基于柔性塑料基底OLED阵列化技术及有机光伏器件研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在现今的平板显示器和新能源领域,柔性光电子器件以其显著的特点得到众多公司、科研院所和高校的广泛重视和深入研究,作为光电转换互逆的两个过程的器件,主要以柔性有机电致发光器件(flexible organic light-emitting devices, FOLED)和柔性有机薄膜光伏器件(organic thin-film photovoltaic devices, FOPVD)为代表。柔性OLED,在信息显示技术领域上属于新崛起的器件种类,被誉为“梦幻显示器”、“第三代显示技术”,而FOPVD作为新能源器件的一种,因其制备技术先进、性能优越、成本低廉、用途广泛而备受关注。
     但是,有待提高的器件效率、稳定性的不足、阵列化制备工艺的复杂性、原材料缺乏及产业链的不够完善,大大影响了柔性有机光电器件的研发进程。针对上述问题,本论文在柔性OLED的光电性能改善、阵列化技术、制备工艺和FOPVD效率等方面进行了一系列的探索性和创新性的研究工作,具体包括:
     1.采用在柔性PEN塑料基底和ITO导电薄膜之间引入致密缓冲层的方法,改善基底的致密性和平整性,进而提高基底与导电薄膜间的贴附性。采用低温直流磁控溅射技术,在制备有缓冲层的PEN塑料基底上溅射透明导电ITO薄膜,完成FOLED的阳极工艺制备。在基底温度为70℃、溅射功率为200 W、靶基距离为40 cm、溅射气压为1 mTorr、水分压为2×10~(-5) Torr条件下,得到透明ITO导电薄膜的方块电阻为29.2Ω/sq,透过率为85.1 %。
     2.研究了基于单色FOLED原理性器件的结构、功能层、激子发光、客体掺杂机理和光电性能。分别制备了R、G、B单色FOLED器件样品,其中绿色FOLED器件,最高亮度为16900 cd/m~2,在工作电压3.3 V时,最大功率效率为7.59 lm/W,从无磷光材料掺杂到掺杂浓度为4 %时,亮度增加了45.7 %,发光效率提高了50.2 %,功率效率提高了109.6 %;红色FOLED在测试时,最高亮度为8400 cd/m~2,在工作电压3.9 V时,最大功率效率为3.02 lm/W,发光效率最大值为3.75 cd/A。器件发光的色坐标由橙红色向红色漂移,当掺杂浓度为10%时,器件的CIE为x=0.66,y=0.33,发光区域处于纯正红光区;蓝色FOLED在测试时,最高亮度为7500 cd/m~2,在工作电压3.5 V时,最大功率效率为:1.87 lm/W,发光效率最大值为:2.09 cd/A,器件从零掺杂到掺杂浓度为6 %时,亮度增加的了23.2 %,发光效率提高了60.7 %,功率效率提高了70.1 %。
     3.研究了4英寸三基色FOLED阵列化的相关技术,讨论了FOLED显示屏的彩色化方案、详细论述了显示屏的阵列化设计方案与制备工艺、器件的结构设计与制备工艺、评价参数与测试等。论文阐述了柔性基底的清洗工艺、预处理技术、器件光掩膜的设计、机械掩膜设计、NiCr层图案设计、ITO层图案设计、绝缘层图案设计、阴极隔离柱设计与制备、有机材料功能层真空热蒸镀技术、金属阴极的蒸镀技术、薄膜封装技术等相关工艺,完成了4英寸三基色FOLED显示屏整体设计、工艺方案和样品制备,提出了柔性显示屏的技术参数评价体系并进行相关参数的测试。
     4.基于聚合物材料P3HT研究FOPVD的光电性能,一方面将金属氧化物MoO3应用到双异质结FOPVD器件中,另一方面在体异质结器件引入缓冲层,结构为:ITO/PEDOT:PSS/P3HT:PCBM/Bphen/Ag的体异质结器件,转换效率达到3.30 %,比没有缓冲层结构的器件提高了两个数量级;针对单异质结柔性有机薄膜光伏器件开路电压较低的问题,其一是设计具有中间层的中间异质结器件,其二是使用高开路电压材料SubPc为供电子体,以提高柔性光伏器件的开路电压,结构为ITO/SubPc (20 nm)/C60 (40 nm)/BPhen (10 nm)/Ag (130 nm)的器件的开路电压达到0.87 V,在制备的一系列器件中为最佳。
     5.利用混合薄膜叠层方法对柔性器件进行薄膜封装,在初始亮度为10000 cd/m~2的,电压9 V时,完成器件加速寿命测试,经测试五种薄膜封装结构的数值分别为:897小时、1495小时、2093小时、2830小时和2890小时。单层的有机薄膜(单体)1与单层的无机薄膜(Al_2O_3)_1的封装效果比较,柔性器件的半衰寿命提高了66.7 %;与(单体+Al_2O_3)_1与(单体)1的封装效果比较,寿命提高了39.8 %; (单体+Al_2O_3)_2与(单体+Al_2O_3)_1的封装效果比较,寿命进一步提高,改善了35.1 %; (单体+Al_2O_3)_3与(单体+Al_2O_3)_2的封装效果比较,寿命基本一致,仅提高了2.1 %。
     综上所述,本论文的工作将主要集中在柔性基底的选取与缓冲层引入的影响、基于柔性塑料基底的R、G、B三基色OLED原理性器件的光电性能参数优化、柔性4英寸OLED器件的阵列化技术研究、样品的制备;同时,对FOPVD光电性能研究及薄膜封装技术也进行了有益的探索,为高性能柔性光电器件的研制和应用打下了基础。
In the field of flat panel displays and renewable energy, flexible optoelectronic devices with their remarkable features drew lots of attention, and as the reciprocal of two photoelectric conversion process devices, mainly in flexible organic light-emitting devices (FOLED) and flexible organic thin-film photovoltaic devices (FOPVD) were focused on. Flexible OLED is an emerging device type in the field of display technologies, known as the“Dream Displays”,“Third-generation Display Technologies”.Alsoe, FOPVD as the representative of new energy devices, because of its advanced preparation technologies, superior performance, low cost and widely use , is drawing a large volume of interest.
     Currently, however, the improvement of efficiency, the insufficient of stability, the complex preparation of the array process, high cost, greatly affect the industrialization process of flexible organic optoelectronic devices. In response to these problems as well as aiming at the performance improvement of flexible paasive matrix OLED (PMOLED), array technologies and efficiency of FOPVD, a series of basic and applied basic research work was carried out, which includes:
     1. By introducing buffer layer between flexible plastic substrate PEN and conductive ITO film, the water and oxygen resisitance and smoothness of flexible substrate were improved, thereby the adhesion between substrate the conductive film was enhanced. Using low temperature DC magnetron sputtering method, sputtering transparent conductive ITO film on a buffer layer, which has been prepared on PEN plastic substrate, was fabricated as the anode of FOLED. With a substrate temperature of 70 oC, a sputtering power of 200 W, a distance of target base of 40 cm, a sputtering pressure of 1 mTorr, a water pressure of 2×10~(-5) Torr, a transparent ITO substrate with a sheet resistance of 29.2 /sq and a transmittance of 85.1 % was obtained.
