孕早期高雌激素暴露出生低体重/小于胎龄儿的表遗传调节机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分低出生体重/小于胎龄儿与妊娠早期血清雌激素水平
     目的:评估多胎妊娠早期减为单胎或双胎妊娠后的出生体重情况,并且比较分析早期多胎妊娠与单胎妊娠母亲外周血雌激素水平及妊娠早期母亲外周血雌激素水平与新生儿出生体重的关系。
     材料和方法:对2006年1月至2010年7月在浙江大学医学院附属妇产科医院进行辅助生殖技术(Assisted reproductive technology, ART)治疗的病例进行回顾性分析,以自然或人为减为单胎妊娠或双胎妊娠的减胎组为实验组,以同期相应的未进行减胎的原始双胎或单胎作为对照组,比较分析实验组单胎和双胎与各自相应对照组间新生儿出生体重和小于胎龄儿发生率之间的差异。同时收集195例ART后妊娠7-8周时母亲的外周血(包括单胎、双胎、三胎和四胎妊娠),利用化学发光法对外周血血清雌二醇水平进行检测,比较各组间雌二醇水平,分析妊娠早期母亲外周血雌激素水平与减胎术后出生子代体重的相关性。
     结果:1.多胎妊娠无论是减为单胎妊娠还是双胎妊娠,减胎组新生儿平均出生体重均低于相应的未进行减胎的原始单胎妊娠和双胎妊娠组,单胎组分别为3217.05±546.88g和3377.85±477.05g,P<0.01;双胎组分别为2428.80±485.64g和2495.31±520.06g,P<0.05。小于胎龄儿发生率前者均显著高于后者,单胎组分别为2.9%(6/210)和11.4%(12/105),P<0.01;双胎组分别为27.3%(472/1728)和38.5%(167/434),P<0.01,早产的发生率均无显著性差异(P>0.05)。
     2.多胎妊娠组母亲外周血雌二醇水平显著高于单胎妊娠组,并且随着妊娠胎数的增加,外周血雌二醇水平显著升高(P<0.01)。
     3.妊娠早期母亲外周血雌二醇水平与多胎妊娠减胎术后胎儿出生体重存在负性相关性(r=-0.32,P=0.018)。
     结论:处于高雌激素环境的早期多胎妊娠能增加子代低体重和小于胎龄儿发生率,并且这种影响不能利用早期减胎术进行消除,而妊娠早期母亲外周血高雌激素水平可能在低出生体重和小于胎龄儿的发生中起着重要作用。
     第二部分早期妊娠胎儿组织及子代出生后脐血和胎盘组织中印记基因的表达及调控机制
     目的:评估多胎妊娠早期胎儿组织及子代出生后脐血和胎盘组织表观遗传学状态。
     材料和方法:对多胎妊娠行早期减胎术后获得的胎儿组织与同期同孕周自然单胎妊娠行人工流产获得的胎儿组织,以及减胎术后出生的双胎脐血及胎盘组织与相应的未进行减胎的双胎脐血及胎盘组织进行对比研究,利用荧光定量PCR对印记基因IGF2、H19、PHLDA2和CDKN1C,及甲基化转移酶DNMT1的表达水平进行检测、利用甲基化特异性PCR及亚硫氢酸盐测序的方法对上述印记基因相应的差异甲基化区域H19DMR和KvDMRl的甲基化水平进行检测。
     结果:CDKN1C和DNMT1不仅在多胎妊娠早期的胎儿组织中高表达,而且同时在减胎术后出生的双胎脐血和胎盘组织中的表达均显著上升(P<0.05),同时,CDKN1C的甲基化调控区域KvDMR1的甲基化水平均显著上升(P<0.05)。IGF2在多胎妊娠早期的胎儿组织中表达上升,但其甲基化调控区H19DMR的甲基化水平未发生显著改变,H19和PHLDA2的表达在在多胎妊娠早期的胎儿组织中表达未发生显著变化(P>0.05)。
     结论:妊娠早期高水平的雌激素可能通过上调胎儿组织中DNA甲基化转移酶DNMT1的表达使KvDMR1的甲基化升高,使生长抑制性印记基因CDKNIC的表达上调,从而对胎儿的生长发育产生持续性影响,导致低出生体重和小于胎龄儿的发生,这可能是早期高雌激素水平使低出生体重和小于胎龄儿的发生率增加的重要调控机制之一。
     第三部分雌激素对CDKN1C表达的表遗传调控机制
     目的:探讨雌激素是否直接参与了CDKNIC的表达及其表遗传调控机制。
     材料和方法:1.体外实验以人类滋养细胞系HTR-8为研究对象,通过不同浓度的雌激素和(或)同时加入雌激素受体阻断剂、DNMT1小干扰RNA处理细胞,采用荧光定量PCR技术检测细胞中CDKN1C和DNMT1的表达。
     2.通过高浓度的雌激素处理HTR-8细胞,采用甲基化特异性PCR技术及亚硫氢酸盐测序技术检测高浓度雌激素刺激后细胞KvDMR1区域甲基化水平。
     3. DNMT1promotor-pGL-3重组质粒构建,质粒转染到HTR-8细胞,培养后裂解细胞进行荧光素酶活性检测。
     4.利用染色质免疫共沉淀技术,检测DNMT1启动子区域雌激素反应元件与雌激素受体的结合。
     结果:1.雌激素能够明显上调DNMT1和CDKNIC的表达,使KvDMR1区甲基化水平上调;雌激素受体阻断剂ICI182780及DNMT1小干扰RNA能够阻断E2对CDKN1C的上调作用。
     2. DNMT1转录起始位点-659/-647bp处存在雌激素反应元件结构,在HTR-8细胞中,E2可能通过该雌激素反应元件调节DNMT1的表达,从而对CDKNIC的表达起到间接调控作用。
     结论
     雌激素通过作用于DNMT1转录起始位点-659/-647bp处的雌激素反应元件使KvDMR1的甲基化升高,从而使生长抑制性印记基因CDKNIC的表达上调,这可能是孕早期高水平的雌激素对胎儿的生长发育产生持续性影响,导致低出生体重和小于胎龄儿的发生增加的重要调控机制之一。
Part I:Low birth weight/small for gestational age and the maternal serum estradiol levels in first trimester pregnancies
     Objective:To evaluate the birth weights of multifetal pregnancies reduced to singletons or twins, compare the maternal serum estradiol (E2) levels of early singleton pregnancies with those of multiple pregnancies and analyze the correlation between maternal serum E2levels and the birth weights of their offsprings.
