硫系玻璃的光致改性与微光子学器件研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硫系玻璃材料由于具有高折射率、宽红外透明窗口、极高的光学非线性,以及丰富的光敏性如光致相变、光致聚合和光致暗化等性质,是重要的光学材料,在非线性集成光学器件、高密度光存储和生物光子学上有巨大的应用潜力。本文围绕着如何提升硫系玻璃的光学性质及制备微纳光子学结构和器件开展了系列研究工作。
     首先,我们利用中心波长为780 nm飞秒激光与波长为579 nm连续激光对As2S3玻璃进行了照射,研究超短脉冲双光子激发和亚带隙的连续激光激发引发材料的不同光学性质(线性和非线性光学性质)改变。接着,我们利用了中心波长为800 nm飞秒激光对硫系玻璃的不同作用(包括激光表面烧蚀,激光内部破坏和激光诱导选择性腐蚀),在As2S3体材料玻璃上制作了不同的微纳光子学结构。最后,我们成功制作出硫系玻璃的微纳光纤,并将微纳光纤转移到硅基片上形成掩埋型波导,成功制备了高Q微谐振腔等不同类型的微纳光子学器件,并实现了窄带滤波、超连续光产生等不同的功能。
     本论文的创新点主要有以下几点:
     1.通过飞秒激光与连续激光实现了对As2S3硫系玻璃非线性折射率的调节,其中飞秒激光能增强非线性折射率最高达50%,而连续激光能减弱非线性折射率最高达60%。我们对其变化的原因进行了讨论。提出了两种激光产生了不同的缺陷,飞秒激光产生的变价对缺陷能增强样品三阶光学非线性系数,而亚带隙连续激光产生的同极键缺陷则会降低其三阶光学非线性系数。
     2.我们利用了飞秒激光对硫系玻璃的不同作用在As2S3体材料玻璃制作了不同的微纳光子学结构。利用飞秒激光对材料的表面烧蚀,在多脉冲照射情况下产生周期为180 nm的纳米光栅,在单脉冲照射下产生直径为200 nm的纳米洞结构。并通过系列的实验验证了产生纳米光栅的理论。指出在硫系玻璃内,激光诱导等离子体的非均匀生长可能是产生纳米光栅的主要原因。研究了飞秒激光暗化后材料在有机胺类溶液的选择性腐蚀效应,制作出宽为2.5μm的微管。
     3.制作出的基板上的掩埋型硫系玻璃微纳光子学器件。通过熔融拉锥方法制作出直径最小可达200 nm的As2S3玻璃光纤,并成功地将微纳光纤掩埋于聚合物SU8胶中并固定并保护在硅基板上。制作出低传输损耗的波导与高Q值的结形微腔。利用532 nm连续激光的照射,实现了结形微腔共振波长的调节,调节范围约1.5 nm。通过中心波长在1560 nm的飞秒激光泵浦直径为1μmm长度为7 cm的直波导,在脉冲能量为2 nJ的情况下,实现了光谱宽度为500 nm的激光超连续展宽。
Chalcogenide glasses, which possess high refractive index, wide transparent window and ultrahigh optical nonlinearity and rich photo-induced effects, such as phase changing, photopolymerization, and photodarkening upon light exposure, are very important optical materials. These glasses are excellent candidates for diverse applications including nonlinear and reconfigurable photonic chip devices, high density optical data storage, and biophotonic devices. In this thesis, we focused our research on how to improve the optical properties of chalcogenide glasses and fabrication of micro/nano structures and devices.
     Firstly, As2S3 glasses were exposed by femtosecond (fs) laser at 780 nm and continuous wave (CW) laser at 579 nm. The different changes in linear and nonlinear optical properties induced by the two-photon excitation of short pulse laser and sub-bandgap excitation of CW laser were also studied. Secondly, we used different laser-glass interactions (laser ablation, laser induced damaging inside material and laser induced selective etching) induced by fs laser at 800 nm to fabricate varieties of photonic structures in As2S3 bulk glasses. Thirdly, we successfully fabricated chalcogenide micro/nano fibers and transferred them on silicon chips to form buried optical waveguides. Different kinds of functions, such as narrow band filtering and super continuum generation, were demonstrated as well.
     The main achievements of this thesis are as follows:
     1. The third order optical nonlinearity of As2S3 glasses was tuned by fs laser and CW laser. The fs laser could enhance the nonlinear refractive index up to 50%, while the CW laser could suppress the nonlinear refractive index down to 60%. Then we discussed the origins of the changes induced by the lasers. We point out that two lasers induce different kinds of defects. The fs laser could induce valence alternation pairs to enhance the third order nonlinearity and the CW sub-bandgap laser could induce homopolar bonds to decrease the third order nonlinearity.
     2. We used different laser-glass interactions in As2S3 bulk glasses to fabricate varieties of photonic structures. By using laser ablations, nanogratings with a period of 180 nm were realized by multi-pulse irradiation, and nanoholes as small as 200 nm in diameter were fabricated by single pulse irradiation. The theories of generation of nanogratings were verified by series of experiments. We point out that the irregular growth of laser induced plasmas could be the main reason for the generation of nanogratings in chalcogenide glasses. And we studied the selective etching of chalcogenide glasses after laser irradiation and produced 2.5-μm-width micro channels.
