秸秆燃料锅炉受热面高温腐蚀机制及防护研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物质资源的规模化利用对于解决化石能源日趋紧张和环境污染日益严重问题具有重大意义。农作物秸秆是我国生物质资源的重要组成部分之一,秸秆直燃热利用是生物质资源规模化利用的有效途径。然而由于我国秸秆资源高氯高碱金属的特点,在直燃热利用过程中引起受热面沉积以及高温腐蚀等问题,已经成为提高主蒸汽温度和压力来提高秸秆锅炉能源利用效率所必须面临的难题。为此,探讨了解秸秆直燃沉积腐蚀过程及腐蚀机理,探索沉积腐蚀防护技术是十分有必要的。
     本文先分析了我国生物质秸秆资源的数量及分布特征,主要以集中于北方地区的玉米、南方地区的水稻和小麦三大秸秆为主。探讨了生物质燃料检验标准及分析方法,对比分析了秸秆与原煤的燃料特性,分析结果表明:欧盟CET/TS和美国ASTM生物质燃料检验分析标准并不完全适合我国以农业资源为主的生物质燃料的检验分析,我国急需制定相应的生物质燃料检验标准和分析方法。我国生物质秸秆属于高氯高钾钠低硫燃料,其燃烧飞灰产物主要是碱金属氯化物;与生物质燃料相比,我国原煤属于高硫高钠钾、低氯或特低氯燃料,其燃烧飞灰产物主要是碱金属硫化物。
     根据生物质秸秆燃烧特性,本文还建立了基于秸秆燃料特性分析和一次供风配置的秸秆燃料层燃锅炉燃烧数值模型。通过床层燃烧模型,炉膛气相燃烧模型,以及两者之间的流动传热耦合,建立了层燃锅炉一体化燃烧模型,模拟分析秸秆燃料锅炉受热面热力学状态,研究炉内温度场。比较纯烧秸秆锅炉炉内截取的受热面管的积灰腐蚀成分分析检验结果,选择KCl、NaCl、K_2SO_4和Na_2SO_4等四种碱金属盐作为腐蚀介质并通过计算确定其质量配比为63:13:5:1;以500℃、550℃、600℃和650℃作为腐蚀反应温度,建立了秸秆燃料锅炉受热面沉积腐蚀模拟试验环境。选择锅炉厂提供的生物质锅炉常用管材1Cr19Ni11Nb、10Cr9Mo1VNb、12Cr1MoVG和20G,制备腐蚀试样进行腐蚀试验研究,探讨生物质秸秆锅炉受热面沉积腐蚀过程及腐蚀机理。根据生物质秸秆锅炉受热面沉积腐蚀模拟环境和元素的物理化学性质,选择Ni、Cr、Mo、Al和稀土等金属元素粉末作为粉芯材料、设计Ni-Cr粉芯丝材、电弧喷涂防护涂层进行秸秆燃料锅炉受热面沉积腐蚀防护技术的探索研究。
     四种管材腐蚀试验结果表明,各管材的抗腐蚀性能随着反应温度的升高而降低,四种管材的抗腐蚀能力1Cr19Ni11Nb>10Cr9Mo1VNb>12Cr1MoVG>20G。运用热分析动力学分析理论建立了腐蚀过程动力学方程分析模型,通过腐蚀增重曲线求得热分析α-t曲线,根据G(α)-t曲线线性拟合及拟合误差分析得到腐蚀反应类型为D4类型,腐蚀机理函数符合G (α)=1-2/3α- (1 -α)~(2/3)函数模式。通过数学计算求得,试验模拟沉积腐蚀条件下,1Cr19Ni11Nb、10Cr9Mo1VNb、20G和12Cr1MoVG四种管材的反应活化能E分别为3632.88J/mol、1421.92J/mol、635.30J/mol和1027.70J/mol;指前因子A分别为0.026181558s~(-1)、0.019152922s~(-1)、0.017641521s~(-1)和0.018077269s~(-1)。通过扫描电镜对腐蚀试样的微观组织及元素组成进行分析,结果表明,腐蚀产物主要是Fe、Cr、Ni等元素的氧化物。
     防护涂层耐蚀性试验结果表明,两种Ni-Cr涂层的耐蚀性能随着反应温度的升高而降低,防护涂层明显提高了基体材料的抗腐蚀能力,同时发现1#涂层耐蚀能力要略优于2#涂层。运用热分析动力学分析理论,确定防护涂层腐蚀反应类型为D4类型,腐蚀机理函数符合G (α)=1-2/3α-(1-α)~(2/3)函数模式,1#和2#防护涂层的反应活化能E分别为4383.19J/mol和4284.97J/mol;指前因子A分别为0.022393154s~(-1)和0.020931502s~(-1)。结合光学显微镜和扫描电镜分析结果,可知高Ni-Cr材料耐氯腐蚀性能要优于普通合金材料,Cr元素虽然与Cl元素的亲和力强,但仍然具有一定的耐腐蚀性能,同时发现,Ni元素的耐氯腐蚀性能要优于Cr元素。
     总之,根据秸秆燃料特性,秸秆燃料锅炉受热面沉积腐蚀防护技术,要综合考虑碱金属的氯化物和硫化物的腐蚀特性,以氯化腐蚀防护为主、兼有硫化腐蚀防护。
It is of great significance to utilize biomass resource in a large scale for substitutingthe fossil fuel and solving the environmental problems.Crop straw is one of the mostimportant parts of biomass resource in China.Direct combustion of straw is suit forutilizing straw in a large scale.However,during direct combustion of straw,its high contentof chlorine and alkali metal causes many problems,such as deposition of the heatingsurface and high temperature corrosion. All these problems must be faced when peoplewant to develop the straw fuel boiler energy utility efficiency with the developedtemperature and pressure of main steam.Therefore, it’s necessary to research themechanism and protection technique of the deposition corrosion of the heating surface.