     Materials and Methods:A retrospective review was performed on data obtained from patients between January2006and June2010undergoing assisted reproductive technology (ART) at the Assisted Reproductive Unit of the Women's Hospital, School of Medicine, Zhejiang University. Spontaneous or selective reduction of one or more gestational sacs and/or embryos occurred to singletons or twins before the12th week of gestation were included. The control group included assisted reproduction patients with non-reduced singletons or twins performed over the same period. Non-reduced singleton was matched by a stratified random selection. Compare the perinatal outcomes of reduced groups with that of their own controls. Peripheral blood samples of195women with ART conceptions on7-8weeks' gestation were collected and measured serum E2levels with Roche cobas immunoassay.
     Results:1.The birth weights of singletons and twins after reduction were significantly lower than non-reduced pregnancies (3217.05±546.88g vs3377.85±477.05g, P=0.009and2428.80±485.64g vs2495.31±520.06g, p=0.016, respectively). The rates of small for gestational age (SGA) after reduction were significantly higher than their own control (P<0.05). No significant difference was observed in duration of gestation (P>0.05).
     2. The serum E2levels for multiple pregnancies were significantly higher than those for singleton pregnancies (P<0.05), the serum E2levels elevated with the increased number of fetuses.
     3. Multivariate correlation analyses showed that maternal serum E2level shows a inverse correlation with the birth weight of offspring (r=-0.32, P=0.018).
     Conclusion:Early multiple pregnancies with high maternal serum E2level can lower the birth weight and increase the risk of SGA, and the adverse effect could not be eliminatec by early multifetal reduction. The high maternal serum E2levels in first trimeste pregnancies may play an important role in low birth weight and SGA.
     Part II:Expression and methylation status of imprinting genes in fetal tissues, umbilical cord blood and placenta tissues
     Objective:To investigate epigenetic status of early multiple pregnancies.
     Materials and Methods:Fetal tissues of multiple pregnancies were collected from multifetal pregnancy reduction (MFPR), and fetal tissues of singleton pregnancies were collected from elective terminations of normal pregnancies as control group. Umbilical cord blood (UCB) and placenta tissues from reduced twins and primary twin pairs were collected. The expression of IGF2, H19, CDKN1C, PHLDA2and DNMT1was determined by real-time quantitative PCR. The methylation status of H19DMR and KvDMR1was determined by methlylation specific PCR (MSP) and bisulfite sequencing PCR (BSP).
     Results:CDKN1C and DNMT1mRNA levels were significantly higher in early fetal tissues of multiple pregnancies than singleton pregnancies. Consistent with the results in fetal tissues, the expression levels of CDKN1C and DNMT1in UCB and placenta tissues of reduced twin pairs were significantly increased when compared to their matched twins. KvDMRl was hypermethylated in fetal tissues of MFPR, UCB and placenta tissues of reduced twins. Significant upregulation level of IGF2was also observed in fetal tissues of multiple pregnancies, but the methylated level of H19DMR was normal. The expression levels of H19and PHLDA2in fetal tissues of multiple pregnancies were unchanged when compared with their controls.