     2. Research on the architecture, the functional layer material, exciton luminance and the doping mechanism of host-guest of flexible OLED devices was performed. Three kinds of samples of monochrome flexible passive matrix OLED (PMOLED) of red, green, blue color were studied. As for green FOLED, a maximum brightness is 16900 cd/m~2, and a maximum power efficiency can be 7.59 lm/W at 3.3 V were obtained, when the doping concentration phosphorescent material changes from 0 % to 4 %. This indicated that the brightness increased by 45.7 %, luminous efficiency power efficiency were improved by 50.2 % and 109.6 %, respectively. In the case of red FOLED, a maximum brightness of 8400 cd/m~2, amaximum power efficiency of 3.02 lm /W at 3.9 V, and amaximum luminous efficiency of 3.75 cd/A was obtained. The FOLED color coordinates shift from orange-red to red. When the doping concentration is 10 %, the Commission Internationale De L E’clariage (CIE) coordinates are (0.66, 0.33), and pure red light was achieved. As for blue FOLED, a maximum brightness of 7500 cd/m~2, a maximum power efficiency can be 1.87 lm/W at 3.5 V, and a maximum luminous efficiency of 2.09 cd/A were obtained. When the doping concentration changes from very low to 6 %, the brightness increased by 23.2 % luminous efficiency and power efficiencwere improved by 60.7 % and 70.1 %, respectively.
     3. After the array technology of flexible 4-inch trichromatic PMOLED was studied, the colorization process of flexible PM-OLED was discussed. Especially, the array design scheme of FOLED display screen and preparation technologies were proposed, which covers device design and laboratory preparation, technical parameters and testing. When the flexible substrate cleaning process, pre-processing technology, photomask design, mechanical mask design, NiCr layer design, ITO layer designs, insulation graphic design, column design, the fabrication of cathode isolation, the vacuum deposition technologies of functional organic materials layer, the deposition technologies of the cathode metal, thin-film encapsulation and other related processes were described, a 4-inch trichromatic flexible PMOLED display was completed including design, programs and sample preparation process, and device parameter evaluation and testing system.
     4. Based on a polymer material of P3HT, the performance of FOPVDs was investigated. On one hand, the metal oxide MoO3 to a bilayer heterojunction (HJ) device was applied. On the other hand, a buffer layer into body heterojunction devices with structure of ITO/PEDOT: PSS/P3HT: PCBM/Bphen/Ag was introduced. The result showed that a conversion efficiency of 3.30 %, which increased by two orders of magnitude compared to the devices without buffer layer, was obtained. To solve the problem of the low open voltage of single-heterojunction FOPVD, Firstly, the heterojunction device with a middle layer heterojunction was design. Then, an electron donor material SubPc with a high open circuit voltage to improve the open-circuit voltage of the flexible photovoltaic devices was used, whose structure is ITO/SubPc (20 nm)/C60 (40 nm)/BPhen (10 nm)/Ag (130 nm). A maximum open circuit voltage of 0.87 V for FOPVD was achieved.
     5. A stack method of mixed thin film to apply thin-film encapsulation to flexible devices was used, and the accelerated life of the FOLED was tested. When the initial luminance was 10000 cd/m~2, and the applied voltage is 9 V. The lifetime of the tested of five kinds of thin-film encapsulation devices were: 897, 1495, 2093, 2830, and 2890 hrs. Compared the effect of package of the single-layer organic thin film (Monomer)1 with the single-layer inorganic film (Al_2O_3)_1, the half-lifetime of flexible devices increased by 66.7 %. Compared the package of (Monomer+Al_2O_3)_1 with (Monomer)1, life improved by 39.8 %. Compared the package of (Monomer+Al_2O_3)_2 with (Monomer+Al_2O_3)_1, it improve by 35.1 %. Compared the effect of package of (Monomer+Al_2O_3)_3 with (Monomer+Al_2O_3)_2, life time is almost the same, only increased by 2.1 %.
     In summary, in this thesis the effect of the selection of flexible substrate, the introduction of buffer layer, optimization of optical performance parameters of R, G, B trichromatic light-emitting flexible components, which is based on flexible plastic substrate, array technologies of flexible 4 inches PM-OLED devices, and the preparation of samples, were focus on. Meanwhile, the exploration of of FOPVDs and the properties of thin-film encapsulation technologies, paved a solid way for the development and application of efficient flexible optoelectronic devices.
引文
[1] L. Duan, C. Zhang, G. H. Zhang. Preparation and behavior of flexible organic light emitting diodes [J]. Sciencepaper Online, 2010, 5(4): 287-290
    [2] Y. H. Ao, J. Gao. Technical challenge and development of Flexible AMOLED [J]. Modern Electronics Technique, 2011, 34(3): 197-200
    [3]张天慧,朴玲钰,赵谡玲等.有机太阳能电池材料研究新进展[J].有机化学, 2011, 31(2): 260-272
    [4] F. O. Adurodija, H. Izumi, T. Ishihara, et al. Low-temperature growth of low-resistivity indium-tin-oxide thin films by pulsed laser deposition [J]. Vacuum, 2000, 59(2-3): 641-648
    [5] T. H. Li. Brief Introduction to Key Issues of Flexible Display Technology [J]. Information terminal & display, 2009, 33(8): 25-29
    [6] U. G. Min, H. J. In, O. K. Kwon. A real time video data adjusting method for active matrix organic light emitting diode displays with high image quality [J]. IEEE Transactions on Consumer Electronics, 2009, 55(4): 2372-2376
    [7]孙媛媛.柔性有机电致发光器件的制备及其光电性能研究[硕士学位论文].天津:天津理工大学, 2005
    [8] J. W. Huh, Y. M. Kim, Y. W. Park, et al. Characteristics of organic light-emitting diodes with conducting polymer anodes on plastic substrates [J]. Journal of Applied Physics, 2008, 103(4): 44502
    [9] J. E. Parmer, A. C. Mayer, B. E. Hardin, et al. A real time video data adjusting method for active matrix organic light emitting diode displays with high image quality [J]. IEEE Transactions on Consumer Electronics, 2009, 55(4): 2372-2376
    [10]侯庆传.利用色彩转换膜实现白色有机电致发光研究: [硕士学位论文].天津:天津理工大学, 2009
    [11] M. C. Tanese, D. Fine, A. Dodabalapur, et al. Organic thin-film transistor sensors: Interface dependent and gate bias enhanced responses [J]. Microelectronics Journal, 2006, 37(8): 837-840
