以水滑石为前驱体FCC烟气硫转移剂的制备、性能及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
流化催化裂化(Fluid Catalytic Cracking, FCC)是炼油工业中的重要操作单元之一,同时其再生烟气也是主要的大气污染物SOx排放源之一。在降低FCC烟气SOx排放量的诸多手段中,硫转移剂凭借其操作简单、成本低廉、效果突出、使用灵活等优点于近年内日益受到重视。以水滑石为前驱体制备的Ce/MgAl混合氧化物凭借其优良的硫转移性能而成为了目前FCC烟气硫转移剂的基本体系。本论文从FCC烟气硫转移机理入手,系统研究了CeO2和MgO在氧化吸硫过程中的协同作用和孔结构对硫转移性能的影响,并成功将成核晶化隔离法应用于Ce/MgAl混合氧化物的制备过程中,获得了优异的氧化吸硫性能,开发了一条高效低耗的FCC烟气硫转移剂制备新工艺。研究结果表明:
     1.系统研究了CeO2和MgO晶粒大小对CeO2/MgO混合氧化物的硫转移性能的影响。不同晶粒大小的CeO2和MgO物理混合后表现出的氧化吸硫性能表明:CeO2催化氧化作用和MgO大硫容的协同使得CeO2/MgO混合氧化物表现出卓越的氧化吸硫性能;在氧化吸硫的初始阶段,表观反应速率体现为SO2的催化氧化速率,随着Ce02晶粒尺寸的增加而减小;CeO2/MgO混合氧化物的饱和氧化吸硫量,即MgO的有效利用率,则是随着MgO的晶粒尺寸增长而减小
     2.系统研究了化学组成(镁铝比和CeO2含量)对硫转移性能的影响。由成核晶化隔离法合成的Ce/MgAl水滑石为前驱体制备混合氧化物,改变合成投料比获得不同镁铝比和CeO2含量,氧化吸硫性能对比表明:Mg的有效利用率随着镁铝比的提高而下降,但镁铝比的下降同样降低了理论饱和氧化吸硫量,相比之下,镁铝比为3的Ce/MgAl混合氧化物拥有接近100%的有效利用率以及最高的饱和氧化吸硫量;CeO2含量的增加提高了氧化吸硫速率,但超过8%后不再有明显提高。
     3.研究了孔结构对硫转移性能的影响。由成核晶化隔离法合成Ce/MgAl水滑石前驱体,改变晶化时间然后再高温焙烧,可以获得具有不同孔结构的Ce/MgAl混合氧化物,氧化吸硫性能结果表明:由于氧化吸硫之后形成硫酸盐产生的体积膨胀使得孔道堵塞,尤其是孔径小于10 nm的小孔容易被堵塞,降低了SO3与MgO或-Mg-O-结构活性中心之间的可接近程度,从而导致氧化吸硫速率以及饱和氧化吸硫量下降。
     4.对比研究了浸渍法、传统共沉淀法和成核晶化隔离法三种制备方法对硫转移性能的影响。通过对由三种方法制备的以水滑石前驱体Ce/MgAl混合氧化物的物化表征和氧化吸硫性能对比,发现以成核晶化隔离法合成的Ce/MgAl水滑石为前驱体制备的混合氧化物,具有较大的孔容和较大的平均孔径,并且孔径小于10 nm的小孔较少,有利于提高Mg的有效利用率,从而拥有较大的饱和氧化吸硫量。而且氧化吸硫性能评价结果显示,成核晶化隔离法制备Ce/MgAl混合氧化物在初始氧化吸硫速率上与浸渍法基本相当,并且高于传统共沉淀法,表明5-16 nm范围内CeO2晶粒大小对初始氧化吸硫速率没有明显影响。
     5.在热重天平的基础上设计并开发了一种硫转移性能模拟评价装置,具有多组气体调节和混合系统提供不同的反应气氛,并可在多种气氛之间切换,成功模拟FCC再生器环境和提升管反应器环境对硫转移剂的性能进行了评价。
The fluid catalytic cracking (FCC) process, a petroleum refining process applied commercially on a very large scale, is one of the major source of sulfur oxides emissions, especially when crude oil has become heavier and more sour in the aggregate. In order to meet the increasing stringent environmental regulation, the utilization of sulfur-transfer catalysts has been the best choice in FCC units for the least expensive and most convenient alternative. Because of their excellent performance, Ce/MgAl hydrotalcite-derived mixed oxides have become the most popular basic system for the sulfur-transfer catalyst in the FCC process. On the basis of the mechanism of sulfur transfer in FCC unit, the influence of the synergistic effect of CeO2 and MgO, chemical composition and the structural and morphological properties on the sulfur transfer performance was investigated in this thesis. The method involving separate nucleation and aging steps (SNAS) was successfully applied in the preparation of the Ce/MgAl hydrotalcite derived mixed oxides and the excellent SOX pick-up performance was embodied. It's a new art and craft with high efficiency and low energy consumption for the preparation of sulfur transfer catalyst in FCC units. The details are shown below:
     1. The influence of the crystal size of CeO2 and MgO on the SOX pick-up activity of CeO2/MgO physical mixed oxides was proclaimed. The comparison of the SOx pick-up activity of CeO2/MgO mixed oxides with different crystal size showed that:The excellent SOx pick-up activity of CeO2/MgO mixed oxides roots in the synergistic effect between catalytic oxidation of CeO2 and large absorption capacity of MgO; During the initial reaction period, the apparent SOx pick-up rate depends on the SO2 catalytic oxidation rate decreasing with the increase of CeO2 crystal size; The maximum SOx oxidation and adsorption capacity, i.e. the effective availability of MgO, decreases with the increase of MgO crystal size.
     2. The relation between chemical compositions (Mg/Al ratio and CeO2 content) and the SOx pick-up activity was indicated. The Ce/MgAl hydrotalcite derived mixed oxides were prepared by the SNAS method, and samples with different Mg/Al ratios and CeO2 contents were attained by different feed ratios. The comparison of their SOx pick-up activity showed that:The decreasing of Mg/Al ratio increases effective availability of MgO, but decreases the theoretical maximum SOx pick-up capacity; By comparison, the mixed oxides with Mg/Al ratio 3 is superior to others, with almost 100% effective availability of MgO and the largest maximum SOx pick-up capacity; The rate of SOx pick-up increases with the CeO2 content increasing, but increases little while the CeO2 content over 8%.
     3. The effect of the pore structure of Ce/MgAl hydrotalcite derived mixed oxides on the SOx pick-up activity was revealed. The Ce/MgAl hydrotalcite derived mixed oxides with different pore structure were prepared by the SNAS method and different aging time of the hydrotalcite precursors. The comparison of their SOx pick-up activity showed that:As a result of volume expansion by sulfation, the blockage of pores decreases the accessibility of the active sites (-Mg-O-structure) to SO3; The Ce/MgAl mixed oxides with the largest pore volume and the least pores less than 10 nm presented the largest SOx pick-up capacity.
     4. The SOx pick-up performance of the Ce/MgAl hydrotalcite derived mixed oxides by the three methods (impregnation, conventional coprecipitation and SNAS) were investigated and compared. The Ce/MgAl hydrotalcite derived mixed oxides by SNAS method possess the most reasonable pore structure (the largest pore volume, the largest average pore size and the least pores less than 10 nm) so that both the highest rate and the largest capacity of SOx pick-up were exhibited.
     5. A new reliable and anticorrosive evaluation device for SOx pick-up performance of the sulfur transfer catalyst was designed and exploited on the basis of thermogravimetric instrument. It can provide different respective reaction atmosphere by multiple sets of gas regulation and hybrid systems, and switch reaction atmosphere by multiplexing valve. The environment of the regenerator and the riser reactor of FCC were simulated, and the SOx pick-up performance of sulfur transfer catalyst was evaluated successfully.