     Conclusion:Estradiol may induce DNMT1overexpression and thus, promote hypermethylation of KvDMRl and overexpression of CDKN1C, which is a critical mechanism for low birth weight and SGA of early multiple pregnancies.
     Part Ⅲ:The mechanism of estradiol regulating the expression of CDKN1C
     Objective:To investigate the mechanism of estradiol (E2) regulating the expression of CDKN1C.
     Materials and Methods:HTR8/SVneo (HTR8) cells were exposed to E2and/or estrogen receptors antagonist (ICI182780), DNMT1small interfering RNAs (siRNAs). The expression of CDKN1C and DNMT1was determined by real-time quantitative PCR. The methylation status of KvDMR1in10-5M E2treated HTR8cells was determined by methlylation specific PCR (MSP) and bisulfite sequencing PCR (BSP). DNMT1promotor-pGL-3plasmid was constructed and luciferase activity was measured using the dual luciferase reporter assay system. Chromatin immunoprecipitation (ChIP) experiments were performed to detect the binding of ERa on the ERE-like site of DNMT1promoter.
     Results:E2increased the expression of CDKN1C, DNMT1and the methylation level of KvDMR1in HTR8cells. The effects were inhibited by ERs antagonists and DNMT1siRNA. ERa activated DNMT1transcription through an estrogen responsive elements (ERE) located at-659/-647bp upstream of the transcriptional start site.
     Conclusion:E2can promote DNMT1transcription through an ERE located at the transcriptional start site. High expression of DNMT1is associated with the hypermethylation of KvDMRl and the upregulation of CDKN1C. This is may be one of the important reasons for the increase of low birth weight and SGA.
引文
1. Gordon L, Joo JE, Powell JE, Ollikainen M, Novakovic B, Li X, Andronikos R, Cruickshank MN, Conneely KN, Smith AK, Alisch RS, Morley R, Visscher PM, Craig JM, Saffery R. Neonatal DNA methylation profile in human twins is specified by a complex interplay between intrauterine environmental and genetic factors, subject to tissue-specific influence. Genome Res.2012;22:1395-406.
    2. Thompson C, Syddall H, Rodin I, Osmond C, Barker DJ. Birth weight and the risk of depressive disorder in late life. Br J Psychiatry.2001;179:450-5.
    3. de Rooij SR, Painter RC, Phillips DI, Osmond C, Michels RP, Godsland IF, Bossuyt PM, Bleker OP, Roseboom TJ. Impaired insulin secretion after prenatal exposure to the Dutch famine. Diabetes Care.2006;29:1897-901.
    4. Hazekamp J, Bergh C, Wennerholm UB, Hovatta O, Karlstrom PO, Selbing A. Avoiding multiple pregnancies in ART:consideration of new strategies. Hum Reprod.2000;15:1217-9.
    5. Pinborg A. IVF/ICSI twin pregnancies:risks and prevention. Hum Reprod Update. 2005; 11:575-93.
    6. Skiadas CC, Missmer SA, Benson CB, Acker D, Racowsky C. Impact of selective reduction of the monochorionic pair in in vitro fertilization triplet pregnancies on duration of gestation. Fertil Steril.2010;94:2930-1.
    7. Peigne M, Andrieux J, Deruelle P, Vuillaume I, Leroy M. Quintuplets after a transfer of two embryos following in vitro fertilization:a proved superfecundation.Fertil Steril.2011;95:2124.e 13-6.
    8. Skiadas CC, Missmer SA, Benson CB, Acker D, Racowsky C. Spontaneous reduction before 12 weeks' gestation and selective reduction similarly extend time to delivery in in vitro fertilization of trichorionic-triamniotic triplets.Fertil Steril. 2011;95:596-9.
    9. Evans MI, Berkowitz RL, Wapner RJ, Carpenter RJ, Goldberg JD, Ayoub MA, et al.Improvement in outcomes of multifetal pregnancy reduction with increased experience. Am J Obstet Gynecol.2001;184:97-103.
    10. Shang Y, Hu X, DiRenzo J, Lazar MA, Brown M. Cofactor dynamics and sufficiency in estrogen receptor-regulated transcription. Cell.2000;103:843-52.
    11. de Assis S, Warri A, Cruz MI, Laja O, Tian Y, Zhang B, Wang Y, Huang TH, Hilakivi-Clarke L. Oestrogenic exposures in pregnancy increase breast cancer risk in multiple generations of offspring. Nat Commun.2012;3:1053.
    12. Chasen ST, Luo G, Perni SC, Kallish RB. Are in vitro fertilization pregnancies with early spontaneous reduction high risk? Am J Obstet Gynecol 2006; 195:814-7.
    13. Shebl O, Ebner T, Sommergruber M, Sir A, Tews G.Birth weight is lower for survivors of the vanishing twin syndrome:a case-control study. Fertil Steril. 2008;90:310-4.