     3. We have fabricated on-chip buried chalcogenide micro/nano photonic devices. Nano fibers in diameters of 200 nm were drawn by fiber tapering method. The fibers were then mounted on silicon chip and protected by polymers (SU8). On-chip low optical loss waveguides and high-Q micro knot resonators were fabricated. The post tuning in a range of about 1.5 nm of micro knot resonators were demonstrated by irradiation of CW laser at 532 nm as well. By pumping with an fs laser at 1560 nm in pulse energy of 2 nJ, supercontinuum generation with bandwidth of 500 nm was achieved in a 1-μm-wide 7-cm-long chalcogenide waveguide.
引文
[1]P. E. Green. Fiber Optic Networks [M]. New Jersey:Eagle Cliffs,1993:1-20.
    [2]K. C. Kao, G. A. Hockham. Dielectric-fibre surface waveguides for optical frequencies [J]. IEE Proceedings,1966,113(7):1151-1158.
    [3]W. J. Miniscalco. Erbium-doped glasses for fiber amplifiers at 1500 nm [J]. IEEE Journal of Lightwave Technology,1991,9(2):234-250.
    [4]K. Smith, J. K. Lucek, R. J. Manning, K. J. Blow. Advances in nonlinear optics for information processing and all-optical networking [J]. Philosophical Transactions: Mathematical, Physical and Engineering Sciences,1996,354(1708):707-717.
    [5]T. Yamamolo, E. Yoshida, M. Nakazawa. Ultrafast nonlinear optical loop mirror for demultiplexing 640 Gbit/s TDM signals [J]. Electronics Letters,1998,34(10):1013-1014.
    [6]K. Uchiyama, T. Morioka, M. Saruwatari, M. Asobe, T. Ohara. Error free all-optical demultiplexing using a chalcogenide glass fiber based nonlinear optical loop mirror [J]. Electronics Letters,1996,32(17):1601-1602.
    [7]E. Tangdiongga, Y. Liu, H. De Waardt, G. D. Khoe, A. M. J. Koonen, H. J. S. Dorren. All-optical demultiplexing of 640 to 40 Gbits/s using filtered chirp of a semiconductor optical amplifier [J]. Optics Letters,2007,32(7):835-837.
    [8]M. R. E. Lamont, V. G. Ta'eed, M. A. F. Roelens, D. J. Moss, B. J. Eggleton, D.-Y. Choi, S. Madden, B. Luther-Davies. Error-free wavelength conversion via cross-phase modulation in 5cm of As2S3 chalcogenide glass rib waveguide [J]. Electronics Letters,2007,43(17): 945-946.
    [9]M. D. Pelusi, V. G. Ta'eed, M. R. E. Lamont, S. Madden, D.-Y. Choi, B. Luther-Davies, B. J. Eggleton. Ultra-high nonlinear As2S3 planar waveguide for 160-Gb/s optical time-division demultiplexing by four-wave mixing [J]. IEEE Photonics Technology Letters,2007,19(19): 1496-1498.
    [10]A. Zakery, S. R. Elliott. Optical properties and applications of chalcogenide glasses:A review [J]. Journal of Non-Crystalline Solids,2003,330(1-3):1-12.
    [11]刘颂豪,赫光生.强光光学及其应用[M].广东:广东科技出版,1995:7.
    [12]钱十雄,王恭明.非线性光学——原理与进展[M].上海:复旦大学出版社,2001:2.
    [13]W. Boyd. Nonlinear Optics [M]. San Diego:Academic Press,1992:1-54.
    [14]Y. R. Shen. The Principles of Nonlinear Optics [M]. United States:John Wiley & Sons, Inc., 1984:1-40.
    [15]石顺祥,陈国夫,赵卫,刘继芳.非线性光学[M].西安:西安电子科技大学出版社, 2003:1-32.
    [16]G. P. Agrawal. Nonlinear Fiber Optics & Applications of Nonlinear Fiber Optics [M]. United States:Elsevier Science,2001:63-69.
    [17]M. Asobe. Nonlinear Optical properties of chalcogenide glass fibers and their application to all-optical switching [J]. Optical Fiber Technology,1997,3(2):142-148.
    [18]M. Asobe, T. Kanamori, K. Kubodera. Ultrafast all-optical switching using highly nonlinear chalcogenide glass fiber [J]. IEEE Photonics Technology Letters,1992,4(4):362-365.
    [19]N. J. Dorran, D. Wood. Nonlinear-optical loop mirror [J]. Optics Letters,1988,13(1):56-58.
    [20]M. Asobe, T. Ohara, I. Yokohama, T. Kaino. Low power all-optical switching in a nonlinear optical loop mirror using chalcogenide glass fiber [J]. Electronic Letters,1996,32(15): 1396-1397.
    [21]H. Keller, S. Pereira, J. E. Sipe. Grating enhanced all-optical switching in a Mach-Zehnder interferometer [J]. Optics Communications,1999,170(1-3):35-40.
    [22]M. J. Potasek, Y.Yang. Multiterabit-per-second all-optical switching in a nonlinear directional coupler [J]. IEEE Journal of Selected Topics in Quantum Electronics.2002,8(3): 714-720.
    [23]S. Pereira, P, Chak, J. E. Sipe. All-optical AND gate by use of a Kerr nonlinear microsonator structure [J]. Optics Letters,2003,28(6):444-446.
    [24]I. S. Fogel, J. M. Bendickson, M. D. Tocci, M. J. Bloemer, M. Scolora, C. M. Bowden, J. P. Dowling. Spontaneous emission and nonlinear effects in photonic bandgap materials [J]. Pure and Applied Optics,1998,7(2):393-407.