    [12] D. Li, L. J. Guo. Organic thin film transistors and polymer light-emitting diodes patterned by polymer inking and stamping [J]. Journal of Physics D: Applied Physics, 2008, 41(10): 105115
    [13]张金玲,李蛟,刘俊成. PEDOT∶PSS薄膜在有机光电子领域的研究进展[J].材料导报, 2010, 24(10): 130-136
    [14] S. Gowrisanker, Y. Ai, M. A. Quevedo-Lopez, et al. Impact of semiconductor/contact metal thickness ratio on organic thin-film transistor performance [J]. Applied Physics Letters, 2008, 92(15): 153305
    [15] T. Kim, S. J. Son, S. M. Seo. Flexible top gate pentacene thin film transistor with embedded source-drain electrode [J]. Applied Physics Letters, 2008, 93(1): 013304
    [16] Y. S. Tsai, F. S. Juang, T. H. Yang, et al. Effects of different buffer layers in flexible organic light-emitting diodes [J]. Journal of Physics and Chemistry of Solids, 2008, 69(2-3): 764-768
    [17]李蛟,刘俊成,高从堦.体相异质结型有机太阳能电池的研究进展[J].材料导报, 2009, 23(5): 104-109
    [18] Y. Bai, Y. M. Cao, J. Zhang, et al. High-performance dye-sensitized solar cells based on solvent-free electrolytes produced from eutectic melts [J]. Nature Mater, 2008, 7 (8): 626-630
    [19] H. Qin, S. Wenger, M. Xu, et al. An organic sensitizer with a fused dithienothiophene unit for efficient and stable dye-sensitized solar cells [J]. Journal of the American Chemical Society, 2008, 130 (29): 9202-9203
    [20] J. Y. Kim, K. Lee, N. E. Coates, et al. Efficient tandem polymer solar cells fabricated by all-solution processing [J].Science, 2007, 317(5835): 222-225
    [21] F. L. Zhang, K. G. Jespersen, C. Bjorstrom, et al. Influence of solvent mixing on the morphology and performance of solar cells based on polyfluorene copolymer/fullerene blends [J] .Adv. Func. Mater, 2006, 16(5): 667-674
    [22] L. H. Nguyen, H. Hoppe, T. Erb, et al. Effects of annealing on the nanomorphology andperformance of poly(alkylthiophene): fullerene bulk-heterojunction solar cells [J]. Advanced Functional Materials, 2007, 17(7): 1071-1078
    [23] L. Chen, Z. Hong, et al. Recent Progress in Polymer Solar Cells: Manipulation of Polymer: Fullerene Morphology and the Formation of Efficient Inverted Polymer Solar Cells [J]. Advanced Materials, 2009, 33(21): 1434-1449
    [24] A. Hadipour, B. DeboerE, J. Wildeman, et al. Solution-processed organic tandem solar cells [J] . Advanced Functional Materials, 2006, 16(14): 1897-1903
    [25] M. Pope, H. Kallmann, P. J. Magnante. Electroluminescence in Organic Crystals [J]. Journal Chemical Physics, 1963, 38: 2042-2043
    [26] C. W. Tang, S. A. V. Slyke. Organic electroluminescent diodes [J]. Applied Physics Letters, 1987, 51(12): 913-915
    [27] C. Adachi, S. Tokito, T. Tsutsui, et al. Electroluminescence in Organic Films with Three-Layers Structure [J]. Japanese Journal of Applied Physics Part 2, 1988, 27: 269-271
    [28] J. H. Burroughes, D. D. C. Bradley, A. R. Brown, et al. Light-emitting diodes based on conjugated polymers [J]. Nature, 1990, 347(6293): 539-541
    [29] G. Gustufsson, Y. Cao, G. M. Treacy, F. Klavetter, et al. Flexible light-emitting diodes made from soluble conducting polymers [J]. Nature, 1992, 357: 477-479
    [30] C. Hosokawa, M. Eida, M. Matsuura, et al. Organic multi-color electroluminescence display with fine pixels [J]. Synthetic Metals, 1997, 91(1-3): 3-7
    [31] M. A. Baldo, D. F. O'brien, Y. You, et al. Highly efficient phosphorescent emission from organic electroluminescent devices [J]. Nature, 1998, 395(6698): 151-154
    [32] Y. Fukuda, T. Watanabe, T. Wakimoto, et al. Organic LED display exhibiting pure RGB colors [J]. Synthetic Metals, 2000, 111: 1-6
    [33] A. Goetzberger, C. Hebling. Photovoltaic materials, past, present, future [J]. Solar Energy Materials and Solar Cells, 2000, 62(1-2): 1-19
    [34] R. Komiya, L. Han. High efficient quasi-solid state dye sensitized solar cell with polymer electrolyte [J]. Shapu Giho/Sharp Technical Journal, 2005, 93: 36-41
    [35] R. R. King, D. C. Law, K. M. Edmondson, et al. 40 % efficient metamorphic GaInPGaInAsGe multijunction solar cells [J]. Applied Physics Letters, 2007, 90(18): 183516
    [36] M. A. Green, K. Emery, Y. Hishikawa, et al. Solar cell efficiency tables (version 31). Progress in Photovoltaics [J]. Research and Applications, 2008, 16(1): 61-67
    [37] A. J. Heeger, J. Y. Kim, K. Lee, et al. Efficient Tandem Polymer Solar Cells Fabricated by All-Solution Processing [J]. Science, 2007,317(5835): 222-225
    [38] D. Gebeyehu, B. Maennig, J. Drechsel, et al. Bulk-heterojunction photovoltaic devices based on donor-acceptor organic small molecule blends [J]. Solar Energy Materials and Solar Cells, 2003, 79(1): 81-92
    [39] R. Komiya, L. Han. High efficient quasi-solid state dye sensitized solar cell with polymer electrolyte [J]. Shapu Giho/Sharp Technical Journal, 2005, 93: 36-41
    [40] S. Uchida, J. Xue, B. P. Rand, et al. Organic small molecule solar cells with a homogeneously mixed copper phthalocyanine: C60 active layer [J]. Applied Physics Letters, 2004, 84(21): 4218-4220
    [41] J. Xue, B. P. Rand, S. Uchida, et al. Mixed donor-acceptor molecular heterojunctions for photovoltaic applications. II. Device performance [J]. Journal of Applied Physics, 2005, 98(12): 124903
    [42]王育伟,刘小峰,陈婷婷等,薄膜太阳电池的最新进展[J].半导体光电, 2008, 29(2): 151-158
    [43]王娜娜,于军胜,林慧,黄春华,蒋亚东.柔性有机电致发光器件导电基板的工艺性能[J].发光学报, 2008, 29(6): 967-972
    [44]张亚萍,殷海荣,黄剑锋.透明导电薄膜的研究进展.光机电信息, 2006, 2 (1): 56-60
    [45] H. Kim, J. S. Horwitz, G. P. Kushto, et al. Indium tin oxide thin films grown on flexible plastic substrates by pulsed-laser deposition for organic light-emitting diodes [J]. Applied Physics Letters, 2001, 79(3): 284-286
    [46] G. Golan, A. Axelevitch, B. Gorenstein, et al. Novel type of indium oxide thin films sputtering for opto-electronic applications [J]. Applied Surface Science, 2007, 253(15): 6608-6611
    [47] J. H. Choi, Y. M. Kim, Y. W. Park, et al. Evaluation of gas permeation barrier properties using electrical measurements of calcium degradation [J]. Review of Scientific Instruments, 2007, 78(6): 064701
    [48] J. H. Shin, S. H. Shin, J. I. Park, et al. Properties of dc magnetron sputtered indium tin oxide films on polymeric substrates at room temperature [J]. Journal of Applied Physics, 2001, 89(9): 5199-5203