    14. Boulot P, Vignal J, Vergnes C, Dechaud H, Faure JM, Hedon B. Multifetal reduction of triplets to twins:a prospective comparison of pregnancy outcome. Hum Reprod. 2000;15:1619-23.
    15. Iberico G, Navarro J, Blasco L, Simon C, Pellicer A, Remohi J. Embryo reduction of multifetal pregnancies following assisted reproduction treatment:amodification of the transvaginal ultrasound-guided technique. Hum Reprod.2000; 15:2228-33.
    16. Cheang CU, Huang LS, Lee TH, Liu CH, Shih YT, Lee MS. A comparison of the outcomes between twin and reduced twin pregnancies produced through assisted reproduction. Fertil Steril.2007;88:47-52.
    17. Luke B, Brown MB, Grainger DA, Stern JE, Klein N, Cedars MI. The effect of early fetal losses on twin assisted-conception pregnancy outcomes. Fertil Steril. 2009;91:2586-92.
    18. Luke B, Brown MB, Nugent C, Gonzalez-Quintero VH, Witter FR, Newman RB. Risk factors for adverse outcomes in spontaneous versus assisted conception twin pregnancies. Fertil Steril.2004; 81:315-9.
    19. Sallout B, Walker M. The fetal origin of adult diseases. J Obstet Gynaecol.2003; 23(5):555-60. Review.
    20. Shang Y, Hu X, DiRenzo J, Lazar MA, Brown M. Cofactor dynamics and sufficiency in estrogen receptor-regulated transcription. Cell.2000; 103(6):843-52.
    21. F.G. Cunningham. Williams obstetrics. McGraw-Hill Medical Publishing Division, New York (2001).
    22. Koh KH, Jurkovic S, Yang K, Choi SY, Jung JW, Kim KP, Zhang W, Jeong H. Estradiol induces cytochrome P450 2B6 expression at high concentrations:implicati on inestrogen-mediated gene regulation in pregnancy. Biochem Pharmacol.2012; 84(1):93-103.
    23. Bonagura TW, Pepe GJ, Enders AC, Albrecht ED.Suppression of extravillous trophoblast vascular endothelial growth factor expression and uterine spiral artery invasion by estrogen during early baboon pregnancy. Endocrinology. 2008;149(10):5078-87.
    24. Shang Y, Hu X, DiRenzo J, Lazar MA, Albrecht ED, Pepe GJ. Central integrative role of oestrogen in modulating the communication between the placenta and fetus that results in primate fecal-placental development. Placenta.1999; 20(2-3):129-39.
    25. Brown M. Cofactor dynamics and sufficiency in estrogen receptor-regulated transcription. Cell.2000;103(6):843-52.
    26. Albrecht ED, Aberdeen GW, Pepe GJ. The role of estrogen in the maintenance of primate pregnancy. Am J Obstet Gynecol.2000; 182(2):432-8.
    27. Musicki B, Pepe GJ, Albrecht ED. Functional differentiation of the placental syncytiotrophoblast:Effect of estrogen onchorionic somatomammotropin expression during early primate pregnancy. J Clin Endocrinol Metab.2003;88(9):4316-23.
    28. Heijmans BT, Tobi EW, Stein AD, Putter H, Blauw GJ, Susser ES, Slagboom PE, Lumey LH. Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc Natl Acad Sci U S A.2008; 105(44):17046-9.
    1. Heijmans BT, Tobi EW, Stein AD, Putter H, Blauw GJ, Susser ES, Slagboom PE, Lumey LH. Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc Natl Acad Sci U S A.2008; 105(44):17046-9.
    2. Monk D, Arnaud P, Apostolidou S, Hills FA, Kelsey G, Stanier P, Feil R, Moore GE. Limited evolutionary conservation of imprinting in the human placenta. Proc Natl Acad Sci U S A.2006; 103(17):6623-8.
    3. Constancia M, Hemberger M, Hughes J, Dean W, Ferguson-Smith A, Fundele R, et al. Placental-specific IGF-Ⅱ is a major modulator of placental and fetal growth. Nature. 2002;417:945-8.
    4. Reik W, Walter J. Genomic imprinting:parental influence on the genome. Nat Rev Genet.2001;2:21-32.
    5. Stromberg B, Dahlquist G, Ericson A, Finnstrom O, Koster M, Stjernqvist K. Neurological sequelae in children born after in-vitro fertilisation: a population-based study. Lancet.2002;359(9305):461-5.
    6. Reik W, Walter J. Genomic imprinting:parental influence on the genome. Nat Rev Genet.2001;2:21-32.
    7. Diplas AI, Lambertini L, Lee MJ, Sperling R, Lee YL, Wetmur J, et al. Differential expression of imprinted genes in normal and IUGR human placentas. Epigenetics. 2009;4:235-40.