    [25]T. Durhuus, B. Mikkelsen, C. Joergensen. All-Optical wavelength conversion by semiconductor optical amplifiers [J]. IEEE Journal of Lightwave Technology,1996,14(6): 942-954.
    [26]F. Luan, M. D. Pelusi, M. R.E. Lamont, D. Y. Choi, S. Madden, B. Luther-Davies, B. J. Eggleton. Dispersion engineered As2S3 planar waveguides for broadband four-wave mixing based wavelength conversion of 40 Gb/s signals [J]. Optics Express,2009,17(5): 3514-3520.
    [27]P. V. Mamyshev, All-optical data regeneration based on self-phase modulation effect [A]. In IEEE.24th European Conference on Optical Communication [C]. Madrid:IEEE,2002: 475-476.
    [28]V. G. Ta'eed, M. Shokooh-Saremi, L. Fu, I. C. M. Littler, D. J. Moss, M. Rochette, B. J. Eggleton, Y. Ruan, B. Luther-Davies. Self-phase modulation-based integrated optical regeneration in chalcogenide waveguides [J]. IEEE Journal of Selected Topics in Quantum Electronics,2006,12(3):360-370.
    [29]J. Zarzycki. Glasses and Amorphous Materials [M]. New York:Wiley,2001:330-333.
    [30]G. Chaussemy, J. Fornazero, J. M. Mackowski. Relationship between viscosity and structure in AsxS1-x molten materials [J]. Journal of Non-Crystalline Solids,1983,58(2-3):219-234.
    [31]S. R. Ovshinsky. Reversible electrical switching phenomena in disordered structures [J]. Physical Review Letters,1968,21(20):1450-1453.
    [32]J. A. Savage. Optical properties of chalcogenide glasses [J]. Journal of Non-Crystalline Solids,1982,47(1):101-115.
    [33]B. Bureau, X. H. Zhang, F. Smektala, J. Adam, J. Troles, H. Ma, C. Boussard-Pledel, J. Lucas, P. Lucas, D. Le Coq, M. Riley, J. H. Simmons. Recent advances in chalcogenide glasses [J].2004,345-346(10):276-283.
    [34]张振远,凌根华.硫系玻璃红外光纤[J].玻璃纤维,2005,2(22):15-18.
    [35]V. Q. Nguyen, J. S. Sanghera, B. Cole, P. Pureza, F. H. Kung, I. D. Aggarwal. Fabrication of arsenic sulfide optical fiber with low hydrogen impurities [J]. Journal of the American Ceramic Society,2002,85(8):2056-2058.
    [36]J. Fatome, C. Fortier, T. N. Nguyen, T. Chartier, F. Smektala, K. Messaad, B. Kibler, S. Pitois, G. Gadret, C. Finot, J. Troles, F. Desevedavy, P. Houizot, G. Renversez, L. Brilland, N. Traynor. Linear and nonlinear characterizations of chalcogenide photonic crystal fibers [J]. IEEE Journal of Lightwave Technology,2009,27(11):1707-1715.
    [37]I. D. Aggarwal, J. S. Sanghera. Development and applications of chalcogenide glass optical fibers at NRL [J]. Journal of Optolectronics and Advanced Materials,2002,4(3):665-678.
    [38]E. M. Dianov, M. Y. Petrov, V. G. Plotnichenko, V. K. Sysoev. Estimate of the minimum optical losses in chalcogenide glasses [J]. Soviet Journal of Quantum Electronics,1982, 12(4):498-499.
    [39]G. G. Devyatykh, M. F. Churbanov, I. V. Scripachev, G. E. Snopatin, E. M. Dianov, V. G. Plotnichenko. Recent developments in As-S glass fibres [J]. Journal of Non-Crystalline Solids,1999,256-257(2):318-322.
    [40]L. B. Fu, M. Rochette, V. G. Ta'eed, D. J. Moss, B. J. Eggleton. Investigation of self-phase modulation based optical regeneration in single mode As2Se3 chalcogenide glass fiber [J]. Optics Express,2005,13(19):7637-7644.
    [41]A. J. Apling, A. J. Leadbetter, A. C. Wright. A comparison of the structures of vapour-deposited and bulk arsenic sulphide glasses [J]. Journal of Non-Crystalline Solids, 1977,23(3):369-384.
    [42]A. V. Rode, A. Zakery, M. Samoc, R. B. Charters, E. G. Gamaly, B. Luther-Davies. Laser-deposited As2S3 chalcogenide films for waveguide applications [J]. Applied Surface Science,2002,197-198(30):481-485.
    [43]S. J. Madden, D. Y. Choi, D. A. Bulla, A. V. Rode, B. Luther-Davies, V. G. Ta'eed, M. D. Pelusi, B. J. Eggleton. Long, low loss etched AS2S3 chalcogenide waveguides for all-optical signal regeneration [J]. Optics Express,2007,15(22):14414-14421.
    [44]J. F. Viens, C. Meneghini, A. Villeneuve, T. V. Galstian, E. J. Knystautas, M. A. Duguay, K. A. Richardson, T. Cardinal. Fabrication and characterization of integrated optical waveguides in sulfide chalcogenide glasses [J]. Journal of Lightwave Technology,1999, 17(7):1184-1191.