     Firstly, this paper analyzes the quantity and distribution of straw resource. It givespriority to the straw of maize, rice and wheat, in which the maize straw is the largest innumber and distributes mainly in the north of China. It is followed by rice and wheatstraws which concentrate mainly in the south.This paper also discusses the inspectionstandard and analysis method of biomass fuel, and compares fuel properties of the strawand coal in China. The analysis discovers that CET/TS and ASTM are not suitable forinspection analysis of agriculture resources in our country, so inspection standard andanalysis method of biomass fuel urgently needs to be developed in our country.Thecharacteristics of the biomass straw in our country lie in high chlorine,high potassium,highsulphur and low sulphur. So its combustion products are mainly alkali chlorine.However,coals in our country contain high sulphur, high sulphur,high potassium and low chlorine.Itscombustion products are mainly alkali sulphur.
     According to the characteristics of the biomass straw,this paper develops a numericalmodel of travelling grate boiler combustion of the straw fuel, based on the straw fuelanalysis and primary air as the input conditions. The model of integrated travelling grateboiler combustion comprises bed model, furnace model and their coupling model. The simulation analysis focuses on its thermodynamic state and temperature field in the furnaceof boiler. Compare of composion test results of deposition corrosion of the heating surfacein pure straw burning boiler, this paper establishes corrosion sedimentary environment ofthe straw fuel boiler, the corrosive compound is made of KCl,NaCl,K_2SO4and Na2SO4,mass ratio of KCl: NaCl: K_2SO4: Na2SO4is 63:13:5:1, and corrosion reaction temperatureis 500℃, 550℃, 600℃and 650℃. In order to explore depositon corrosion process andcorrosion mechanism of heating surface in straw boiler,the experiments of hightemperature corrosion are conducted to simulate deposition condition in biomass boilerheating surface for four kinds of materials: 1Cr19Ni11Nb, 10Cr9Mo1VNb,12Cr1MoVGand 20G. According to the biomass straw boiler heating surface deposion corrosionenvironment and physical and chemical properties of elements,Ni,Cr,Mo,Al and rare-earchmetal elements fine powders are used as corrosion pretection matericals.The Ni-Crprotection coatings are prepared with arc spraying to research its corrosion resistance indeposition condition in biomass boiler heating surface.
     The results show that corrosion resistance decreases as temperature rises andcorrosion resistance of four kinds of materials is 1Cr19Ni11Nb>10Cr9Mo1VNb>12Cr1MoVG>20G.According to thermal analysis and kinetic theory,it sets the model ofdynamics analysis for corrosion process.The thermal analysisα-t curves are plotted byusing the mass gain curves.The D4 corrosion reaction type is plotted by using G(α)-t linearfitting curves and fitting error. The corrosion mechanism function isG (α)=1-2/3α- (1-α)~(2/3).Under simulation test of deposition corrosion of heatingsurface in straw boiler conditons, these kinds of 1Cr19Ni11Nb,10Cr9Mo1VNb,20G and12Cr1MoVG materials activation energy E and pre-exponential factor A in the reactionhave been calculated,which are 3632.88J/mol,1421.92J/mol,635.30J/mol,1027.70J/moland0.026181558s-1,0.019152922s-1,0.017641521s-1,0.018077269s-1.The metal elements areanalyzed after the experiment using SEM-EDS method to detect the appearance,theelement contents and the compositions of the corrosion products. The results show that thecorrosion products are mainly Fe oxide,Cr oxide and Ni oxide.
     The results of arc spraying protection coatings corrosion test show that two kinds ofNi-Cr coatings corrosion resistance decreases as temperature rises.The anti-corrosionabilities of two coatings are better than body metal. And the anti-corrosion abilities of 1#coating are better than 2# coating. The D4 corrosion reaction type are plotted by usingthermal analysis and kinetic theory. The function of corrosion mechanism is G (α)=1- 2/3α- (1-α)~(2/3).The kinds of materials activation energy E andpre-exponential factor A in the reaction have been calculated,which are 4383.19J/mol,4284.97J/mol and 0.022393154s~(-1),0.020931502s~(-1).The activation energy value shows twokinds of protection coatings corrosion ability and mass gain curves are in agreement. Theelements of protection coatings are analyzed after the experiment by using Opticalmicroscope and SEM-EDS method to detect the appearance,the element contents and thecompositions of the corrosion products.The results show that the anti-corrosion resistanceof high Ni and Cr metals is better than that of common metal materials. Although thereaction activity of Cr and Cl is large,Cr still has some of the anti-corrosion resistance.And Ni’s corrosion resistance is more excellent than Cr in the chlorine corrosionenvironment.