    8. Hartmann S, Bergmann M, Bohle RM, Weidner W, Steger K.Genetic imprinting during impaired spermatogenesis.Mol Hum Reprod.2006;12(6):407-11.
    9. Kosaki K, Kosaki R, Robinson WP, Craigen WJ, Shaffer LG, Sato S, Matsuo N. Diagnosis of maternal uniparental disomy of chromosome 7 with a methylation specific PCR assay. J Med Genet.2000;37(9):E19.
    10. Demars J, Rossignol S, Netchine I, Lee KS, Shmela M, Faivre L, Weill J, Odent S, Azzi S, Callier P, Lucas J, Dubourg C, Andrieux J, Bouc YL, El-Osta A, Gicquel C.New insights into the pathogenesis of Beckwith-wiedemann and Silver-russell syndromes:Contribution of small copy number variations to 11p15 imprinting defects.Hum Mutat.2011; 32(10):1171-82.
    11.Wu J, Qin Y, Li B, He WZ, Sun ZL. Hypomethylated and hypermethylated profiles of H19DMR are associated with the aberrant imprinting of IGF2 and H19 in human hepatocellular carcinoma. Genomics.2008;91:443-50.
    12. Ferguson-Smith AC, Cattanach BM, Barton SC, Beechey CV, Surani MA. Embryological and molecular investigations of parental imprinting on mouse chromosome 7. Nature.1991;351:667-70.
    13. Jin RJ, Lho Y, Wang Y, Ao M, Revelo MP, Hayward SW, et al. Down-regulation of p57Kip2 induces prostate cancer in the mouse. Cancer Res.2008;68:3601-8.
    14. Horike S, Mitsuya K, Meguro M, Kotobuki N, Kashiwagi A, Notsu T, Schulz TC, Shirayoshi Y, Oshimura M.Targeted disruption of the human LIT1 locus defines a putative imprinting control element playing an essential role in Beckwith-Wiedemann syndrome. Hum Mol Genet.2000;9(14):2075-83.
    15. Grandjean V, Smith J, Schofield PN, Ferguson-Smith AC. Increased IGF-Ⅱ protein affects p57kip2 expression in vivo and in vitro:implications for Beckwith-Wiedemann syndrome. Proc Natl Acad Sci U S A.2000; 97:5279-84.
    16. Kanber D, Buiting K, Zeschnigk M, Ludwig M, Horsthemke B. Low frequency of imprinting defects in ICSI children born small for gestational age. Eur J Hum Genet. 2009;17(1):22-9.
    17. Cheng YW, Idrees K, Shattock R, Khan SA, Zeng Z, Brennan CW, et al. Loss of imprinting and marked gene elevation are 2 forms of aberrant IGF2 expression in colorectal cancer. Int J Cancer.2010;127:568-77.
    18. Apostolidou S, Abu-Amero S, O'Donoghue K, Frost J, Olafsdottir O, Chavele KM, Whittaker JC, Loughna P, Stanier P, Moore GE.Elevated placental expression of the imprinted PHLDA2 gene is associated with low birth weight. J Mol Med (Berl). 2007; 85(4):379-87.
    19. Gronskov K, Poole RL, Hahnemann JM, Thomson J, Tumer Z, Brondum-Nielsen K, Murphy R, Ravn K, Melchior L, Dedic A, Dolmer B, Temple IK, Boonen SE, Mackay DJ. Deletions and rearrangements of the H19/IGF2 enhancer region in patients with Silver-Russell syndrome and growth retardation. J Med Genet. 2011;48(5):308-11.
    20. Egger G, Liang G, Aparicio A, Jones PA. Epigenetics in human disease and prospects for epigenetic therapy. Nature.2004;429:457-63.
    21. Khazamipour N, Noruzinia M, Fatehmanesh P, Keyhanee M, Pujol P. MTHFR promoter hypermethylation in testicular biopsies of patients with non-obstructive azoospermia:the role of epigenetics in male infertility. Hum Reprod. 2009;24:2361-4.
    22. Nativio R, Sparago A, Ito Y, Weksberg R, Riccio A, Murrell A.Disruption of genomic neighbourhood at the imprinted IGF2-H19 locus in Beckwith-Wiedemann syndrome and Silver-Russell syndrome. Hum Mol Genet.2011;20(7):1363-74.
    23. Lin RK, Hsieh YS, Lin P, Hsu HS, Chen CY, Tang YA, Lee CF, Wang YC.The tobacco-specific carcinogen NNK induces DNA methyltransferase 1 accumulation and tumor suppressor gene hypermethylation in mice and lung cancer patients. J Clin Invest.2010; 120(2):521-532.
    24. Nabilsi NH, Broaddus RR, Loose DS. DNA methylation inhibits p53-mediated survivin repression. Oncogene.2009;28(19):2046-50.