    [49] Y. C. Lin, J. Y. Li, W. T. Yen. Low temperature ITO thin film deposition on PES substrate using pulse magnetron sputtering [J]. Applied Surface Science, 2008, 254(11): 3262-3268
    [50] W. Liu, Shu Y. Chen. A. Kitanobou, M. Ito, et al. Photoelectric properties of ITO thin films deposited by DC magnetron sputtering [J]. Journal of Semiconductors, 2008, 9(2): 151-158
    [51] X. Zhang, J. Q. Zhang, B. Wang, et al. Properties of PET/ITO Thin Films Deposited by DC Magnetron Sputtering [J]. Semiconductor Photonics and Technology, 2010, 16(1): 35-41
    [52] K. H. Kim, N. M. Park, T. Y. Kim, et al. Indium tin oxide thin films grown on polyethersulphone (PES) substrates by pulsed-laser deposition for use in organic light-emitting diodes [J]. ETRI Journal, 2005, 27(4): 405-409
    [53] Y. Han, D. Kim, J. S. Cho, et al. Tin-doped indium oxide (ITO) film deposition by ion beam sputtering [J]. Solar Energy Materials and Solar Cells, 2001, 65(1): 211-218
    [54] Y. S. Yoon, H. Y. Park, Y. C. Lim, et al. Effects of parylene buffer layer on flexible substrate in organic light emitting diode [J]. Thin Solid Films, 2006, 513(1-2): 258-263
    [55] C. Donley, D. Dunphy, D. Paine, et al. Characterization of indium-tin oxide interfaces using X-ray Photoelectron Spectroscopy and Redox Processes of a chemisorbed probe molecule:effect of surface pretrement conditions [J]. Langmuir, 2002, 22(18):150-157
    [56] S. Hong, J. Han. Synthesis and characterization of indium tin oxide (ITO) nanoparticle using K. gas evaporation process [J]. Journal of Electroceramics, 2006, 17(2-4): 821-826
    [57] M. H. Sohn, D. Kim, S. J. Kim, et al. Super-smoothindium-tin oxide thin films by negative sputter ionbeam technology [J]. Journal of Vacuum Science and Technology A, 2003, A21(4): 1347-1350
    [58] X. H. Xu, H. S. Wu, F. Wang, et al. The effect of Ag and Cu underlayer on the L10 ordering FePt thin films [J]. Applied Surface Science, 2004, 233(2): 1-4
    [59] M. K. Jeon, H. J. Chung, K. W. Kim, et al. Ferroelectric properties of Bi3.25Ce0.75Ti3O12 thin-films prepared by a liquid source misted chemical deposition [J].Thin Solid Films, 2005, 489(1-2): 1-4
    [60] H. R. Fallah, M. Ghasemi, A. Hassanzadeh, et al. The effect of annealing on structural,electrical and optical prop-erties of nanostructured ITO films prepared by e-beamevaporation [J]. Materials Research Bulletin, 2007, 42: 487-496
    [61]田民波,刘德令.薄膜科学与技术手册[D].北京:机械工业出版社, 1991
    [62] J. Machet, J. Guille, P. Saulnier, et al. Deposition of conducting and transparent thin films of indium tin oxide by reactive ion plating [J]. Thin Solid Films, 1981, 80(1/2/3): 149-155
    [63] H. W. Lehmann, R. Widmer. Preparation and properties of reactively co-sputtered transparent conducting films [J]. Thin Solid Films, 1975, 27(2): 359-368
    [64]杨邦朝,王文生.薄膜物理与技术[D].成都:电子科技大学出版社, 1994
    [65]李学丹,万英超.真空沉积技术[D].浙江:浙江大学出版社, 1994
    [66] I. B. Shim, C. S. Kim. Doping effect of indium oxide-based diluted magnetic semiconductor thin films [J]. Journal of Magnetism and Magnetic Materials, 2004, 272-276 (SUPPL 1): 1571-1572
    [67]曲喜新,杨邦朝.电子薄膜材料[D].北京:科学出版社, 1996
    [68] H. Lin, J. S. Yu, N. N. Wang, et al. Fabrication and properties of DC magnetron sputtered indium tin oxide on flexible plastic substrate [J], J. Mater. Sci. Tech., 2009, 25(1), 119-122
    [69] P. K. Biswas, A. De, N. C. Pramanik, et al. Effects of tin on IR reflectivity, thermal emissivity, Hall mobility and plasma wavelength of sol-gel indium tin oxide films on glass [J]. Materials Letters, 2003, 57(15): 2326-2332
    [70]唐伟忠.薄膜材料制备原理、技术及应用[D].北京:冶金工业出版社, 1998
    [71] C. H. Chung, Y. W. Ko, Y. H. Kim, et al. Improvement in performance of transparent organic light-emitting diodes with increasing sputtering power in the deposition of indium tin oxide cathode [J]. Applied Physics Letters, 2005, 86(9): 093504-093503
    [72] C. N. De Carvalho, G. Lavareda, E. Fortunato, et al. ITO films with enhanced electrical properties deposited on unheated ZnO-coated polymer substrates [J]. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2005, 118 (1-3): 66-69
    [73] Y. Z. You, Y. S. Kim, D. H. Choi, et al. Electrical and optical study of ITO films on glass and polymer substrates prepared by DC magnetron sputtering type negative metal ion beam deposition [J]. Materials Chemistry and Physics, 2008, 107 (2-3): 444-448
    [74] W. Q. Zhao, G. Z. Ran, W. J. Xu, et al. Inverted top-emission organic light-emitting device with n-type silicon as cathode [J]. Journal of Physics D: Applied Physics,2008, 41(3): 035106
    [75] K. Yamashita, A. Kitanobou, M. Ito, et al. Solid-state organic laser using self-written active waveguide with in-line Fabry-Prot cavity [J]. Applied Physics Letters, 2008, 92(14): 143305
    [76] Y. S. Tsai, F. S. Juang, T. H. Yang, et al. Effects of different buffer layers in flexible organic light-emitting diodes [J]. Journal of Physics and Chemistry of Solids, 2008, 69(2-3): 764-768
    [77] S. Hong, J. Han. Synthesis and characterization of indium tin oxide (ITO) nanoparticle using K. gas evaporation process [J]. Journal of Electroceramics, 2006, 17(2-4): 821-826
    [78] X. Zhi, G. Zhao, T. Zhu, et al. The morphological optical and electrical properties of SnO2-F thin films prepared by spray pyrolysis [J]. Surface and Interface Analysis, 2008, 40(2): 67-70
    [79] H. Lin, J. Yu, S. Lou, et al. Low temperature DC sputtering deposition on indium-tin oxide film and its application to inverted top-emitting organic light-emitting diodes [J]. Journal of Materials Science and Technology, 2008, 24(2): 179-182
    [80] C. J. Chiang, C. Winscom, S. Bull, et al.. Mechanical modeling of flexible OLED devices [J]. Organic Electronics, 2009, 10(7): 1268-1274
    [81] S. Akira, O. Hideo, F. Soh, et al. Flexible OLED displays using plastic substrates [J]. IEEE, 2004, 10(1): 107-114
    [82] J. N. Bardsley. International OLED technology roadmap [J]. IEEE, 2004, 10(1): 3-9
    [83] C. W. Tang, S. A. Vanslyke. Organic electroluminescent diodes [J]. Applied Physics Letters, 1987, 51(12): 913-915
    [84] A. B. Chwang, M. A. Rothman, S. Y. Mao, et al. Thin film encapsulated flexible organic electroluminescent displays [J]. Applied Physics Letters, 2003, 83(3): 413-415.