    [45]N. Ho, M. C. Phillips, H. Qiao, P. J. Allen, K. Krishnaswami, B. J. Riley, T. L. Myers, N. C. Anheier. Single-mode low-loss chalcogenide glass waveguides for the mid-infrared [J]. Optics Letters,2006,31(12):1860-1862.
    [46]K. Suzuki, K. Ogusu, M. Minakata. Single-mode Ag-As2Se3 strip-loaded waveguides for applications to all-optical devices [J]. Optics Express,2005,13(21):8634-8641.
    [47]V. G. Ta'eed, M. R. E. Lamont, D. J. Moss, B. J. Eggleton, D. Y. Choi, S. Madden, B. Luther-Davies. All optical wavelength conversion via cross phase modulation in chalcogenide glass rib waveguides [J]. Optics Express,2006,14(23):11242-11247.
    [48]M. Galili, J. Xu, H. C. Mulvad, L. K. Oxenlowe, A. T. Clausen, P. Jeppesen, B. Luther-Davies, S. Madden, A. Rode, D. Y. Choi, M. Pelusi, F. Luan, B. J. Eggleton. Breakthrough switching speed with an all-optical chalcogenide glass chip:640 Gbit/s demultiplexing [J]. Optics Express,2009,17(4):2182-2187.
    [1]L. Cervinka, A. Hruby. Structure of amorphous and glassy Sb2S3 and its connection with the structure of As2X3 arsenic chalcogenide glasses [J]. Journal of Non-Crystalline Solids,1982, 48(2-3):231-264.
    [2]D. J. Treacy. Handbook of optical constants of solids [M]. London:Academic Press,1985: 70.
    [3]A. J. Leadbetter, A. J. Apling. Diffraction studies of glass structure [J]. Journal of Non-Crystalline Solids,1974,15(7):250-268.
    [4]R. Zallen. The Physics of Amorphous Solids [M]. New York:Wiley,1998:64-65.
    [5]S. G. Bishop, N. J. Shevchik. Densities of valence states of amorphous and crystalline AS2S3, As2Se3, and As2Te3:X-ray photoemission and theory [J]. Physical Review B,1975,12(4): 1567-1578.
    [6]P. J. S. Ewen, A. E. Owen. Resonance Raman scattering in As-S glasses [J]. Journal of Non-Crystalline Solids,1980,35-36(2):1191-1196.
    [7]K. Tanaka, S. Gohda, A. Odajima. Interrelations between optical absorption edges and structural order in glassy As2S3 [J]. Solid State Communications,1985,56(10):899-903.
    [8]H. Kawazoe, H. Yanagita, Y. Watanabe, M. Yamane. Imperfections in amorphous chalcogenides. I. Electrically neutral defects in liquid sulfur and arsenic sulfides [J]. Physical Review B,1988,38(8):5661-5667.
    [9]M. A. Kastner. Bonding bands, lone-pair bands, and impurity states in chalcogenide semiconductors [J]. Physical Review Letters,1972,28(6):355-357.
    [10]P. W. Anderson. Model for the electronic structure of amorphous semiconductors [J]. Physical Review Letters,1975,34(15):953-955.
    [11]N. F. Mott, E. A. Davis, R. A. Street. States in the gap and recombination in amorphous semiconductors [J]. Philosophical Magazine,32(5):961-966.
    [12]M. A. Kastner, D. Adler, H. Fritzsche. Valence-alternation model for localized gap states in lone-pair semiconductors [J]. Physical Review Letters,1976,37(22):1504-1507.
    [13]D. Vanderbilt, J. D. Joannopoulos. Theory of defect states in glassy As2Se3 [J]. Physical Review B,1981,23(6):2596-2606.
    [14]N. F. Mott, E. A. Davis. Electronic Properties of Non-crystalline Semiconductors [M]. Clarendon:Oxford,1979:200-210.
    [15]S. Abe, Y. Toyozawa. Interband absorption spectra of disordered semiconductors in the coherent potential approximation [J]. Journal of the Physical Society of Japan,1981,50(7): 2185.
    [16]C. M. Soukoulis, M.H. Cohen. Exponential band tails [J]. Journal of Non-Crystalline Solids, 1984,66(1-2):279-283.
    [17]U. Strom, J. R. Hendrickson, R. J. Wagner, P. C. Taylor. Disorder-induced far infrared absorption in amorphous materials [J]. Solid State Communications,1974,15(11-12): 1871-1875.
    [18]J. A. Savage. Infrared optical materials and their antireflection coatings [M]. Briistol:Adam hilger,1985:70.
    [19]J. S. Sanghera, I. D. Aggarwal. Infrared fiber optics [M]. United States:CRC press,1998: 90-110.
    [20]J. M. Harbold, F. O. Ilday, F. W. Wise, J. S. Sanghera, V. Q. Nguyen, L. B. Shaw, I. D. Aggarwal. Highly nonlinear As-S-Se glasses for all-optical switching [J]. Optics Letters, 2002,27(2):119-121.
    [21]W. L. Wolf, G. J. Zissis. The Infrared Handbook [M]. Washington DC:Arlington,1978:78.
    [22]R. W. Boyd. Nonlinear Optics [M]. San Diego:Academic Press,1992:1-54.
    [23]H. Kanbera, S. Fujiwara, K. Tanaka, H. Nasu, K. Hirao. Third-order nonlinear optical properties of chalcogenide glasses [J]. Applied Physics Letters,70(8):925.