    25. Xu Q, Jiang Y, Yin Y, Li Q, He J, Jing Y, Qi YT, Xu Q, Li W, Lu B, Peiper SS, Jiang BH, Liu LZ. A regulatory circuit of miR-148a/152 and DNMT1 in modulating cell transformation andtumor angiogenesis through IGF-IR and IRS1. J Mol Cell Biol. 2012 Oct 10. [Epub ahead of print]
    1. Kansal Kalra S, Ratcliffe SJ, Milman L, Gracia CR, Coutifaris C, Barnhart KT. Perinatal morbidity after in vitro fertilization is lower with frozen embryo transfer. Fertil Steril.2011;95(2):548-53.
    2. Luke B, Brown MB, Morbeck DE, Hudson SB, Coddington CC 3rd, Stern JE. Factors associated with ovarian hyperstimulation syndrome (OHSS) and its effect on assisted reproductive technology (ART) treatment and outcome. Fertil Steril. 2010;94(4):1399-404.
    3. Bonagura TW, Pepe GJ, Enders AC, Albrecht ED.Suppression of extravillous trophoblast vascular endothelial growth factor expression and uterine spiral artery invasion by estrogen during early baboon pregnancy. Endocrinology. 2008;149(10):5078-87.
    4. Heijmans BT, Tobi EW, Stein AD, Putter H, Blauw GJ, Susser ES, Slagboom PE, Lumey LH. Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc Natl Acad Sci U S A.2008; 105(44):17046-9.
    5. Jin RJ, Lho Y, Wang Y, Ao M, Revelo MP, Hayward SW, et al. Down-regulation of p57Kip2 induces prostate cancer in the mouse. Cancer Res.2008;68:3601-8.
    6. Shin JY, Fitzpatrick GV, Higgins MJ. Two distinct mechanisms of silencing by the KvDMRl imprinting control region. EMBO J.2008; 27(1):168-78.
    7. Lee CF, Ou DS, Lee SB, Chang LH, Lin RK, Li YS, Upadhyay AK, Cheng X, Wang YC, Hsu HS, Hsiao M, Wu CW, Juan LJ. hNaalOp contributes to tumorigenesis by facilitating DNMT1-mediated tumor suppressor gene silencing. J Clin Invest. 2010;120(8):2920-30.
    8. Lin RK,Hsieh YS,Lin P,Hsu HS, Chen CY,Tang YA,Lee CF,Wang YC.The tobacco-specific carcinogen NNK induces DNA methyltransferase 1 accumulation and tumor suppressor gene hypermethylation in mice and lung cancer patients. J Clin Invest.2010; 120(2):521-532.
    9. Nabilsi NH, Broaddus RR, Loose DS. DNA methylation inhibits p53-mediated survivin repression. Oncogene.2009;28(19):2046-50.
    10. Xu Q, Jiang Y, Yin Y, Li Q, He J, Jing Y, Qi YT, Xu Q, Li W, Lu B, Peiper SS, Jiang BH, Liu LZ. A regulatory circuit of miR-148a/152 and DNMT1 in modulating cell transformation andtumor angiogenesis through IGF-IR and IRS1. J Mol Cell Biol. 2012 Oct 10. [Epub ahead of print]
    11. Maher ER, Reik W. Beckwith-Wiedemann syndrome:imprinting in clusters revisited. J Clin Invest.2000;105(3):247-52.
    12. De Marco P, Bartella V, Vivacqua A, Lappano R, Santolla MF, Morcavallo A, Pezzi V, Belfiore A, Maggiolini M. Insulin-like growth factor-I regulates GPER expression and function in cancer cells. Oncogene.2013;32(6):678-88.
    13. Hodgin JB, Krege JH, Reddick RL, Korach KS, Smithies O, Maeda N. Estrogen receptor alpha is a major mediator of 17 beta-estradiol's atheroprotective effects on lesion size in Apoe-/-mice. J Clin Invest.2001;107(3):333-40.
    14. Deroo BJ, Korach KS. Estrogen receptors and human disease. J Clin Invest. 2006;116(3):561-70.
    15. Shang Y, Hu X, DiRenzo J, Lazar MA, Brown M. Cofactor dynamics and sufficiency in estrogen receptor-regulated transcription. Cell.2000; 103(6):843-52.
    16. de Assis S, Warri A, Cruz MI, Laja O, Tian Y, Zhang B, Wang Y, Huang TH, Hilakivi-Clarke L. High-fat or ethinyl-oestradiol intake during pregnancy increases mammary cancer risk in several generations of offspring. Nat Commun.2012;3:1053.
    17. Anway MD, Cupp AS, Uzumcu M, Skinner MK. Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science.2005;308(5727):1466-9.
    18. Jair KW, Bachman KE, Suzuki H, Ting AH, Rhee I, Yen RW, Baylin SB, Schuebel KE. De novo CpG island methylation in human cancer cells. Cancer Res.2006 Jan 15;66(2):682-92.