    [85] Y. S. Yoon, H. Y. Park, Y. C. Lim, et al. Effects of parylene buffer layer on flexible substrate in organic light emitting diode [J]. Thin Solid Film, 2006, 513: 258-263
    [86] H. C. Jun, H. C. Jong, H. H. Ji, et al. Active-matrix OLED on bendable metal foil [J]. IEEE Transport Electronic Devices, 2006, 53(5): 1273-1276
    [87] L. Duan, S. Liu, D. Q. Zhang, et al. Improved flexibility of flexible organic light-emitting devices by using a metal/organic multilayer cathode [J]. Applied Physics, 2009, 42(7): 82-89
    [88] Z. Y. Xie, L. G. Hung, F. R. Zhu. A flexible top-emitting organic light-emitting diode on steel foil [J]. Chemical Physics Letters, 2003, 381(5/6): 691-696
    [89] N. C. Greenham, S. C. Moratti, D. D. C. Bradley, et al. Efficient light-emitting diodes based on polymers with high electron affinities [J]. Nature, 1993, 365(6293): 628-630
    [90] C. W. Tang, S. A. Vanslyke. Organic electroluminescent diodes [J]. Applied Physics Letters, 1987, 51: 913
    [91] C. Adachi, S. Tokito, T. Tsutsui, S. Saito. Electroluminescence in organic films with three-layer structure [J]. Japanese Journal of Applied Physics Part 2, 1988, 27: 269
    [92] C. Adachi, S. Tokito, T. Tsutsui, S. Saito. Electroluminescence of doped organic thin films [J]. Japanese Journal of Applied Physics Part 2, 1988, 27: L713
    [93] Y. F. Zhang, M. Whited, M. E. Thompson and S. R. Forrest. Singlet–triplet quenching in high intensity fluorescent organic light emitting diodes [J]. Chemical Physics Letters, 2010, 495(4-6):161-165
    [94] C. Adachi, T. Tsutsui, S. Saito. Confinement of charge carriers and molecular excitons within 5nm thick emitter layer in organic electroluminescent devices with a double hetero structure [J]. Applied Physics Letters, 1990, 57: 531-533
    [95] F. Halverson, J. S. Brines, J. R. Leto, Photoluminescence of lanthanide complexes III Synergic agent complexes involving extend chromophores [J]. Journal Chemical Physics, 1964, 41(9): 2752-2761
    [96] X. T. Tao, S. Miyata, H. Sasabe, et al. Efficient organic red electroluminescent device with narrow emission peak [J]. Applied Physics Letters, 2001, 78: 279
    [97]张立功,具昌南,范翔等. 8-羟基喹啉铝电致发光薄膜的电学特性[J].发光学报, 1995,16(4):350-353
    [98] J. S. Yu, S. L. Lou, L. Li, et al. Performance enhancement of organic light emitting diodes based on different hole transport layers [J], Chinese J. Electronics, 2007, 16(4), 637-639
    [99] R. Lin, F. Wang, J. Rybicki, and M. Wohlgenannt. Distinguishing between tunneling and injection regimes of ferromagnet / organic semiconductor / ferromagnet junctions [J]. Physical Review B, 2010, 81: 195214
    [100] J. W. Lee, J. K. Kim, Y. S. Yoon. Performance Improvement of Organic Light Emitting Diodes Using Poly(N-vinylcarbazole) (PVK) as a Blocking Layer [J]. Chinese Journal of Chemistry, 2010, 28(1):115-118
    [101] M. A. Baldo, D. F. O’Brien, S. R. F?rrest, et al. Highly efficient phosphorescent emission from organic electroluminescent devices [J]. Nature,1998, 395: 151-154
    [102] M. A. Baldo, S. Lamansky, S. R. F?rrest, et al. Very high-efficiency green organic light-emitting devices based on electrophosphorescence [J]. Applied Physics Letters, 1999, 75(1), 4-6
    [103] Junsheng Yu*, Jun Wang, Shuangling Lou, et al. Small molecular and polymer organic light-emitting diodes based on novel iridium complex phosphor, Displays, 2008, 29(5), 493-496
    [104] B. W. D’Andrade, M. A. Baldo, S. R. F?rrest, et al. High-efficiency yellow double-doped organic light-emitting devices based on phosphor-sensitized ?uorescence [J]. Applied Physics Letters, 2001, 79(7): 1045-1047
    [105] C. Adachi, R. C. Kwong, S. R. Forrest,et al. Endothermic energy transfer: A mechanism for generating very efficient high-energy phosphorescent emission in organic materials [J]. Applied Physics Letters, 2001, 79(13): 2082-2084
    [106] D. R. Whang, S. H. Kim, S. Y. Park, et al. A highly efficient wide-band-gap host material for blue electrophosphorescent light-emitting devices [J]. Applied Physics Letters, 2007, 91(23): 233501
    [107] J. G. Jang, H. J. Ji, H. S. Kim, et al. TPBI: FIrpic organic light emitting devices with the electron transport layer of Bphen/Alq3 [J]. Current Applied Physics, 2011, 11(1): S251-S254
    [108] J. J. Parka, T. J. Parka, W. S. Jeon, et al. Small molecule interlayer for solution processed phosphorescent organic light emitting device[J]. Organic Electronics, 2009, 10 (1): 189–193
    [109] G. J. A. H. Wetzelaer, D. Hartmann, S. G. Santamaría et al. Combined thermal evaporated and solution processed organic light emitting diodes [J]. Organic Electronics, 2011, 12 (10): 1644–1648
    [110] H. Liu, F. Yan1, W. L. Li, et al. Remarkable increase in the efficiency of N,N′-dime thylquinacridone dye heavily doped organic light emitting diodes under high current density [J]. Applied Physics Letters, 2010, 96(8): 083301
    [111] YU Jun-Sheng*, SUO Fan, LI Wei-Zhi, et al. Influence of electrode materials on the performance of NPB/Alq3 organic light-emitting devices, Acta Phys. -Chim. Sin. [J], 2007, 23(11), 1821-1826
    [112] D. You, S.R. Tseng, H.F. Meng, et al. All-solution-processed blue small molecular organic light-emitting diodes with multilayer device structure [J]. Organic Electronics, 2009, 10 (8): 1610–1614
    [113]于军胜,李璐,黎威志等.染料掺杂剂的位置对有机电致发光器件性能的影响[J],光电子激光,2008, 19(18), 719-723