    [24]Z. H. Zhou, T. Hashimoto, H. Nasu, K. Kamiya. Two-photon absorption and nonlinear refraction of lanthanum sulfide-gallium sulfide glasses [J]. Journal of Applied Physics,1998, 84(5):2380.
    [25]M. Asobe, T. Kanamori, K. Kubodera. Ultrafast all-optical switching using highly nonlinear chalcogenide glass fiber [J]. IEEE Photonics Technology Letters,1992,4(4):362-365.
    [26]M. Asobe, K. Suzuki, T. Kanamori, K. Kubodera. Nonlinear refractive index measurement in chalcogenide-glass fibers by self phase modulation [J]. Applied Physics Letters,1992, 60(10):1153.
    [27]A. Zakery, S. R. Elliott. Optical properties and applications of chalcogenide glasses:a review [J]. Journal of Non-Crystalline Solids,2003,330(1-3):1-12.
    [28]J. M. Harbold, F. O. Ilday, F. W. Wise, J. S. Sanghera, V. Q. Nguyen, L. B. Shaw, I. D. Aggarwal. Highly nonlinear As-S-Se glasses for all-optical switching [J]. Optics Letters, 2002,27(2):119-121.
    [29]K. Tanaka. Photoinduced processes in chalcogenide glasses [J]. Current Opinion in Solid State& Materials Science,1996,1(4):567-571.
    [30]J. Feinleib, J. deNeufville, S. C. Moss, S. R. Ovshinsky. Rapid reversible light-induced crystellization of amorphous semiconductors [J]. Applied Physics Letters,1971,18(6): 254-257.
    [31]A. Mastuda, H. Mizuno, T. Takayama, M. Saito, M. Kikuchi. Stopping effect on guide light in As-S films by laser beam [J]. Applied Physics Letters,1974,24(7):314-315.
    [32]H. Fritzsche. Photo-induced fluidity of chalcogenide glasses [J]. Solid State Communications,1996,99(3):153-155.
    [33]A. V. Kolobov, S. R. Elliott. Photodoping of amorphous chalcogenides by metals [J]. Advances in Physics,1983,40(5):625-684.
    [34]J. H. Horton, C. Hardacre, C. J. Baddeley, G. D. Moggrage, R. M. Ormerod, R. M. Quenching of metal sticking by photo-oxidation of an amorphous semiconductor:Zn on GeS2 [J]. Physical Review B,1995,52(3):2054-2062.
    [35]M. Vlcek, S. Schroeter, J. CCech, T. Wagner, T. Glaser. Selective etching of chalcogenides and its application for fabrication of diffractive optical elements [J]. Journal of Non-Crystalline Solids,2003,326-327(1):515-518.
    [36]D. J. Treacy, U. Strom, P. B. Klein, P. C. Taylor, T. P. Martin. Photostructural effects in glassy As2Se3 and As2S3 [J]. Journal of Non-Crystalline Solids,1980,35-36(2):1035-1039.
    [37]S. Rajagopalan, K. S. Harshavardhan, L. K. Malhotra, K. L. Chopra. Photo-optical changes in Ge-chalcogenide films [J]. Journal of Non-Crystalline Solids,1982,50(1):29-38.
    [38]J. S. Berkes, S. W. Ing, W. J. Hillegas. Photodecomposition of amorphous As2Se3 and As2S3 [J]. Journal of Applied Physics,1971,42(12):4908.
    [39]S. A. Keneman. Hologram Storage in arsenic trisulfide thin films [J]. Applied Physics Letters,1971,19(6):205.
    [40]S. G. Bishop, U. Strom, P. C. Taylor. Optically induced localized paramagnetic states in amorphous semiconductors [J]. Physical Review Letters,1975,36(10):543-547.
    [41]V. G. Zhdanov, B. T. Kolomiets, V. M. Lyubin, V. K. Malinovskii. Photoinduced optical anisotropy in chalcogenide vitreous semiconducting films [J]. Physica Status Solidi (A), 1979,52(2):621-626.
    [42]V. I. Mikla. Photoinduced structural changes and related phenomena in amorphous arsenic chalcogenides [J]. Journal of Physics:Condensed Matter,1996,8(4):429.
    [43]F. Jiang, Y. Xu, M. Jiang, F. Gan. Film preparation and structure analysis of optical recording domains of amorphous Ge-Sb-Te [J]. Journal of Non-Crystalline Solids,1995, 184(1):51-56.
    [44]A. Hirotsune, Y. Miyauchi, M. Terao. New phase-change rewritable optical recording film having well suppressed material flow for repeated rewriting [J]. Applied Physics Letters, 1995,66(18):2312-2314.
    [45]N. Nobukuni, M. Takashima, T. Ohno, M. Horie. Microstructural changes in GeSbTe film during repetitious overwriting in phase-change optical recording [J]. Journal of Applied Physics,1995,78(12):6980-6988.
    [46]T. Ohta. Phase-change optical memory promotes the DVD optical disk [J]. Journal of Optoelectronics and Advanced Materials,2001,3(3):609-626.
    [47]A. V. Kolobovl and S. R. Elliott. Reversible photo-amorphization of crystalline films of As5oSe5o [J]. Journal of Non-Crystalline Solids,1995,189(3):297-300.
    [48]M. Frumar, A. P. Firth, A. E. Owen. Optically induced crystal-to-amorphous-state transition in As2S3 [J]. Journal of Non-Crystalline Solids,1995,192-193(2):447-450.