    19. Feltus FA, Lee EK, Costello JF, Plass C, Vertino PM. Predicting aberrant CpG island methylation. Proc Natl Acad Sci U S A.2003 Oct 14;100(21):12253-8.
    20. Sato K, Fukata H, Kogo Y, Ohgane J, Shiota K, Mori C. Neonatal exposure to diethylstilbestrol alters expression of DNA methyltransferases and methylation of genomic DNA in the mouse uterus. Endocr J.2009;56(1):131-9.
    21. Amita M, Takahashi T, Tsutsumi S, Ohta T, Takata K, Henmi N, Hara S, Igarashi H, Takahashi K, Kurachi H. Molecular mechanism of the inhibition of estradiol-induced endometrial epithelial cell proliferation by clomiphene citrate. Endocrinology. 2010;151(1):394-405.
    22.Hodgin JB, Krege JH, Reddick RL, Korach KS, Smithies O, Maeda N. Estrogen receptor alpha is a major mediator of 17 beta-estradiol's atheroprotective effects on lesion size in Apoe-/-mice. J Clin Invest.2001;107(3):333-40.
    23.Deroo BJ, Korach KS. Estrogen receptors and human disease. J Clin Invest. 2006;116(3):561-70.
    24.Lo R, Burgoon L, Macpherson L, Ahmed S, Matthews J. Estrogen receptor-dependent regulation of CYP2B6 in human breast cancer cells. Biochim Biophys Acta.2010;1799(5-6):469-79.
    1. Savage T, Peek J, Hofinan PL, Cutfield WS. Childhood outcomes of assisted reproductive technology.Hum Reprod.2011;26(9):2392-400.
    2.Ludwig AK, Sutcliffe AG, Diedrich K, Ludwig M. Post-neonatal health and development of children born after assisted reproduction:a systematic review of controlled studies. Eur J Obstet Gynecol Reprod Biol.2006;127(1):3-25.
    S.Ceelen M, van Weissenbruch MM, Vermeiden JP, van Leeuwen FE, Delemarre-van de Waal HA. Growth and development of children born after in vitro fertilization. Fertil Steril.2008;90(5):1662-73.
    4.Cetin I, Cozzi V, Antonazzo P. Fetal development after assisted reproduction--a review. Placenta.2003;24 Suppl B:S104-13.
    5. Rosenwaks Z, Bendikson K. Further evidence of the safety of assisted reproductive technologies. Proc Natl Acad Sci U S A.2007; 104(14):5709-10.
    6.Sutcliffe AG, Ludwig M. Outcome of assisted reproduction. Lancet. 2007;370(9584):351-9..
    7.MMWR. Assisted reproductive technology surveillance-United States,2009. Surveill Summ.2012;61(7):1-23.
    8. Hazekamp J, Bergh C, Wennerholm UB, Hovatta O, Karlstrom PO, Selbing A. Avoiding multiple pregnancies in ART:consideration of new strategies. Hum Reprod. 2000;15(6):1217-9.
    9.Zhu JL, Basso O, Obel C, Bille C, Olsen J. Infertility, infertility treatment, and congenital malformations:Danish national birth cohort. BMJ.2006 30; 333 (7570):679.
    10.Hazekamp J, Bergh C, Wennerholm UB, Hovatta O, Karlstrom PO, Selbing A. Avoiding multiple pregnancies in ART:consideration of new strategies. Hum Reprod. 2000;15(6):1217-9.
    11.International Committee for Monitoring Assisted Reproductive Technology, de Mouzon J, Lancaster P, Nygren KG, Sullivan E, Zegers-Hochschild F,Mansour R, Ishihara O, Adamson D. World collaborative report on Assisted Reproductive Technology,2002. Hum Reprod.2009;24(9):2310-20.
    12.Kalra SK, Molinaro TA. The association of in vitro fertilization and perinatal morbidity. Semin Reprod Med.2008;26(5):423-35.
    13. Welmerink DB,Voigt LF, Daling JR, Mueller BA. Infertility treatment use in relation to selected adverse birth outcomes. Fertil Steril.2010;94(7):2580-6
    14.Steel AJ, Sutcliffe A. Long-term health implications for children conceived by IVF/ICSI. Hum Fertil (Camb).2009;12(1):21-7.
    15.Diaz-Garcia C, Estella C, Perales-Puchalt A, Simon C. Reproductive medicine and inheritance of infertility by offspring:the role of fetal programming. Fertil Steril.2011;96(3):536-45.
    16. Romundstad LB, Romundstad PR, Sunde A, von During V, Skjaerven R, Gunnell D, Vatten LJ. Effects of technology or maternal factors on perinatal outcome after assisted fertilisation:a population-based cohort study. Lancet.2008; 372(9640): 737-43.
