrick, SFIELXS97, Program for the refinement of Crystal Structures, University of Gottingen, Germany, 1997.
    [12] P. Lhotak, M. Himl, I. Stibor, Alkylation of thiacalix[4]arenas, Tetrahedron Lett. [J], 2002, 43, 9621-9624.
    [13] J. Lang, H. Dvoakova P. Lhotak, et al, Conformational flexibility of a novel tetraethylether of thiacalix[4]arene. A comparison with the "classical" methylene-bridged compounds, Tetrahedron Lett. [J], 1999, 40, 373-376.
    [1] C. D. Gutsche, Calixarenes, Monographs in Supramolecular Chemistry, The Royal Society of Chemistry, Cambridge, England, 1989.
    [2] J.Vicens, V.Bohmer (Eds.), Calixarenes: A Versatile Class of Macrocyclic Compounds, Kluwer Academia Publishers, Dordrecht, 1991.
    [3] D. Diamond, G.Svehla, A sodium ion-selective electrodebased on methyl p-t- butyl calix[4] aryl -acetate as the ionophore, Anal. Chim. Acta. [J], 1988, 204, 223-231.
    [4] R. K. Mahajan, M. Kumar, Cesium ion selective electrode based on calix[4]crown ether-ester Talanta [J], 2002, 58, 445-450.
    [5] W.C.Yang, X.D.Yu, A.M.Yu, H.Y.Chen, Study of a novel cationic calix[4]arene used as selectivity modifier in capillary electrophoresis with electrochemical detection, J. Chromatogr. A, 2001, 910, 311-318.
    [6] L. S. Li, S. L. Da, High performance liquid chromatography of aromatic carboxylic acids on p-tert-butyl-calix[8]arene-bonded silica gel stationary phase, Talanta [J], 2004, 62, 643-648.
    [7] M.Baur, M.Frank, J.Schatz, F.Schildbach, Water-soluble calix[n]arenas as receptor molecules for non-polar substrates and inverse phase trahsfer catalysts, Tetrahedron [J], 2001, 57, 6985-6991.
    [8] J.H.Kima, Y.G.Kima, K.H.Lee, et al, Size selective molecular recognition of calix[4]arenes in Langmuir-BIodgett monolayers, Synth. Met. [J], 2001, 117, 145-148.
    [9] D.W.M.Arrigan, G.Svehla, S.J.Harris, M.A.McKervey, Use of calixarenes as modifiers of carbon paste electrodes for voltammetric analysis, Electroanalysis [J], 1994, 6, 97-106.
    [10] K.M.O'Connor, D.W.M.Arrigan, G.Svehla, Calixarenes in electroanalysis, Electroanalysis [J] 1995, 7, 205-215.
    [11] J.Wickens, R.A.W.Dryfe, D.W.M.Arrigan, et al, Calixarene-facilitated transfer of alkali metal ions across the polarised liquid-liquid interface, New J. Chem. [J], 2000, 24, 149-154.
    [12] S.K.Kang, T.D.Chung, H.Kim, Electrochemical recognition of Ca~(2+) ion in basic aqueous media using quinone-derivatized calix[4]arene, Electrochim.Acta. [J], 2000, 45, 2939-2943.
    [13] D.P.Zhan, Y.J.Xiao, B. L.Wu, Y.H.Shao, et al, Electrochemical recognition of alkali metal ions at the micro-water 1,2-dichloroethane interface using a calix[4]arene derivative, J. Electroanal. Chem. [J], 2003, 553, 43-48.
    [14] S.K.Alpat, U.Yuksel, H.Akcay, Development of a novel carbon paste electrode containing a natural zeolite for the voltammetric determination of copper, Electrochem. Commun. [J]2005, 7, 130-134.
    [15] S.D.Collyer, F.Davis, A.Lucke, C.J.M.Stirling, The electrochemistry of the ferri/ferrocyanide couple at a calix[4]resorcinarenetetrathiol-modified gold electrode as a study of novel electrode modifying coatings for use within electro-analytical sensors, J. Electroanal. Chem. [J], 2003, 549, 119-127.
    [16] K.C.Honeychurch, J.P.Hart, D.C.Cowell, D.W.M. Arrigan, Voltammetric Behavior and Trace Determination of Cadmium at a Calixarene Modified Screen-Printed Carbon Electrode, Electroanalysis [J], 2002, 14, 177-185.
    [17] J.Q.Lu, X.W.He, Z.Z.Zhang, et al, Voltammetric determination of mercury (Ⅱ) in aqueous media using glassy carbon electrodes modified with novel calix[4]arene, Talanta [J], 2003, 59, 553-560.
    [18] K.C.Honeychurch, J.P.Hart, D.C.Cowell, D.W.M.Arrigan, Voltammetric studies of lead at calixarene modified screen-printed carbon electrodes and its trace determination in water by stripping voltammetry, Sens. Actuator B [J], 2001, 77, 642-652.
    [19] H.Zheng, H.M.Dong, Z.N.Yan, L.J.Wen, S.S.Zhang, B.X.Ye, Determination of Copper at a Glassy Carbon Electrode Modified with Langmuir-Blodgett Film of p-tert- Butylthia -calix[4]arene, Electroanalysis[J], 2006, 18, 2115-2120.
    [20] H.Zheng, Z.N.Yan, H.M.Dong, B.X.Ye, Simultaneous determination of lead and cadmium at a glassy carbon electrode modified with Langmuir-Blodgett film of p-tert- butyl -thiacalix[4]arene, Sens.Actuators B [J], 2007, 120, 603-609.
    [21] H.M.Dong, L.Lin, H.Zheng, G.X.Zhao, B.X.Ye, Electrode Modified with Langmuir-Blodgett (LB) Film of Calixarenes for Preconcentration and Stripping Analysis of Hg(Ⅱ), Electroanalysis[J], 2006, 18, 1202-1207.
    [22] H.M.Dong, H.Zheng, L.Lin, B.X.Ye, Determination of thallium and cadmium on a chemically modified electrode with Langmuir-Blodgett film of p-allylcalix[4]arene Sens. Actuators B [J], 2006, 115, 303-308.
    [23] 赵邦屯,王璐,冶保献,含噻二唑基的对叔丁基杯[4]芳烃衍生物的合成及表征,有机化学,2006,26,1562-1565.
    [24] E.Laviron, General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems, J. Electroanal. Chem. [J], 1979, 101, 19-28.
    [25] Z.X.Zhang, E.K.Wang, Principles and Methods of Electrochemistry, Science Publishing Company, 2000, 439.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700