引文
[1]. Otterstedt J. E., Gevert S. B., Jaras S. G and Menon P.G. Fluid catalytic cracking of heavy (residual) oil fractions:a review [J]. Appl. Catal.,1986,22:159-179
    [2]. Anderson S., Pompe R. and Vannerberg N. G SOx adsorption/desorption processes on y-alumina for SOx transfer catalyst [J]. Appl. Catal.,1985,16: 49-58
    [3]. Stern A. C., Boubel R.W., Turner D. B., Fox D. L. Fundamentals of Air Pollution,2nd ed. [M] Academic Press, Orlando, FL,1984
    [4]. Corma A., Palomares A. E. and Rey F. Optimization of SOx additives of FCC catalysts based on MgO-Al2O3 mixed oxides produced from hydrotalcites [J]. Appl. Catal. B:Environ.,1994,4:29-43
    [5]. http://www.epa.gov/air/emissions/so2.htm
    [6].陈俊武,曹汉昌主编,催化裂化工艺与工程[M].北京,中国石化出版社,1995
    [7].张广林,王国良主编,炼油助剂应用手册[M].北京,中国石化出版社,2003
    [8]. Corma A., Martinez C., Ketley G, Blair G On the mechanism of sulfur removal during catalytic cracking [J]. Appl. Catal. A:General,2001,208:135-152
    [9]. McArthur D. P., Simpson H. D., Baron K. Oil & Gas J.,1981,79:55-59
    [10].汤海涛,凌珑,王龙延,含硫原油加工过程中的硫转化规律[J].炼油设计,1999,29:9-15
    [11]. Byrne J. W., Speronello B. K., Levenberger E. L. Oil Gas J.1984,82:101-103
    [12]. Vierheilig A. A. Sulfur oxide removing additive for partial oxidation conditions. US20080145291,2008
    [13]. Magnabosco L. M. Principles of the SOx Reduction Thechnology in Fluid catalytic cracking Units, Fluid Catalytic Cracking Ⅶ:Materials, Methods and Process Innovations [M]. Studies in Surface Science and Catalysis,2007,166: 253-305
    [14]. Magnabosco L. M. Evaluation of Commercial SOx Agent Effectiveness via Fundamental Mathematical Model, Fluid Catalytic Cracking Ⅶ:Materials, Methods and Process Innovations [M]. Studies in Surface Science and Catalysis, 2007,166:307-319
    [15]. Polato C. M. S., Henriques C. A., Rodrigues A. C. C., Monteiro J. L. F. DeSOx additives based on mixed oxides derived from Mg, Al-hydrotalcite-like compounds containing Fe, Cu, Co or Cr [J]. Catalysis Today,2008,133-135: 534-540
    [16].李林波,周忠国,许金山,王瑞旭.多功能催化裂化烟气硫转移剂的工业应用[J].石油炼制与化工,2001,32:13-16
    [17].梁颖杰,李林波,周忠国,达建文,雷平,韩丽.催化裂化烟气硫转移剂的开发与应用[J].石化技术与应用,2003,21:140-142
    [18].陈良,施力.FCC硫转移复合助剂的研究[J].燃料化学学报,2005,33:83-88
    [19].冯明,杨彬.HL-9硫转移剂的工业应用[J].齐鲁石油化工,2002,30:16-18
    [20].齐文义,王龙延,郭海卿,邓先梁.LST-1液体硫转移助剂的研究[J].炼油设计,2000,9:5-8
    [21].杜泉盛,刘忠杰.利用助剂法降低催化裂化再生烟气SOx排放[J].石油化工环境保护,2001,4:40-45
    [22]. Hirschberg E. H. and Bertolacini R. J. Catalytic control of SOx emissions from Fluid Catalytic Cracking units, Fluid Catalytic Cracking-Role in Modern Refining, MC Occelli ed. [M], ACS Symp. Ser.375, Am. Chem. Soc, Washington, DC,1988,114-145
    [23]. Bertolacini R. J., Lehmann G M., Wollaston E. G. Catalytic cracking with reduced emission of sulfur oxides, USP 3835031,1974
    [24]. Wen B., He M.Y., Costello C. Simultaneous Catalytic Removal of NOx, SOx, and CO from FCC Regenerator [J]. Energy & Fuels,2002,16:1048-1053
    [25]. Yoo J. S., Bhattacharyya A. A., Radlowski C. A., Karch J. A. Advanced De-SOx catalyst:Mixed solid solution spinels with cerium oxide [J]. Appl. Catal. B: Environ.,1992,1:169-189