    [114]宋丹丹,赵谡玲,徐征等.磷光材料fac-tris(2-phenylpyridinato-N,C^2′)iridium(III)对不同荧光材料的敏化作用及发光机制分析[J].光谱学与光谱分析. 2009, 10: 2626-2629
    [115] W. A. Luhman, R. J. Holmes. Enhanced exciton diffusion in an organic photovoltaic cell by energy transfer using a phosphorescent sensitizer [J]. Applied Physics Letters, 2009, 94(15): 153304
    [116] J. S. Yu, L. Li, X. Tu, et al. Study of flexible organic light-emitting devices [J]. Bandaoti Guangdian/Semiconductor Optoelectronics, 2007, 28(3): 317-320
    [117] D. Y. Kondakov. Role of chemical reactions of arylamine hole transport materials in operational degradation of organic light-emitting diodes [J]. Applied Physics Letters, 2008, 104(8): 084520
    [118] J. C. Jeong, H. S. Kim and J. G. Jang. High Efficient Green Phosphorescent OLED with Emission Layer of TPBI Selectively Doped with Ir(ppy)3 [J]. Molecular Crystals and Liquid Crystals, 2010, 530(1): 103-109
    [119] M. Taneda, T. Yasuda, and C. Adachi. Horizontal Orientation of a Linear-Shaped Platinum(II) Complex in Organic Light-Emitting Diodes with a High Light Out-Coupling Efficiency [J]. Applied Physics Express, 2011, 4: 071602
    [120] P. I. Shih, C. L. Chiang, A. K. Dixit. Novel Carbazole/Fluorene Hybrids: Host Materials for Blue Phosphorescent OLEDs [J]. Organic Letters, 2006, 8(13): 2799-2802
    [121] S. Y. Kima, J. H. Kim, Y. Ha, et al. A study on the characteristics of OLEDs using Ir complex for blue phosphorescence [J]. Current Applied Physics, 2007, 7(4): 380-384
    [122] S. O. Jeon, K. S. Yook, C. W. Joo, and J. Y. Leea. High efficiency blue phosphorescent organic light emitting diodes using a simple device structure [J]. Applied Physics Letters, 2009, 94(1): 013301
    [123] C. H. Chen, K. R. Wang, Y. H. Tsai, et al. High-Efficiency Electrophosphorescence Red Organic Light-Emitting Diodes Using a Thin 1,3-Bis[2-(2,2'-bipyridin-6-yl)-1,3,4-oxadiazol-5- yl] benzene Cleaving Layer in an Ir-Complex-Doped Emitter Layer [J]. Japanese Journal of Applied Physics, 2011, 50(4) : 04DK19
    [124] F. Yan, W. L. Li, B. Chu, et al. Sensitized infrared electrophosphorescence based on divalent copper complex by an iridium(III) complex [J]. Organic Electronics, 2009, 10(7): 1408-1411
    [125] L. D. Hou, L. Duan, J. Qiao, et al. Efficient solution-processed small-molecule single emitting layer electrophosphorescent white light-emitting diodes [J]. Organic Electronics, 2010, 11(8):1344-1350
    [126] M. S. Gong, H. S. Lee and Y. M. Jeon. Highly efficient blue OLED based on 9-anthracene-spirobenzofluorene derivatives as host materials [J]. Journal of Materials Chemistry, 2010, 20(47): 10735-10746
    [127] Y. G. Park, J. H. Park, J. W. Park. Alkyl Group Effect on Small Molecule Emitter Based on Anthracene Moiety in Solution Process [J]. Molecular Crystal and Liquid Crystals, 2011, 539(1): 11-17
    [128] J. S. Yu, S. L. Lou, J. C. Qian, et al. Optoelectronic properties of a novel fluorene derivative for organic light-emitting diode [J], Applied Physics: (A), 2009, 94(4), 813-818
    [129] S. Scholz, K. Walzer, K. Leo. Analysis of Complete Organic Semiconductor Devices by Laser Desorption/Ionization Time-of-Flight Mass Spectrometry [J]. Advanced Functional Materials, 2008, 18(17): 2541–2547
    [130] C. C. Lee, S. W. Liu and Y. T. Chung. Effect of deposition rate on device performance and lifetime of planar molecule-based organic light-emitting diodes [J]. Journal of Physics D: Applied Physics, 2010, 43(7): 075102
    [131] J. Liu, L. Li, J. S. Yu, et al, Recent Development of Organic Light-Emitting Devices for Flat Panel Display [J]. Experiment Science & Technology, 2006, 6: 11-14
    [132] Z. B. Wang, M. G. Helander, F. Xu, et al. Optical design of organic light emitting diodes [J], Journal of Applied Physics. 2011, 109 (5): 053107
    [133]刘红君,陈晨曦,张羿,楼均辉. CCM实现彩色化技术法在电致发光(EL)显示器中的应用[C].第六届华东三省一市真空学术交流会论文集, 2009:69-74
    [134] S. Yoshida, Y. Fujimori, K. Yoshida, et al. Color Conversion Apparatus, Color Conversion Method [P]. Color Change Program and Recording Medium, United States, 0284030. 2010-11-11
    [135]田民波,叶峰. TFT液晶显示原理与技术[M].北京,科学出版社, 2010
    [136] X. P. Qiao, Y. B. Yuan, X. Zhou. Improvement of OLED Outcoupling Efficiency Using Microsphere Monolayer [J]. Chinese Journal of Luminescence, 2010,31 (2): 172-174
    [137] J. S. Park, T. Wo. Kim, D. Stryakhilev, et al. Flexible full color organic light-emitting diode display on polyimideplastic substrate driven by amorphous indium gallium zinc oxidethin-film transistors [J]. APPLIED PHYSICS LETTERS, 2009, 95 (1): 013503
    [138] J. E. Liu, Y. P. Liao, X. W. Qi, et al. Design and Facture of 2-a-Si:H TFT Driving AM-OLED [J]. Chinese Journal of Liquid Crystals and Displays, 2006, 21 (6): 661-667
    [139]王军.有机电致发光器件制备与高效磷光器件性能的研究: [博士学位论文].成都:电子科技大学, 2007
    [140] Mo. S. KO, J. H. Yoo. OLED Display Appratus and Method of Manufacturing the Same [P]. United States, 2011-6-2
    [141] J. S. Yoo, S. H. Jung, Y. C. Kim, et al. Highly Flexible AM-OLED Display With Integrated Gate Driver Using Amorphous Silicon TFT on Ultrathin Metal Foil [J]. Journal of Display and Technology, 2011, 6 (11):565-570
    [142] B. Hekmatshoar, A. Z. Kattamis, K. Cherenack, et al. A Novel TFT-OLED Integration for OLED-independent Pixel Programming in Amorphous-Si AMOLED Pixels [J]. Journal of the SID,2008,16 (1):183-187
    [143] D. E. Chen, Z. M. Wu, W. Li, et al. Image Reverse Technique for Research of Metal Lift-Off [J]. Semiconductor Technology, 2009, 34 (6): 535-537