     In conclusion, according to the characteristics of the biomass straw fuel,the corrosionmechanism and protection technology of deposition of the straw boiler heating surfaceneed take chloride and sulfide corrosion of alkali into consideration, given priority tochlorinated corrosion incorporated with sulfide corrosion.
引文
[1]蒋剑春.生物质能源的应用现状与发展前景.林业化学与工业,2002,22(2):75~80.
    [2]赵青玲.秸秆成型燃料燃烧过程中沉积腐蚀问题的试验研究:(博士学位论文).郑州:河南农业大学,2007.
    [3]Gross R,Leach M,Bauen A.Progressinrenewable energy.Environment International, 2003, 29(1):105~122.
    [4]Yokoyama S Y,Ogi T,Nalampoon A et al. Biomass energy potential in Thailang.Biomass andBioenergy,2000,18(5):405~410.
    [5]王艳,梁歆梧.中国能源现状.企业与市场:上半月,2006(3):47~49.
    [6]万国华.世界能源的发展趋势及江西能源的发展方向.价格月刊,2006(3):28~29.
    [7]吴创之,马隆龙.生物质能现代化利用技术.北京:化学工业出版社,2003.
    [8]张无敌,刘士清,何彩云.生物质潜力及其能源转换.自然资源,1996(4):22~25.
    [9]吴伟烽,刘聿拯.生物质能利用技术介绍.工业锅炉,2003(5):11~14.
    [10]匡廷云,马克平,白克智.生物质能研发展望.中国科学基金,2005(6):326~330.
    [11]闵凡飞,张明旭.生物质与不同变质程度煤混合燃烧特性的研究.中国矿业大学学报, 2005,34(2):236~241.
    [12]Demirbas A. Combustion characteristics of different biomass fuels.Progress in Energy andCombustion Science,2004,30(2):219~230.
    [13]Fenkins B M,Baxter L L,Miles Jr T R et al. Combustion properties of biomass.Fuel ProcessingTechnology,1998,54(1-3):17~46.
    [14]肖军,段菁春,王华等.生物质利用现状.安全与环境工程,2003,10(1):11~14.
    [15]郭庆杰,张锴,刘振宇.生物质的流化床转化.煤炭转化,1998,21(6):33~37.
    [16]Demirbas A. Recent advances in biomass conversion technologies.Energy Edu Sci Technol,2000(6):78~83.
    [17]Demibas A.Biomass resource facilities and biomass conversion processing for fuels andchemicals.Energy Conversion and Management.2001,42(11):1357~1378.
    [18]中华人民共和国国家发展计划委员会基础产业发展司.中国新能源与可再生能源1999白皮书.北京:中国计划出版社,2000.
    [19]LIN Weigang,Dam-Johansen K,Frandsen F.Agglomeration in bio-fuel fired fluidized bedcombustors.Chemical Engineering Journal,2003,96(1-3):171~185.
    [20]余春江,骆仲泱,张文楠等.碱金属及相关无机元素在生物质热解中的转化析出.燃烧化学学报,2000,28(5):420~425.
    [21]Nielsen H P,Frandsen F J,Dam-Johansen K et al. The implications of chlorine-associated corrosionon the operation of biomass-fired boilers.Progress in Energy and Combustion Science, 2000, 26(3):283~298.
    [22]Aslaug H L. Melting and sintering of ashes:(Ph.D Thesis).Lyngby: Technical University ofDenmark,1998.
    [23]戴林,李景明,Ralph O.中国生物质能转换发展与评价.北京:中国环境科学出版社,1998.
    [24]杨湄,刘昌盛,黄凤洪等.秸秆热解液化制备生物油技术.中国油料作物学报,2006,28(2):228~232.
    [25]梅晓岩,武敬岩,刘荣厚.辽宁农作物秸秆资源评价及能源化利用分析.可再生能源,2008,26(6):97~100.
    [26]财政部.秸秆能源化利用补助资金管理暂行办法.北京:财政部,2008.
    [27]秦建光,余春江,王勤辉等.流化床秸秆燃烧技术研究与开发.水利电力机械,2006,28(12):70~75.
    [28]Maschio G,Koufopanos G,Lucchesi A. Pyrolysis, a promising route for biomass utilization.Bioresource Technology,1992,42(3):219~231.
    [29]宋永利,杨丽华.工业锅炉生物质燃烧技术.节能技术,2003,21(3):44~45.
    [30]唐艳玲.稻秸热解过程中碱金属析出的研究:(硕士学位论文).杭州:浙江大学,2004.
    [31]中华人民共和国可再生能源法,2006.
    [32]国家发展和改革委员会.可再生能源发电价格和费用分摊试行管理办法.北京:国家发展和改革委员会,2006.
    [33]国家发展和改革委员会.国家发展改革委关于完善农林生物质发电价格政策的通知.北京:国家发展和改革委员会,2010.
    [34]徐婧.生物质燃烧过程中碱金属析出的实验研究:(硕士学位论文).杭州:浙江大学,2006.
    [35]马孝琴.秸秆燃烧过程中碱金属问题研究的新进展.水利电力机械,2006,28(12):28~34.
    [36]唐艳玲,余春江,方梦祥等.秸秆中碱金属相关无机元素的测定和分布.农机化研究, 2005(1):190~193.