    [26]. Bhattacharyya A. A., Woltermann G. M., Yoo J. S., Karch J. A., and Cormier W. E. Catalytic SOx abatement:the role of magnesium aluminate spinel in the removal of SOx from fluid catalytic cracking (FCC) flue gas [J]. Ind. Eng. Chem. Res.,1988,27:1356-1360
    [27]. Yoo J. S., Bhattacharyya A. A. Additives for the catalytic removal of fluid catalytic cracking unit flue gas pollutants [M]. Studies in Surface Science and Catalysis,1993,76:531-562
    [28]. Yoo J. S., Bhattacharyya A. A, Radlowski C. A. De-SOx catalyst:an XRD study of magnesium aluminate spinel and its solid solutions [J]. Ind. Eng. Chem. Res., 1991,30:1444-1447
    [29].王金安,李承烈,戴逸云,高修平.硫转移催化剂的研究(I):组成、结构与吸硫活性的关系[J].物理化学学报,1994,10:581-584
    [30].朱仁发,戴亚,李承烈.脱硫助剂氧化吸硫原位还原研究[J].安徽师范大学学报(自然科学类),1999,22(4),342-344
    [31].朱仁发,谭乐成,王金安,李承烈.调变组分对流化催化裂化助剂脱硫性能的影响[J].华东理工大学学报,2000,4:149-153
    [32].朱仁发,鲍成根.脱硫催化剂的酸法制备及性能研究[J].安庆师范学院学报(自然科学版),1999,5:54-57
    [33].朱仁发,王思珏,李承烈,施力.酸法Ce-Mg-Al-Fe-O脱硫添加剂的活性及性能研究[J].石油学报(石油加工),2001,17:18-23
    [34]. Wang J. A., Chen L. F., Li C. L. Roles of cerium oxide and the reducibility and recoverability of the surface oxygen species in the CeO2/MgAl2O4 catalysts [J]. J. Mol. Catal. A:Chem.,1999,139:315-323
    [35]. Wang J. A., Li C. L. SO2 adsorption and thermal stability and reducibility of sulfates formed on the magnesium-aluminate spinel sulfur-transfer catalyst [J]. Appi. Surf. Sci.,2000,161:406-416
    [36]. Wang J.A., Chen L.F., Limas-Ballesteros R., Montoya A., Dominguez J.M. Evaluation of crystalline structure and SO2 storage capacity of a series of composition-sensitive De-SO2 catalysts [J]. J. Mol. Catal. A:Chem.,2003,194: 181-193
    [37].李晓,谭乐成,李成烈.镁铝尖晶石作为催化裂化双功能助剂的研究[J].石油学报(石油加工),2001,17:57-61
    [38].蒋文斌,郑曼英,陈蓓艳,达志坚,桂跃强,黄轶,罗珍.一种硫转移催化剂及其制备方法,CN 1334316A,2002
    [39].蒋文斌,郑曼英,陈蓓艳,达志坚,桂跃强,黄轶,罗珍.一种含镁铝尖晶石的组合物及其制备方法,CN1334317A,2002
    [40].蒋文斌,黄轶,达志坚,郑曼英.一种硫转移催化剂及其制备,CN 1485132A,2004
    [41].蒋文斌,张万虹,朱玉霞,达志坚.浸渍过程中Ce3+的扩散与吸附及其对CeO2/MgAl2O4·xMgO性能的影响[J].石油学报(石油加工),2004,20:13-19
    [42].蒋文斌,冯维成,谭映临,毛卫群.RFS-C硫转移剂的试生产及工业试用[J].石油炼制与化工,2003,34:21-25
    [43].王斌,王涛.催化裂化再生烟气SOx转移剂RFS的开发[J].石油炼制与化工,2002,33:37-40
    [44]. Van Broekhoven, Emanuel H. Catalyst composition and absorbent which contain an anionic clay, USP 4866019,1989
    [45]. Van Broekhoven, Emanuel H. Process for removing sulfur oxides with an absorbent which contain an anionic clay, USP4952382,1990
    [46]. Van Broekhoven, Emanuel H. Cracking process employing a catalyst composition and absorbent which contain an anionic clay, USP4946581,1990
    [47]. Vierheilig A. A. Process for making, and use of, anionic clay materials, USP6479421,2002
    [48]. Vierheilig A. A. Compounds, compositions and methods to reduce SOx emissions from FCC units, USP6929736,2005
    [49]. Vierheilig A. A. Process for making, and use of, anionic clay materials, USP7112313,2006
    [50]. Bhattacharyya A., Foral M. J., Reagan W. J. Absorbent and process for removing sulfur oxides from a gaseous mixture, USP 5426083,1995