    [144] J. Z. Shao, W. W. Dong, R. H. Tao. Preparation and Development of Transparent Conductive Oxide Films on Flexible Substrates [J]. Chinese Journal of Liquid Crystals and Displays, 2009, 24 (5): 676-680
    [145] J. Song, J. M. Wang, L. W. Yu, et al. Electronic Properties of the Ultrathin Silicon Nitride Films Fabricated with Ammonia Plasma Prenitridation [J]. Reaserch & Progress OF SSE, 2007, 4 (27), :469-471
    [146] S. Jeon, K. Yook, J .Y. Lee, et al. Mechanism for the direct electron injection from Al cathode to the phosphine oxide type electron transport layer [J]. Applied Physics Letters 2011,98 (7): 073306
    [147] Z. X. Li, F. H. Zhang, X. F. Wang,et al. Effect of LiF as Electron Injection Layer on OLEDs [J]. Chinese Journal of Liquid Crystals and Displays, 2008, 23 (1): 53-56
    [148] Z. R. Deng, S. Y. Yang, L. Meng,et al. Application of Ultrathin Layer in White Organic Electroluminescent Devices [J]. Chuan, Acta Phys Chim Sin,2008, 24 (4):700-704
    [149] Y. F. Wang, L. B. Tang, Q. Yue. MATLAB Analysis and Computation of OLED Lifetime Degradation Model [J]. Chinese Journal of Electron Devices, 2010, 33 (4):412-415
    [150]高婷.有机电致发光器件制备工艺及性能研究: [硕士学位论文].成都:电子科技大学, 2005
    [151] Q. Q. Fang, W. N. Wang, J. Zhou, et al. Photoluminescence characteristics of Zn1-xMgXOfilms [J], ACTA PHYSICA SINICA, 2009, 58 (8): 5837-5840
    [152] W. B. Chen, X. LI, Truncated cone model for OLED external quantum efficiency enhancement [J]. Infrared and Laser Engineering, 2007, 36 (5): 719-720
    [153] J. H. Zou, H. Tao, H. B. Wu, et al. Improved performance of white polymer light emitting diodes [J]. ACTA PHYSICA SINICA, 2009, 58 (2): 1225-1228
    [154] N. C. Giebink, S. R. Forrest. Quantum efficiency roll-off at high brightness in fluorescent and phosphorescent organic light emitting diodes [J]. Physical Review, 2008, 77 (23):235215
    [155] Z. B. Wang, M. G. Helander, J. Qiu, et al. Highly simplified phosphorescent organic light emitting diode with >20% external quantum efficiency at >10000cd/m2[J]. Applied Physics Letters, 2011, 98 (7): 073310
    [156] K. Fehse, R. Meerheim, K. Walzer, et al. Lifetime of organic light emitting diodes on polymer anodes [J]. Applied Physics Letters,2008, 93 (8): 083303
    [157] J. Meyer, D. Schneidenbach, T. Winkler, et al. Reliable thin film encapsulation for organic light emitting diodes grown by low-temperature atomic layer deposition [J]. Applied Physics Letters, 2009, 94 (23): 233305
    [158] Y. M. Chien, F. Lefevre, I. Shih, et al. A solution processed top emission OLED with transparent carbon nanotube electrodes [J]. Nanotechnology, 2010, 21 (13): 134020
    [159] W. P. Wu, W. Xu, W. P. Hu, Progresses in Organic Field Effect Transistors and Molecular Electronics [J]. Chemistry Online, 2006, 6:405-408
    [160] H. Y. Zen, W. D. Huan, Y. J. Feng. LED Color Analysis [J], Electro Optic Technology Application. 2009, 24(2): 41-43
    [161] B. X. Mi, Z. Q. Gao, X. Y. Deng, W. Huang. Research progress of solar cell materials and devices based on organic thin film [J]. Sci. China, Ser. B. 2008, 38(11), 957-975
    [162] H. Lin, X. Li, B. J. Li, et al. New Concepts and New Directions on the Development of Solar Cells [J]. Rare Metal Materials and Engineering, 2009, 38(z2): 722-725
    [163]苏梦蟾.聚合物有机太阳能电池的研究[硕士学位论文].北京:北京交通大学, 2007
    [164] J. E. Parmer, A. C. Mayer, B. E. Hardin, et al. Organic bulk heterojunction solar cells using poly(2,5-bis(3- tetradecyllthiophen-2-yl) thieno[3,2,- b] thiophene) [J]. Applied Physics Letters, 2008, 92(11): 113309
    [165] M. C. Tanese, D. Fine, A. Dodabalapur, et al. Organic thin-film transistor sensors: Interface dependent and gate bias enhanced responses [J]. Microelectronics Journal, 2006, 37(8): 837-840
    [166] D. Li, L. J. Guo. Organic thin film transistors and polymer light-emitting diodes patterned by polymer inking and stamping [J]. Journal of Physics D: Applied Physics, 2008, 41(10): 105115
    [167]周健.有机半导体中载流子传输的蒙特卡洛模拟[博士学位论文].上海:复旦大学, 2007
    [168] T. Kim, S. J. Son, S. M. Seo. Flexible top gate pentacene thin film transistor with embedded source-drain electrode [J]. Applied Physics Letters, 2008, 93(1): 013304
    [169] B. Schutte, H. Gothe, S. I. Hintschich, et al. Continuously tunable laser emission from a wedge-shaped organic microcavity [J]. Applied Physics Letters, 2008, 92(16): 163309
    [170] X. Sh. Li, Y. Q. Peng, Q. S. Yang, et al. Analytical model of charge transport at organic semiconductor interfaces [J].Atca Physica Sinica, 2007, 56(09): 5441-05
    [171] D. Kim, D. Ma, N. Lee. Characterization of the Sn doped In2O3 film prepared by DC magnetron sputter type negative metal ion beam deposition [J]. Japanese Journal of Applied Physics, 2004, 43(4 A): 1536-1540
    [172] D. J. J. Marchand, G. De Filippis, V. Cataudella, et al. Sharp Transition for Single Polarons in the One-Dimensional Su-Schrieffer-Heeger Model [J].Physical Review Letters, 2010, 105: 266605
    [173] T. Uchida, T. Mimura, S. Kaneta, et al. Transparent organic light-emitting devices fabricated by Cs-incorporated RF magnetron sputtering deposition [J]. Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers, 2005, 44(8): 5939-5942
    [174]包科达,刘秀华.试论热学课程中的平衡态原理及其和细致平衡原理的关系[J].大学物理, 1997, 16-7
    [175]祁玉兰.有机太阳能电池的发展[J].科苑论坛Modern science, 2009, 9:143