    [37]Michelsen H P,Frandsen F,Dam-Johansen K et al. Deposition and high temperature corrosion in a10MW Straw fired boiler.Fuel Processing Technology,1998,54(1-3):95~108.
    [38]Strifvars B J,Backman R,Hupa M et al.Corrosion of superheater steel materials under alkali saltdeposits Part I:The effect of salt deposit composition and temperature.Corrosion Science,2008,50(5):1274~1282.
    [39]刘圣勇,刘小二,王森.不同形态生物质燃烧技术现状和展望.新能源产业,2007(4):23~28.
    [40]Baxter L L. Ash deposition during biomass and coal combustion-a mechanic approach.Biomass andBioenergy,1993,4(2):85~102.
    [41]Sbren K K.The Impact of Deposits on Heat Transfer during Biomass Combusion.http://www.iet.auc.dk/skk/download/Combinst2001.pdf.
    [42]Jenkins B M, Baxter L L,Miles Jr.T R et al. Combustion properties of biomass.Fuel ProcessingTechnology,1998,54(1-3):17~46.
    [43]Nielsen H P,Baxter L L,Sclippab G et al. Deposition of potassium salts on heat transfer surfaces instraw-fired boilers:a pilot-scale study.Fuel,2000,79(2):131~139.
    [44]宋鸿伟,郭民臣,王欣.生物质燃烧过程中的积灰结渣特性.节能与环保,2003(9):29~31.
    [45]WEI Xiaolin,Uwe Schnell,Klaus Hein R G. Behavior of gaseous chlorine and alkali metals duringbiomass thermal utilisation.Fuel,2005,84(7-8):841~848.
    [46]Scott Q T, Charles M K, Darren M I. Removal of inorganic constituents of biomass feed stocks bymechanical dewatering and leaching.Biomass and Bioenergy,1997,12(4):241~252.
    [47]Ardersen K H. Deposit formation during coal-straw co-combustion in a utility PF-boiler:(Ph.DThesis). Lyngby: Technical University of Denmark,1998.
    [48]Nielsen H P. Deposit and high-temperature corrosion in biomass-fired boilers:(Ph.D Thesis).Lyngby: Technical University of Denmark,1998.
    [49]Dayton D C, Jenkins B M,Turn S Q et al.Release of inorganic constituents from leached biomassduring thermal conversion.Energy & Fuels,1999,13(4):860~870.
    [50]Davidisson K O, Korsgrin J G, Pettersson J B C et al. The effects of fuel washing techniques onalkali release from biomass.Fuel,2002,81(2):137~142.
    [51]Jenkins B M, Bakker R R, Wei J B. On the properties of washed straw.Biomass and Bioenergy,1996,10(4):177~200.
    [52]Grammelis P,Skodras G,Kakaras E. Effects of biomass co-firing with coal on ash properties Part I:Characterisation and PSD.Fuel,2006, 85(16):2310~2315.
    [53]Demirbas A. Sustainable cofiring of biomass with coal.Energy Concersion and Management,2003,44(9):1465~1479.
    [54]Khanh-Quang Tran, Kristiina Iisa,Britt-Marie Steenari et al. A kinetic study of gaseous alkalicapture by kaolin in the fixed reactor equipped with an alkali detector.Fuel,2005,84(2-3):169~175.
    [55]Turn S Q, Kinoshita C M, Ishimura D M et al. A review of sorbent materials for fixed bed alkaligetter systems in biomass gasifier combined cycle power generation applications.Journal of theInstitute of Energy,1998(71):163~177.
    [56]Lee S H D, Johnson I.Remove of gaseous alkali metal compound from hot flow gas by particulatesorbents.Journal of Engineering for Power,1979(1):397~402.
    [57]Punjak W A, Shadman F. Aluminosilicate sorbents for control of alkali vapors during coalcombustion and gasification.Energy & Fuels,1998,2(5):702~708.
    [58]马孝琴,骆仲泱,方梦祥等.添加剂对秸秆燃烧过程中碱金属行为的影响.浙江大学学报(工学版),2006,40(4):599~604.
    [59]汉春利,张军,颜峥等.固体吸收剂脱除高温烟气中碱金属研究.燃烧科学与技术,2001,7(1):48~51.
    [60]Gustafsson S,Kremsner F,Langer G. Thermal coating of components for biomass power stations.Welding and Cutting.2002,54(2):90~92.
    [61]Hearley J A,Liu C,Little J A et al. Corrosion of Ni–Al high velocity oxyfuel (HVOF) thermal spraycoating by fly ash and synthetic biomass ash deposits. British Corrosion Journal, 2001,36(2):111~120.
    [62]李政.生物质锅炉过热器高温腐蚀研究:(硕士学位论文).北京:华北电力大学,2009.
    [63]印佳敏,吴占松.12Cr1MoVG在生物质锅炉过热器气相条件下的腐蚀特性.电站系统工程,2008,24(6):41~44.
    [64]印佳敏,吴占松.TP347H在生物质锅炉过热器气相条件下的腐蚀特性(Ⅰ).热力发电,2009,38(7):27~31,35.
    [65]赵双群,谢锡善.超超临界锅炉过热器管材的高温组织温度性及其改进研究.材料导报,2004,18(8):131~133.