    [49]O. Matsuda, H. Oe, K. Inoue, K. Murase. Electronic and thermal processes during the photo-induced crystallization of amorphous GeSe2 [J]. Journal of Non-Crystalline Solids, 1995,192-193(2):524-528.
    [50]H. Hamanaka, K. Tanaka, S. Iizima. Reversible photostructural change in melt-quenched As2S3 glass [J]. Solid State Communications,1977,23(1):63-65.
    [51]J. P. DeNeufville, S. C. Moss, S. R. Ovshinsky. Photostructural transformations in amorphous As2Se3 and As2S3 films [J]. Journal of Non-Crystalline Solids,1974,13(2): 191-223.
    [52]S. Wong, M. Deubel, F. Perez-Willard, S. John, G. A. Ozin, M. Wegener, G. von Freymann. Direct laser writing of three-dimensional photonic crystals with complete a photonic bandgap in chalcogenide glasses [J]. Advanced Materials,2006,18(3):265-269.
    [53]K. Tanaka, A. Odajima. Configuration-coordinate model for photodarkening in amorphous As2S3 [J]. Journal of Non-Crystalline Solids,1981,46(3):259-268.
    [54]M. Frumar, M. Vlcek, Z. Cernosek, Z. Polak, T. Wagner. Photoinduced changes of the structure and physical properties of amorphous chalcogenides [J]. Journal of Non-Crystalline Solids,1997,213-214(12):215-224.
    [55]M. B. Myers, E. J. Felty. Structural characterizations of vitreous inorganic polymers by thermal studies [J]. Materials Research Bulletin,1967,2(7):535-546.
    [56]G. Pfeiffer, M. A. Paesler, S. C. Agarwal. Reversible photodarkening of amorphous arsenic chalcogens [J]. Journal of Non-Crystalline Solids,1991,130(2):111-143.
    [57]R. A. Street. Non-radiative recombination in chalcogenide glasses [J]. Solid State Communications,1977,24(5):363-365.
    [58]S. R. Elliott. A unified model for reversible photostructural effects in chalcogenide glasses [J]. Journal of Non-Crystalline Solids,1986,81(1-2):71-98.
    [59]A. V. Kolobov, H. Oyanagi, K. Tanaka, Keiji Tanaka. Structural study of amorphous selenium by in situ EXAFS:Observation of photoinduced bond alternation [J]. Physical Review B,1997,55(2):726-734.
    [60]P. Krecmer, A. M. Moulin, R. J. Stephenson, T. Rayment, M. E. Welland, S. R. Elliott. Reversible nanocontraction and dilatation in a solid induced by polarized light [J]. Science, 1997,277(5333):1799-1802.
    [61]K. Kimura, K. Murayama, T. Ninomiya. Change in optical anisotropy of localized states associated with reversible photostructural change in a-As2S3 films [J]. Journal of Non-Crystalline Solids,1986,77-78(2):1203-1206.
    [62]H. Fritzsche. Optical anisotropies in chalcogenide glasses induced by band-gap light [J]. Physical Review B.1995,52(22):15854-15861.
    [63]V. Tikhomirov, S. R. Elliott. Metastable optical anisotropy in chalcogenide glasses induced by unpolarized light [J]. Physical Review B.1994,49(24):17476-17479.
    [64]I. Janossy, A. Jakli, J. Hajto. Photodarkening and light induced anisotropy in chalcogenide glasses [J]. Solid State Communications,1984,51(10):761-764.
    [65]V. K. Tikhomirov, G. J. Adriaenssens, S. R. Elliott. Temperature dependence of the photoinduced anisotropy in chalcogenide glasses:Activation energies and their interpretation [J]. Physical Review B.1997,55(2):660-663.
    [66]V. Tikhomirov, P. Hertogen, G. Adriaenssens, V. Krasteva, G. Sigel, J. Kirchhof, J. Kobelke, M. Scheffler. Photoinduced anisotropy in Pr-doped sulfide glasses with varying composition and Pr content [J]. Journal of Non-Crystalline Solids,1998,227-230(2):694-699.
    [67]K. Tanaka, K. Ishida, N. Yoshida. Mechanism of photoinduced anisotropy in chalcogenide glasses [J]. Physical Review B,1997,54(13):9190-9195.
    [68]H. Hamanaka, K. Tanaka, A. Matsuda. S. Iizima. Reversible photo-induced volume changes in evaporated As2S3 and As4Se5 gel films [J]. Solid State Communications,1976,19(6): 499-501.
    [69]H. Hisakuni, K. Tanaka. Giant photoexpansion in As2S3 glass [J]. Applied Physics Letters, 1994,65(23):2925-2927.
    [70]H. Hisakuni, K. Tanaka. Optical fabrication of microlenses in chalcogenide glasses [J]. Optics Letters,1995,20(9):958-960.
    [71]T. V. Galstyan, J. F. Viens, A. Villeneuve, K. Richardson, M. A. Duguay. Photoinduced self-developing relief gratings in thin film chalcogenide As2S3 glasses [J]. IEEE Journal of Lightwave Technology,1997,15(8):1343-1347.
    [72]V. V. Poborchii, A. V. Kolobov, K. Tanaka. Photomelting of selenium at low temperature [J]. Applied Physics Letters,1999,74(2):215-217.
    [73]S. Shtutina, M. Klebanov, V. Lyubin, S. Rosenwaks, V. Volterra. Photoinduced phenomena in spin-coated vitreous As2S3 and AsSe films [J]. Thin Solid Films,1995,261(1-2): 263-265.