    [176] Mario Pagliaro, Giovanni Palmisano, Rosaria Criminna.柔性太阳能电池[M].上海:上海交通大学出版社, 2010
    [177]成志秀,王晓丽.太阳能光伏电池综述[J].信息记录材料, 2007, 8(2)
    [178] T. H. Zhang, L. Y. Piao, S. L. Zhao, et al. New Progress in Study of Organic Solar Cell Materials [J]. Chinese Journal of Organic Chemistry, 2011, 31(2): 260-272
    [179]周南.柔性薄膜太阳能电池力学性能及其在膜结构中的应用研究[硕士学位论文].浙江:浙江大学, 2010
    [180]熊绍珍,朱美芳.太阳能电池的基础与应用[M].北京:科学技术出版社, 2009
    [181]李为民.聚合物太阳能电池机理及实验研究[博士学位论文].武汉:华中科技大学, 2009
    [182]欧阳平.聚合物太阳能电池的研究[硕士学位论文].北京:北京交通大学, 2007
    [183] C. K. Frederik. Polymer Solar Cell Modules Prepared using Roll-to-roll Methods: Knife-over-edge Coating, Slot-die Coating and Screen Printing[J]. Solar Energy Materials and Solar Cells, 2009, 93(4): 465-475
    [184] H. Murata, Y. Kinoshita, Y. Kanai, et al. Increase in Open-circuit Voltage and Improved Stability of Organic Solar Cells by Inserting a Molybdenum Trioxide Buffer Layer[J]. MRS Proceedings, 2009, 73(B10): 1154
    [185] P. Peumans, V. Bulovi?, S. R. Forrest. Efficient photon harvesting at high optical intensities in ultrathin organic double-heterostructure photovoltaic diodes [J]. Applied Physics Letters, 2000, 76(19): 2650
    [186] F. Garnier, X. Z. Peng, G. Horowitz, D. Fichou. Organic-based field-effect transistors: Critical analysis of the semiconducting characteristics of organic materials [J]. Molecular Engineering, 1991, 1(2): 131-139
    [187] C. Teague, D. Jurchescu, N. Jackson, et al. Probing stress effects in single crystal organic transistors by scanning Kelvin probe microscopy [J]. Applied Physics Letters, 2010, 96: 203305
    [188] M. Y. Chan, S. L. Lai, M. K. Fung, CS Lee, et al. Doping-induced efficiency enhancement in organic photovoltaic devices [J]. Applied Physics Letters, 2007, 90(2): 023504
    [189] A. Goetzberger, C. Hebling, H. W. Schock. Photovoltaic materials, history, status and outlook [J]. Materials Science and Engineering R: Reports, 2003, 40(1): 46
    [190] C. Kulshreshtha, J. W. Choi, J. K. Kim, et al. Open-circuit voltage dependency on hole-extraction layers in planar heterojunction organic solar cells [J]. Applied Physics Letters, 2011, 99(2): 023308
    [191] M. A. Green1, K. E., Y. Hishikawa, W. Warta. Solar cell efficiency tables (version 37) [J]. Prog. Photovolt: Res. 2011, 19: 84-92
    [192] J. W. Huh, Y. M. Kim, Y. W. Park, et al. Characteristics of organic light-emitting diodes with conducting polymer anodes on plastic substrates [J]. Journal of Applied Physics, 2008, 103(4): 44502-44504
    [193]王振国,高健,赵伟明,谭国良.有机发光器件(OLED)封装技术的研究现状分析.现代显示, 2011, 1006(1): 0027-0032
    [194] A. P. Ghosh, L. J. Gerenser, C. M. Jarman, et al. Thin-film encapsulation of organic light-emitting devices [J]. Applied Physics Letters, 2005, 86 (22): 1-3
    [195] M. S Weaver, L. A. Michalski, K. Rajan, et al. Organic light- emitting devices with extended operating lifetimes on plastic substrates [J]. Applied Physics Letters, 2002, 81 (16): 2929-2931
    [196] A. B. Chwang, M. A. Rothman, S. Y. Mao, et al. Thin film encapsulated flexible organic electroluminescent displays [J]. Applied Physics Letters, 2003, 83 (3): 413-417
    [197] L. D. Wang, Z. X. Wu,Y. Li, et al. Thin Film Encapsulation of Light-Emitting Diodes with Photopolymerized Polyacrylate and Silver Films [J]. Chinese Physic Letters, 2005, 22(10): 2684-2688
    [198]叶丹琴,杨利营,印寿根.聚对二甲苯类薄膜用于有机电致发光器件的封装[J].光电子·激光, 2009, 20(1): 24-27
    [199] M. Tuomikoski, R. Suhonen, M. V?lim?ki, et al. Manufacturing of polymer light-emitting device structures. Proceedings of SPIE , 2006, 6192: 619204
    [200] N. Kim, W. J. Potscavage, J. B. Domercq, et al.. A hybrid encapsulation method for organic electronics [J]. Applied Physics Letters, 2009, 94(16): 163308
    [201] D. S. Wuu, T. N. Chen, C. C. Wu, et al. Transparent Barrier Coatings for Flexible Organic Light-Emitting Diode Applications [J].. Chemical Vapor Deposition, 2006, 12(10):220-225
    [202] J. Granstrom, J. S. Swensen, J. S. Moon, et al.. Encapsulation of organic light-emitting devices using a perfluorinated polymer [J].. Applied Physics Letters, 2008, 93(19): 193304
    [203] T. N. Chen, D. S. Wuu, C. C. Wu, et al. Improvements of Permeation Barrier Coatings Using Encapsulated Parylene Interlayers for Flexible Electronic Applications [J]. Plasma Processes and Polymers, 2007, 4(10): 180-184
    [204] L. Moro, T. A. Krajewski, O. Philips, et al. Process and design of a multilayer thin film encapsulation of passive matrix OLED displays . Proceedings of SPIE , 2004, 52(14): 83-87
    [205] M. Katsuyuki, I. Masaya. Encapsulation-free hybrid organic-inorganic light-emitting diodes [J].. Applied Physics Letters, 2006, 89(18): 183510
    [206]黄卫东,王旭洪,盛玫等.有机发光器件的低温氮化硅薄膜封装[J]..功能材料与器件学报, 2003, 9(2): 179-184
    [207]张方晖,席俭飞,王秀峰.硫系玻璃薄膜封装层对OLED寿命的影响[J]..光电器件, 2010, 31(1): 30-34
    [208]张方辉,李欣,王秀峰等. Se薄膜封装层对OLED器件寿命的影响[J]..液晶与显示, 2008, 23(1): 0001-0005
    [209]李欣;张方辉;王秀峰等. Te薄膜封装层对有机电致发光器件寿命的影响[J].,微细加工技术, 2008, 6(3):0018-0022
    [210] M. Prashant, G. Jonathan, H. Lin, et al. A single-layer permeation barrier for organic light-emitting displays [J].. Applied Physics Letters, 2008, 92(12): 103309
    [211] H. Low, Y. Xu. Moisture barrier of AlxOy coating on poly(ethylene terephthalate), poly(ethyl enenaphthalate) and poly(carbonate) substrates [J].. Applied Surface Science, 2005, 250 (1-4): 135-138

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700