    [66]李庆,宋军政,聂志钢.130t/h燃生物质锅炉过热器管子腐蚀原因分析.发电设备,2009(3):214~218.
    [67]李志刚.火电厂超临界机组对流受热面管材高温氧化研究-材料.电厂化学2009学术年会暨中国电厂化学网2009高峰论坛会议,武汉,2009:5~10.
    [68]宋鸿伟,甄邯伟.生物质锅炉高温过热器腐蚀机理的研究.锅炉制造,2010(5):14~18.
    [69]刘永莉.生物质锅炉高温腐蚀涂层材料的研究:(硕士学位论文).镇江:江苏科技大学,2009.
    [70]董娜.镍基电弧喷涂粉芯丝材及其涂层耐蚀性能的研究:(硕士学位论文).北京:北京工业大学,2006.
    [71]王瑞.耐氯腐蚀电弧喷涂粉芯线材的研究:(硕士学位论文).北京:北京工业大学,2011.
    [72]骆仲泱,周劲松.中国生物质能利用技术评价.中国能源,2004(9):39~42.
    [73]中华人民共和国统计局.国际统计年鉴2001.北京:中国统计出版社,2001.
    [74]毕于运,王亚静,高春雨.中国主要秸秆资源数量及其区域分布.农机化研究,2010(3):1~7.
    [75]王晓岚,那峙雄.基于燃料特性的秸秆积灰结渣.赤峰学院学报,2008,24(1):76~77.
    [76]戴林,李景明.中国生物质能转换技术发展与评价.北京:中国环境科学出版社,1998.
    [77]杨昌炎,姚建中,吴创之.生物质热解过程中灰分对热解油的影响.2002中国生物质能技术研讨会,南京,2002:76~79.
    [78]中华人民共和国农业部.中国农业统计年鉴2000.北京:中国农业出版社,2000.
    [79]高祥照,马文奇,马常宝等.中国作物秸秆资源利用现状分析.华中农业大学学报,2002,21(3):242~247.
    [80]高春雨,王亚静,李宝玉等.中国秸秆资源短缺与过剩问题探讨.农机化研究,2010(4):209~212.
    [81]中华人民共和国农业部.中国农业统计年鉴2007.北京:中国农业出版社,2007.
    [82]中华人民共和国农业部.中国农业统计年鉴2010.北京:中国农业出版社,2010.
    [83]韩鲁佳,闫巧娟,刘向阳,等.中国农作物秸秆资源及其利用现状.农业工程学报,2002,18(3):87~91.
    [84]杜谋涛,袁晓东,郭和军.我国生物质秸秆资源利用现状及展望.可再生能源,2008(2):76~77,79.
    [85]王家鼎.浅谈农作物秸秆的再利用.中学地理教学参考,2000(1):35~36.
    [86]杭维琦,陈建江.野外燃烧秸秆对环境质量的影响与防治.环境监测管理与技术,2000,12(2):36~37.
    [87]曹建峰.秸秆的综合利用技术分析.能源研究与信息,2006,22(1):22~25.
    [88]毛玉如,方梦祥,骆仲泱等.生物质能流化床转化利用技术实践.锅炉技术,2003,34(2):72~75.
    [89]史明志.固体生物质燃料氯含量测定中样品处里方法研究.煤质技术,2009(6):36~38,42.
    [90]田宜水,赵立欣,孟海波等.欧盟固体生物质燃料标准技术进展.可再生能源,2007,25(4):61~64.
    [91]袁晓鹰,孙灿.可替代能源的新军—固体生物质燃料检测标准的制定.煤,2008,17(4):11~13.
    [92]田宜水,赵立欣,孟海波等.中国生物质固体成型燃料标准体系的研究.可再生能源,2010,28(1):1~5.
    [93]刘军利,蒋剑春.论生物质能源标准体系(Ⅲ)——生物质固体燃料标准化研究进展.生物质化学工程,2006,40(6):54~58.
    [94]ASTM, E776-87R04 Test method for forms of chlorine in refuse-derived fuel.Philadelphia:American Society for Testing and Materials,2005.
    [95]ASTM.E870—82(Repproved 1998)Standard test methods for analysis of wood fuels. Philadelphia:American Society for Testing and Materials,1998.
    [96]ASTM.E775—87(Repproved 1998)standard test methods for total sulfur in the analysis sample ofrefuse-derived fuel.Philadelphia:American Society for Testing and Materials,1998.
    [97]全国煤炭标准化委员会.GB/T214—2007煤中全硫的测定方法.北京:中国标准出版社,2007.
    [98]全国煤炭标准化委员会.GB/T212—2008煤的工业分析方法.北京:中国标准出版社,2008.
    [99]范志林,张军,林晓芬等.关于生物质基本性质分析的问题.东南大学学报(自然科学版),2004,34(3):352~355.
    [100]於丙军,刘友良.植物中的氯、氯通道和耐氯性.植物学通报,2004,21(4):402~410.
    [101]余春江,唐艳玲,方梦祥.稻秆热解过程中碱金属转化析出过程试验研究.浙江大学学报(工学版),2005,39(9):1435~1438,1444.