    [74]S. A. Dumford, J. M. Lavine. Ag2Te/As2S3, a top-surface, high-contrast negative-tone resist for deep ultraviolet submicron lithography [J]. Journal of Vacuum Science & Technology B, 1994,12(1):44-47.
    [1]H. Hamanaka, K. Tanaka, S. Iizima. Reversible photostructural change in melt-quenched As2S3 glass [J]. Solid State Communications,1977,23(1):63-65.
    [2]R. C. Miller. Optical second harmonic generation in piezoelectric crystals [J]. Applied Physics Letters,1964,5(1):17-19.
    [3]M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, E. W. Van Stryland. Dispersion of bound electron nonlinear refraction in solids [J]. IEEE Journal of Quantum Electronics,1991, 27(6):1296-1309.
    [4]J. M. Laniel, N. Ho, R. Vallee, A. Villeneuve. Nonlinear-refractive-index measurement in AS2S3 channel waveguides by asymmetric self-phase modulation [J]. Journal of Optical Society of America B,22(2):437-445.
    [5]A. M. Streltsov, N. F. Borrelli. Fabrication and analysis of a directional coupler written in glass by nanojoule femtosecond laser pulses [J]. Optics Letters,2001,26(1):42-43.
    [6]C. Corbari, J. D. Mills, O. Deparis, B. G. Klappauf, P. G. Kazansky. Thermal poling of glass modified by femtosecond laser irradiation [J]. Applied Physics Letters,2002,81(9): 1585-1587.
    [7]R. W. Boyd. Nonlinear Optics [M]. San Diego:Academic Press,1992:1-54.
    [8]K. M. Davis, K. Miura, N. Sugimoto, K. Hirao. Writing waveguides in glass with a femtosecond laser [J]. Optics Letters,1996,21(21):1729-1731.
    [9]C. B. Schaffer, A. Brodeur, Eric Mazur. Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses [J]. Measurement Science and Technology,2001,12(11):1784.
    [10]E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, V. T. Tikhonchuk. Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation [J]. Physical Review B,2006,73(21):214101.
    [11]P. K. Tien, R. Ulrich, R. J. Martin. Modes of propagating light waves in thin deposit semiconductor films [J]. Applied Physics Letters,1969,14(9):291-294.
    [12]M. Asobe, T. Kanamori, K. Kubodera. Ultrafast all-optical switching using highly nonlinear chalcogenide glass fiber [J]. IEEE Photonics Technology Letters,1992,4(4):362-365.
    [13]R. W. Boyd. Nonlinear Optics [M]. San Diego:Academic Press,1992:28.
    [14]A. V. Kolobov, H. Oyanagi, K. Tanaka, Keiji Tanaka. Structural study of amorphous selenium by in situ EXAFS:Observation of photoinduced bond alternation [J]. Physical Review B,1997,55(2):726-734.
    [15]M. Frumar, M. Vlcek, Z. Cernosek, Z. Polak, T. Wagner. Photoinduced changes of the structure and physical properties of amorphous chalcogenidcs [J]. Journal of Non-Crystalline Solids,1997,213-214(12):215-224.
    [1]R. G. Gattass, E. Mazur. Femtosecond laser micromachining in transparent materials [J]. Nature Photonics,2008,2(4):219-225.
    [2]E. Nicoletti, G. Zhou, B. Jia, M. J. Ventura, D. Bulla, B. Luther-Davies, M. Gu. Observation of multiple higher-order stopgaps from three-dimensional chalcogenide glass photonic crystals [J]. Optics Letters,2008,33(20):2311-2313.
    [3]M. Hughes, W. Yang, D. Hewak. Fabrication and characterization of femtosecond laser written waveguides in chalcogenide glass [J]. Applied Physics Letters,2007,90(13): 131113.
    [4]C. B. Schaffer, A. Brodeur, Eric Mazur. Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses [J]. Measurement Science and Technology,2001,12(11):1784.
    [5]E. N. Glezer, E. Mazur. Ultrafast-laser driven micro-explosions in transparent materials [J]. Applied Physics Letters,1997,71(7):882.
    [6]M. D. Perry, B. C. Stuart, P. S. Banks, M. D. Feit, V. Yanovsky, A. M. Rubenchik. Ultrashort-pulse laser machining of dielectric materials [J]. Journal of Applied Physics, 1999,85(9):6803-6810.
    [7]E. G. Gamaly, A. V. Rode, B. Luther-Davies. Ablation of solids by femtosecond lasers: Ablation mechanism and ablation thresholds for metals and dielectrics [J]. Physics of Plasmas,2002,9(3):949-957.
    [8]A. P. Joglekar, H. Liu, G. P. Spooner, E. Meyhofer, G. Mourou, A. J. Hunti. A study of the deterministic character of optical damage by femtosecond laser pulses and applications to nanomachining [J]. Applied Physics B:Lasers and Optics,2003,77(1):25-30.
    [9]M Birnbaum. Semiconductor surface damage produced by ruby lasers [J]. Journal of Applied Physics,1965,36(11):3688-3689.
    [10]J. E. Sipe, J. F. Young, J. S. Preston, H. M. van Driel. Laser-induced periodic surface structure. I. Theory [J]. Physical Review B,1983,27(2):1141-1154.