    17. Basatemur E, Sutcliffe A. Follow-up of children born after ART. Placenta. 2008;29 Suppl B:135-40.
    18.Lidegaard O, Pinborg A, Andersen AN. Imprinting diseases and IVF:Danish National IVF cohort study. Hum Reprod.2005;20(4):950-4.
    19.Stromberg B, Dahlquist G,Ericson A, Finnstrom O, Koster M, Stjernqvist K. Neurological sequelae in children born after in-vitro fertilisation:a population-based stu dy. Lancet.2002;359(9305):461-5.
    20.Middelburg KJ, Haadsma ML, Heineman MJ, Bos AF, Hadders-Algra M. Ovarian hyperstimulation and the in vitro fertilization procedure do not influence early neuromotor development; a history of subfertility does. Fertil Steril.2010;93(2):544-53.
    21.Kramer S, Ward E, Meadows AT, Malone KE. Medical and drug risk factors associated with neuroblastoma:a case-control study. J Natl Cancer Inst. 1987;78(5):797-8041.
    22.Skora D, Frankfurter D. Adverse perinatal events associated with ART. Semin Reprod Med.2012 Apr;30(2):84-91.
    23.Moll AC, Imhof SM, Cruysberg JR, Schouten-van Meeteren AY, Boers M, van Leeuwen FE. Incidence of retinoblastoma in children born after in-vitro fertilisation. Lancet.2003;361(9354):309-10.
    24.Bruinsma F, Venn A, Lancaster P, Speirs A, Healy D. Incidence of cancer in children born after in-vitro fertilization. Hum Reprod.2000;15(3):604-7.
    25.Vulliemoz NR, McVeigh E, Kurinczuk J. In vitro fertilisation:perinatal risks and early childhood outcomes. Hum Fertil (Camb).2012;15(2):62-8.
    26.Wen J, Jiang J, Ding C, Dai J, Liu Y, Xia Y, Liu J, Hu Z. Birth defects in children conceived by in vitro fertilization and intracytoplasmic sperm injection: ameta-analysis. Fertil Steril.2012;97(6):1331-7.e1-4.
    27. Bukulmez O. Does assisted reproductive technology cause birth defects? Curr Opin Obstet Gynecol.2009;21(3):260-4.
    28.Vulliemoz NR, McVeigh E, Kurinczuk J. In vitro fertilisation:perinatal risks and early childhood outcomes. Hum Fertil (Camb).2012;15(2):62-8.
    29.Davies MJ, Moore VM, Willson KJ,Van Essen P, Priest K, Scott H, Haan EA, Chan A.Reproductive technologies and the risk of birth defects. N Engl J Med.2012;366(19):1803-13.
    30.Odom LN, Segars J. Imprinting disorders and assisted reproductive technology. Curr Opin Endocrinol Diabetes Obes.2010;17(6):517-22.
    31. Eroglu A, Layman LC. Role of ART in imprinting disorders.Semin Reprod Med.2012;30(2):92-104
    32.Kuentz P, Bailly A, Faure AC, Blagosklonov O, Amiot C, Bresson JL, Roux C. Child with Beckwith-Wiedemann syndrome born after assisted reproductive techniques to an human immunodeficiency virus serodiscordant couple. Fertil Steril. 2011;96(1):e35-8.
    33.Choufani S, Shuman C, Weksberg R. Beckwith-Wiedemann syndrome. Am J Med Genet C Semin Med Genet.2010;154C(3):343-54.
    34.Manipalviratn S, DeCherney A, Segars J. Imprinting disorders and assisted reproductive technology. Fertil Steril.2009;91(2):305-15.
    35.Lidegaard O, Pinborg A, Andersen AN. Imprinting diseases and IVF:Danish National IVF cohort study. Hum Reprod.2005;20(4):950-4.
    36.Owen CM, Segars JH Jr. Imprinting disorders and assisted reproductive technology. Semin Reprod Med.2009;27(5):417-28.
    37.Fortier AL, Lopes FL, Darricarrere N, Martel J, Trasler JM. Superovulation alters the expression of imprinted genes in the midgestation mouse placenta. Hum Mol Genet.2008;17(11):1653-65.
    38.Stouder C, Deutsch S, Paoloni-Giacobino A. Superovulation in mice alters the methylation pattern of imprinted genes in the sperm of the offspring. Reprod Toxicol. 2009;28(4):536-41.
    39.Market-Velker BA, Zhang L, Magri LS, Bonvissuto AC, Mann MR. Dual effects of superovulation:loss of maternal and paternal imprinted methylation in a dose-dependent manner. Hum Mol Genet.2010;19(1):36-51.
    40.Wilkins-Haug L.Assisted reproductive technology, congenital malformations, and epigeneticdisease. Clin Obstet Gynecol.2008;51(1):96-105
    41.Marchesi DE, Qiao J, Feng HL. Embryo manipulation and imprinting. Semin Reprod Med.2012;30(4):323-34.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700