    [102]李寒旭, PAN Weiping,Charles Lee.煤中氯含量对煤燃烧时氯析出特征的影响.洁净煤技术,1999,5(3):27~30.
    [103]Frank E H,Gerald P H.Chlorine in coal: an XAFS spectroscopicinvestigation. Fuel,1995,74(4):556~559
    [104]Mukherjee S,Borthakur P.Effects of alkali treatment on ash and sulPhur removal from assam coal.Fuel Processing Technolog,2003(82):51~60.
    [105]蒋旭光,徐旭,严建华等.煤中氯的分布及燃烧过程中氯析出特性的试验研究.煤炭学报,2001,26(6):667~670.
    [106]ASTM.D3761-79 Standard test methods for analysis of wood fuels.Philadelphia:American Societyfor Testing and Materials,1979.
    [107]中国国家标准化管理委员会.GB/T 21923—2008固体燃料检验通则.北京:中国标准出版社,2008.
    [108]全国煤炭标准化技术委员会.GB/T 3558—1996煤中氯的测定方法.北京:中国标准出版社,1996.
    [109]郭献军.生物质燃烧氯的析出与控制研究:(博士学位论文).上海:华中科技大学,2009.
    [110]姜英.我国煤中氯的分布及其分级标准.煤质技术,1998(5):7~8,6.
    [111]蒋旭光,徐旭,严建华等.我国煤中氯含量分布特性的试验研究.煤炭转化,2001,24(2):58~61.
    [112]李英华,张克芮.固体生物质燃料检验方法建立原则.煤质技术,2009(6):32~35.
    [113]曹兆仓.秸秆锅炉的应用与烟气污染控制.污染防治技术,2010,23(4):101~105.
    [114]马孝琴,丛晓霞,秦建光等.添加剂对稻秆燃烧过程中碱金属形态分布的影响.河南农业大学学报,2009,43(3):296~301.
    [115]Bo Sander,Elsamprojekt, Kraftvrksvej. Emissions,corronsion and alkali chemistry in straw-firedcombined heat and power plants. lst World Conference on Biomass for Energy and Industry,Sevilla,2000:5~9.
    [116]赵青玲,王许涛,杨波等.解决秸秆燃烧过程中受热面上沉积腐蚀的方法.腐蚀与防护,2008,29(11):642~645.
    [117]Hell R.Molecular physiology of plant sulfur metabolism.Planta,1997,202(2):138~148.
    [118]聂虎,余春江,柏继松等.生物质燃烧中硫氧化物和氮氧化物生成机理研究.热力发电,2010,39(9):21~26.
    [119]谢瑞芝,董树亭,胡昌浩.植物硫素营养研究进展.中国农学通报,2004,18(2):65~69.
    [120]孙成功,李保庆.煤中有机硫形态结构和热解过程硫变迁特性的研究.燃料化学学报,1997,25(4):358~362.
    [121]瞥建威,杨洪英,巩恩普.煤中硫的赋存特征及微生物脱硫.选煤技术,2004(1):4~8.
    [122]郑铁华,张立辉.燃煤硫析出规律的研究进展.山西煤炭,2007,27(3):25~28.
    [123]张颖,谢锋,管洪素.红外碳硫仪测定煤中硫含量.贵州科学,2010,28(4):112~114.
    [124]张殿英,刘伟,李超等.红外碳硫测定仪测定铁矿石中硫.理化检验-化学分册,2002,38(8):404~405.
    [125]葛新,王玉平.离子色谱法测定煤中的全硫.环境保护科学,2000,26(4):32~33,36.
    [126]胡军,郑宝山,王明仕等.中国煤中硫的分布特征及成因.煤炭转化,2005,28(4):1~6.
    [127]李文华,翟炯.中国煤中硫的分布度控制硫污染的对策.煤炭转化,1994,17(4):1~10.
    [128]罗陨飞,李文华,姜英等.中国煤中硫的分布特征研究.煤炭转化,2005,28(3):14~18.
    [129]赵科,吕清刚,徐通模等.生物质灰在流化床燃烧中的固硫特性研究.热能动力工程,2010,25(5):557~560.
    [130]廖艳芬,马晓茜.生物质能利用技术控制污染物排放的作用.环境污染与防治,2006,28(5):369~387.
    [131]曹慧,王孝威,付循成.高等植物的钾营养.北方园艺,2008(2):48~51.
    [132]张艳平,金保升.生物质热化学转化过程中碱金属问题的相关研究.生物质化学工程,2007(3):27~31.
    [133]Raask E.Mineral impurities in coal combustion,behaviour,problems and remedial measures.Washington:Hemisphere Pub.Corp,1985.
    [134]Huffaman G,Huggins F,Shah N et al.Behaviour of basic elements during coal combustion.Prog.Energy Combust.Seience,1999(16):243~251.
    [135]Davidsson K O,Engvall K, Hagstro M et al. A surface ionization instrument for on-linemeasurements of alkali metal components in combustion instrument description and applications.Energy & Fuels,2002(16):1369~1377.
    [136]Olsson J G,Jaglid U,Pettersson J B C. Alkali metal emission during pyrolysis of biomass. Energy& Fuels,1997(11):799~784.