    [11]J. F. Young, J. S. Preston, H. M. van Driel, J. E. Sipe. Laser-induced periodic surface structure. Ⅱ. Experiments on Ge, Si, Al, and brass [J]. Physical Review B,1983,27(2): 1155-1172.
    [12]J. F. Young, J. E. Sipe, J. S. Preston, H. M. van Driel. Laser-induced periodic surface damage and radiation remnants [J]. Applied Physics Letters,1982,41(3):261-264.
    [13]G. Zhou, P. M. Fauchet, A. E. Siegman. Growth of spontaneous periodic surface structures on solids during laser illumination [J]. Physical Review B,1982,26(10):5366-15381.
    [14]A. E. Siegman, P. M. Fauchet. Stimulated Wood's anomalies on laser-illuminated surfaces [J]. IEEE Journal of Quantum Electronics,1986,22(8):1384-1403.
    [15]Y. Shimotsuma, P. G. Kazansky, J. Qiu, K. Hirao. Self-organized nanogratings in glass trradiated by ultrashort light pulses [J]. Physical Review Letters,2003,91(24):247405.
    [16]V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, P. B. Corkum. Optically produced arrays of planar nanostructures inside fused silica [J]. Physical Review Letters,96(5):057404.
    [17]A. Borowiec, H. H. Haugen. Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses [J]. Applied Physics Letters,2003, 82(25):4462-4464.
    [18]M. Huang, F. Zhao, Y. Cheng, N. Xu, Z. Xu. Mechanisms of ultrafast laser-induced deep-subwavelength gratings on graphite and diamond [J]. Physical Review B,2009,79(12): 125436-125445.
    [19]J. Orava, T. Wagner, M. Krbal, T. Kohoutek, M. Vlcek, P. Klapetek, M. Frumar. Selective dissolution of Agx(As0.33S0.67-ySey)100-x chalcogenide thin films [J]. Journal of Non-Crystalline Solids,2008,354(2-9):533-539.
    [1]L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, E. Mazur. Subwavelength-diameter silica wires for low-loss optical wave guiding [J]. Nature, 2003,426(6965):816-819.
    [2]G. Brambilla, F. Xu, P. Horak, Y. Jung, F. Koizumi, N. P. Sessions, E. Koukharenko, X. Feng, G. S. Murugan, J. S. Wilkinson, D. J. Richardson. Optical fiber nanowires and microwires:fabrication and applications [J]. Advances in Optics and Photonics,2009,1(1): 107-161.
    [3]L. Tong, J. Lou, Eric Mazur. Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides [J]. Optics Express,2004,12(6):1025-1035.
    [4]E. C. Magi, L. B. Fu, H. C. Nguyen, M. R. E. Lamont, D. I. Yeom, B. J. Eggleton. Enhanced Kerr nonlinearity in sub-wavelength diameter As2Se3 chalcogenide fiber tapers [J]. Optics Express,2007,15(16):10324-10329.
    [5]R. G. Walker. Simple and accurate loss measurement technique for semiconductor optical waveguides [J]. Electronics Letters,1985,21(13):581-583.
    [6]S. A. Maier, P. G. Kik, H. A. Atwater. Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths:Estimation of waveguide loss [J]. Applied Physics Letters,2002,81(9):1714-1716.
    [7]X. S. Jiang, L. M. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, D. Yang. Demonstration of optical microfiber knot resonators [J]. Applied Physics Letters,2006,88(22):223501.
    [8]G. Vienne, A. Coillet, P. Grelu, M. E. Amraoui, J. Jules, F. Smektala, L. M. Tong. Demonstration of a reef knot microfiber resonator [J]. Optics Express,2009,17(8): 6224-6229.
    [9]B. E. Little. Analytic Theory of coupling from tapered fibers and half-blocks into microsphere resonators [J]. IEEE Journal of Lightwave Technology,1999,17(4):704-715.
    [10]D. Yeom, E. C. Magi, M. R. E. Lamont, M. A. F. Roelens, L. Fu, B. J. Eggleton. Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires [J]. Optics Letters,2008,33(7):660-662.
    [11]F. Luan, M. D. Pelusi, M. R. E. Lamont, D.Y. Choi, S. Madden, B. Luther-Davies, B. J. Eggleton. Dispersion engineered As2S3 planar waveguides for broadband four-wave mixing based wavelength conversion of 40 Gb/s signals [J]. Optics Express,2009,17(5): 3514-3520.
    [12]W. L. Wolf, G J. Zissis. The Infrared Handbook [M]. Washington DC:Arlington,1978:78.
    [13]M. L. Gorodetsky, A. A. Savchenkov, V. S. Ilchenko. Ultimate Q of optical microsphere resonators [J]. Optics Letters,1996,21(7):453-455.
    [14]S. M. Spillane, T.J. Kippenberg, K. J. Vahala. Ultralow-threshold Raman laser using a spherical dielectric microcavity [J]. Nature,2002,415(6872):621-623.
    [15]I. H. Agha, Y. Okawachi, M. A. Foster, J. E. Sharping, A. L. Gaeta. Four-wave-mixing parametric oscillations in dispersion-compensated high-Q silica microspheres [J]. Physical Review A,2007,76(4):043837.
    [16]T. Carmon, K. J. Vahala. Visible continuous emission from a silica microphotonic device by third-harmonic generation [J]. Nature Physics,2007,3(6):430-435.
    [17]M. Cai, O. Painter, K. J. Vahala. Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system [J]. Physical Review Letters,2000, 85(1):74-77.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700