    [51]. Vaccari A. Clays and catalysis:a promising future[J]. Appl. Clay Sci.,1999,14: 161-198
    [52]. Corma A., Palomares A.E., Rey F., Marques F. Simultaneous catalytic removal of SOx and NOx with hydrotalcite-derived mixed oxides containing copper, and their possibilities to be used in FCC units [J]. J. Catal.,1997,170:140-149
    [53]. Palomares A.E., Lopez-Nieto J.M., Lazaro F.J., Lopez A., Corma A. Reactivity in the removal of SO2 and NOx on Co/Mg/Al mixed oxides derived from hydrotalcites [J]. Appl. Catal. B:Environ.,1999,20:257-266
    [54]. Sanchez-Cantu M., Perez-Diaz L. M., Maubert A. M., Valente J. S. Dependence of chemical composition of calcined hydrotalcite-like compounds for SOx reduction [J]. Catal. Today,2010,150:332-339
    [55]. Polato C. M. S., Henriques C. A., Neto A. A., Monteiro J. L. F. Synthesis characterization and evaluation of CeO2/Mg, Al-mixed oxides as catalysts for SOx removal [J]. J. Mol. Catal. A:Chem.,2005,241:184-193
    [56]. Cheng W.P., Yu X.Y., Wang W.J., Liu L., Yang J.G, He M.Y. Synthesis characterization and evaluation of Cu/MgAlFe as novel transfer catalyst for SOx removal [J]. Catal. Comm.,2008,9:1505-1509
    [57]. Jitianu M., Balasoiu M., Marchidan R., Zaharescu M., Crisan D., Craiu M. Thermal behaviour of hydrotalcite-like compounds:study of the resulting oxidic forms [J]. Inter. J. Inorg. Mater.,2000,2:287-300
    [58]. Lowell P. S., Schwitzgebel K., Parsons T. B., Sladek K. J. Selection of metal oxides for removing SO2 from flue gas [J]. Ind. Eng. Chem. Process Des. Dev., 1971,10:384-390
    [59]. DeBerry D. W., Sladek K. J. Rates of reaction of SO2 with metal oxides [J]. Can. J. Chem. Eng.,1971,49:781-785
    [60]. Fetterolf M. L. Catalytic activity of transition metal ions in an oxide matrix [J]. Inorg. Chem.,1981,20:1011-1022
    [61]. Baron K., Wu A. H., Krenzke L. D. Prepr.-Symposium on Advances in Catalytic Cracking-Am. Chem. Soc., Div. Pet. Chem,1983,934-943
    [62]. Bertolacini R. J., Hirschberg E. H., Modica F. S. Process for removing sulfur oxides from a gas, USP 4381991,1983
    [63]. Bertolacini R. J., Hirschberg E. H., Modica F. S. Process for removing sulfur oxides from a gas, USP 4423019,1983
    [64]. Kim G, Juskelis M. V. Catalytic reduction of SO3 Stored in SOx transfer catalysts-A temperature-programmed reaction study [M]. Stud. Surf. Sci. and Catal.,101 (proc. of 11th Int. Cong. on Catalysis) (J. W. Hightower et al. eds.), Elsevier, New York,1996,137
    [65]. Lee S. J., Jun H. K.., Jung S. Y, Lee T. J., Ryu C. K., Kim J. C. Regenerable MgO-based SOx removal sorbents promoted with cerium and iron oxide in RFCC [J]. Ind. Eng. Chem. Res.,2005,44:9973-9978
    [66]. Laachir A., Perrichon V., Badri A., Lamotte J., Catherine E., Lavalley JC, E1 Fallah J., Hilaire L., Normand F., Quemere E., Sauvion GN and Touret O. Reduction of CeO2 by hydrogen:Magnetic susceptibility and Fourier-transform infrared, ultraviolet and X-ray photoelectron spectroscopy measurements [J]. J. Chem. Soc. Faraday Trans.,1991,87:1601-1609