    [137]Svane M,Hagstrom M,Pettersson J B C. On line measurements of individual alkali-containingparticles formed in biomass and coal combustion demonstration of an instrument based on surfaceionization technique.Energy & Fuels,2005(19):411~417.
    [138]Lee S H D,Johnson I. Removal of alkali vapors by a fixed granular bed filter using activatedbauxite as a filter medium.Proc of the US Department of Energy Contractor’s Meeting,Morgantown,1981:385~404.
    [139]蒋育澄,高世扬,夏树屏.痕量碱金属快速连续分析方法评述.理化检验:化学分册,2003,39(12):742~747.
    [140]Matuoka K,Yamashita T,Kuramoto K et al.Transformation of alkali and alkaline earth metals inlow rank coal during gasification.Fuel,2008,87(6):885~893.
    [141]阎维平,陈吟颖.TK6生物质燃料结渣特性分析与判别.华北电力大学学报,2007,34(1):49~54.
    [142]廖翠萍,颜涌捷,吴创之.生物质中元素分布特征的聚类分析研究.煤炭转化,2004,27(1):89~95.
    [143]倪建宇,冯新斌,洪业汤.贵州省原煤中微量元素的组成特征.环境化学,1998,17(4):26~27.
    [144]张云生,顾思平.哈尔滨市主要农作物籽实、秸杆根茬产量及其养分含量的分析.东北农业大学学报,2002,33(2):125~128.
    [145]王华,林卫红.贵州省油菜生产现状与可持续发展战略.贵州农业科学,2000,28(2):57~59.
    [146]何良胜,刘初成.烟草秸杆还田的效果研究初报.湖南农业科学,2002(6):34~35.
    [147]王道明.果园秸杆覆盖技术.农村经济与科技,2002,13(115):35~36.
    [148]江涛.要重视有机钾肥的利用.河南科技,2003(5):10~11.
    [149]王正银,胡尚钦.中国优势肥用植物资源潜力与利用.植物资源与环境学报,2000,9(3):49~53.
    [150]王晓岚,那峙雄.基于燃料特性的秸秆积灰结渣.赤峰学院学报,2008,24(1):76~77.
    [151]Robinson A L,Junkerh,Baxter L L.Pilot-scale investigation of the influence of coal-biomasscofiring on ash deposition.Energy & Fuels,2002,16(2):343~355.
    [152]Valmari T,Lind T M,Kauppinen E I et al.Field study on ash behavior during circulating fluidizedbed combustion of biomass:2.Ash deposition and alkali vapor condensation.Energy & Fuels, 1999,13(2):390~395.
    [153]Wang B Q.Erosion-corrosion of coatings by biomass-fired boiler fly ash.Wear,1995,188(1-2):40~48.
    [154]张军,范志林,林晓芬等.灰化温度对生物质灰特性的影响.燃料化学学报,2004,32(5):547~551.
    [155]ASTM. E1755 Test method for ash in biomass.Philadelphia:American Society for Testing andMaterials,2005.
    [156]全国煤炭标准化技术委员会.GB/T1574—2007煤灰成分分析方法.北京:中国标准出版社,1996.
    [157]French R J,Milne T A.Vapor phase release of alkali species in the combustion of biomasspyrolysis oils.Biomass and Bioenergy,1994(7):315~325.
    [158]Dayton D C,French R J,Milne T A. Direct observation of alkali vapor release during biomasscombustion and gasification:1.Application of molecular beam/mass spectrometry to switchgrasscombustion.Energy & Fuels,1995(9):855~865.
    [159]Johansson L S,Tullin C,Leckner B el at.Particle emissions from biomass combustion in smallcombustors.Biomass and Bioenergy,2003(25):435~446.
    [160]陈合安,杨学民,林伟刚.生物质燃烧过程中Cl及碱金属逸出的化学热力学平衡分析.过程工程学报,2007,7(5):899~998.
    [161]李勇.燃煤过程中碱金属赋存、迁移规律数值模拟及试验研究:(硕士学位论文).南京:东南大学,2006.
    [162]龙兵,刘志强,赵腾磊.钾对生物质燃烧过程积灰的影响.应用能源技术,2011(6):34~39.
    [163]李廉明,余春江,柏继松.中国秸秆直燃发电技术现状.化工进展,2010,29(增):84~90.
    [164]林宗虎.生物质能的利用现况及展望.自然杂志,2010,32(4):187~195.
    [165]陈汉平,李斌,杨海平等.生物质燃烧技术现状与展望.工业锅炉,2009(5):1~7.
    [166]林鹏.秸秆类生物质层燃燃烧特性的试验研究:(硕士学位论文).上海:上海交通大学,2008.
    [167]何鸿玉,马孝琴,陈学军.生物质锅炉在火电厂的安装使用.农村能源,2001(1):21~22.
    [168]Purvis M R I.Biomass combustion study pack for WEBCT contract:(Ph.D Thesis).Portsmouth:University of Portsmouth, 2002.
    [169]Yang Y B, Sharifi V N, Swithenbank J.Numerical simulation of the burning characteristics ofthermally-thick biomass fuels in packed-beds.Process Safety and Environmental Protection, 2005,83(6B): 549~558.
    [170]Peters B.Measurements and application of a discrete particle model (DPM) to simulate combustionof apacked bed of individual fuel particles.Combustion and Flame,2002,131(1-2):132~146.
    [171]Yang Y B, Sharifi V N, Swithenbank J.Substoichiometric conversion of biomass and solid wastesto energy in packed beds. AIChE Journal,2006,52(2):809~817.
    [172]Yang Y B, Goh Y R, Zakaria R et al.Mathematical modelling of MSW incineration on a travellingbed.Waste Management,2002,22(4):369~380.
    [173]Merrick D.Mathematical models of the thermal decomposition of coal-1. the evolution of volatilematter.Fuel,1983,62(5):534~539.
    [174]Thunman H,Leckner B.Modeling of the combustion front in a countercurrent fuel converter.Proceedings of the Combustion Institute,2002(29):511~518.
    [175]赵坚行.燃烧的数值模拟.北京:科学出版社,2002.
    [176]Johansson R,Thunman H,Leckner B.Influence of intraparticle gradients in modeling of fixed bedcombustion.Combustion and Flame,2007,149(1-2):49~62.
    [177]Zhou H,Jensen A D,Glarborg P et al.Numerical modeling of straw combustion in a fixed bed. Fuel,2005,84(4):389~403.
    [178]Jones W P,Lindstedt R P.Global reaction schemes for hydrocarbon combustion.Combustion andFlame,1988,73(3):233~249.
    [179]Cooper J,Hallett W L H.Numerical model for packed-bed combustion of char particles.ChemicalEngineering Science,2000,55(20):4451~4460.
    [180]Watanabe H,Otaka M.Numerical simulation of coal gasification in entrained flow coal gasifier.Fuel,2006,85(12-13):1935~1943.
    [181]Arthur J R.Reactions between carbon and oxygen.Transactions of the Faraday Society, 1951(47):164~176.
    [182]Hobbs M L.Modeling countercurrent fixed-bed coal gasification:(Ph.D thesis).Provo:BrighamYoung University,1990.
    [183]Rafsanjani H H,Jamshidi E,Rostam-Abadi M. A new mathematical solution for predicting charactivation reactions.Carbon,2002,40(8):1167~1171.
    [184]Cheng P.Two dimensional radiation gas flow by a moment method.AIAA Journal, 1964(2):1662~1664.
    [185]Siegel R,Howell J R.Thermal radiation heat transfer (4th ed.).New York:Taylor & Francis, 2002.
    [186]Coppalle A,Vervisch P.The total emissivities of high-temperature flames.Combustion andFlame,1983(49):101~108.
    [187]Smith T F,Shen Z F,Friedman J N.Evaluation of coefficients for the weighted sum of gray gasesmodel.Journal of Heat Transfer,1982,104(4):602~608.
    [188]Bruch C,Peters B,Nussbaumer T.Modelling wood combustion under fixed bed conditions.Fuel,2003(82):729~738.
    [189]Kar S K.Numerical investigation of ash deposition in straw-fired boilers-using CFD as theframework for slagging and fouling prediction:(Ph.D Thesis).Denmark: Aalborg University,2001.
    [190]Calderbank P H,Pogorski L A.Heat transfer in packed beds.Transactions of Institution of ChemicalEngineering,1957(35):195~207.
    [191]刘洋,刘正宁,谭厚章等.生物质灰结渣机理研究.工程热物理,2010,31(5):895~899.
    [192]刘洋,牛艳青,谭厚章等.生物质锅炉二级过热器结渣恶化机制分析.中国电机工程学报,2011,31(14):8~12.
    [193]孙迎,王永征,栗秀娟等.生物质燃烧积灰、结渣与辐射特性.锅炉技术,2011,42(4):66~69.
    [194]胡荣祖,史启祯.热分析动力学.北京:科学出版社,2001.
    [195]潘聪英.垃圾焚烧炉内过热器区HCl高温腐蚀研究:(硕士学位论文).杭州:浙江大学,2004.
    [196]印佳敏,丁艳辉,吴占松.生物质锅炉过热器气相HCl腐蚀试验的动力学研究.热力发电,2009,38(1):10~13,18.
    [197]赵虹,章勤,吴广君等.锅炉水冷壁在不同浓度SO2气氛下高温腐蚀的热分析动力学研究.电站系统工程,2005,21(6):32~34,37.
    [198]Spiegel M,Grabke H J.Incinerating municipal and industrial waste.New York:Hemisphere Pub,1991.
    [199]马海涛,郭贵芬,王来.铁基合金在KCl盐膜下的腐蚀.材料保护,2003,36(1):5~7.
    [200]Lee S Y,Mcnallan M J.Inhlbition of oxidation of iron in environrnents covironments containingchlorine at 1100 and 1200K.Electroehem Soe,1990(137):472~479.
    [201]Zahs A,Spiegel M,Grabke H J.Chlorination and oxidation of iron,chrormiurn,nickel and theiralloys in chloridizing and oxidizing atmospheres at 400~700℃.Corros Sci,2000(42):1093~1122.
    [202]徐滨士,马世宁,李长青等.几种电弧喷涂涂层抗热腐蚀性能研究.中国表面工程,1998(2):14~18.
    [203]李远士,牛焱,吴维弢.Fe-Cr合金在450℃的KCl及KCl-ZnCl2盐膜中的腐蚀.金属学报,2001,37(9):961~964.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700