    [67]. Trovarelli A., Leitenburg C., Boaro M., Dolcetti G. The utilization of ceria in industrial catalysis [J]. Catal. Today,1999,50:353-367
    [68]. O'Conell M., Morris M. A. New ceria-based catalysts for pollution abatement [J]. Catal. Today,2000,59:387-393
    [69]. Trovarelli A. Catalytic properties of ceria and CeO2-containing materials [J]. Catal. Rev.,1996,38:439-520
    [70]. Ganduglia-Pirovano M. V., Hofinann A., Sauer J. Oxygen vacancies in transition metal and rare earth oxides:Current state of understanding and remaining challenges [J]. Surf. Sci. Rep.,2007,62:219-270
    [71]. Waqif M., Bazin P., Saur O., Lavalley J. C., Blanchard G, Touret O. Study of ceria sulfation [J]. Appl. Catal. B:Environ.,1997,11:193-205
    [72]. Yao H. C., Yu Yao Y. F. Ceria in automotive exhaust catalysts I:Oxygen storage [J]. J. Catal.1984,86:254-265
    [73]. Harrison B., Diwell A.F. and Hallett C. Promoting platinum metals by ceria [J]. Plat. Met. Rev.,1988,32:73-84
    [74]. Yoo J. S., Bhattacharyya A. A., Radlowski C. A.De-SOx catalyst:The role of iron in iron mixed solid solution spinels, MgO·MgAl2-xFexO4 [J]. Ind. Eng. Chem. Res.,1992,31:1252-1258
    [75]. Wang J. A., Zhu Z. L., Li C. L. Pathway of the cycle between the oxidative adsorption of SO2 and the reductive decomposition of sulfate on the MgAl2-xFexO4 catalyst [J]. J. Mol. Catal. A:Chemi.,1999,139:31-41
    [76]. Cantu M., Lopez-Salinas E., Valente J. S. Sox removal by calcined MgAlFe hydrotalcite-like materials:effect of the chemical composition and the cerium incorporation method [J]. Environ. Sci. Technol.,2005,39:9715-9720
    [77].陈银飞,刘华彦.MgFe氧化物催化氧化吸附S02的研究[J].宁夏大学学报(自然科学版),2001,22:178-180
    [78].陈银飞,葛忠华,吕德伟. MgAlFe复合氧化物吸收S02后的再生[J].燃料化学学报,2000,28:560-563
    [79].于心玉.新型FCC再生烟气硫转移剂的制备、表征及其性能的研究[D].2007
    [80].程文萍,王雯娟,刘玲,赵月昌,杨建国,何鸣元.FCC硫转移剂MgAlCuFe复合氧化物的结构与性能:金属盐前体的影响[J].催化学报,2007,28:1112-1116
    [81].程文萍,梁学正,杨建国,何鸣元.FCC硫转移剂MgAlCuFe复合氧化物的结构与性能:Fe和Cu含量的影响[J].催化学报,2009,30:31-36
    [82].赵月昌,刘玲,程文萍,吴海虹,杨建国,何鸣元MgAlZnFeCe类水滑石水热合成、表征及其FCC硫转移性能的研究[J].无机材料化学,2009,24:171-174
    [83]. Centi G, Perathoner S. Behaviour of SOx-traps derived from ternary CuMgAl hydrotalcite materials [J]. Catal. Today,2007,127:219-222
    [84]. Polato C. M. S., Rodrigues A. C. C., Monteiro J. L. F., Henriques C. A. High Surface Area Mn, Mg, Al-spinels as Catalyst Additives for SO* Abatement in Fluid Catalytic Cracking Units [J]. Ind. Eng. Chem. Res.,2010,49:1252-1258
    [85]. Pereira H. B., Polato C. M. S., Monteiro J. L. F., Henriques C. A. Mn/Mg/Al-spinels as catalysts for SOx abatement:Influence of CeO2 incorporation and catalytic stability [J]. Catal. Today,2010,149:309-315
    [86]. Caero L. C., Ordonez L. C., Ramirez J., Pedraza F. Traps for simultaneous removal of SOx and vanadium in FCC process [J]. Catal. Today,2005,107-108: 657-662
    [87]. Lee S. J., Jung S. Y., Lee S. C., Jun H. K., Ryu C. K., Kim J. C. SO2 removal and regeneration of MgO-rased sorbents promoted with Titanium oxide [J]. Ind. Eng. Chem. Res.,2009,48:2691-2696
    [88].沈家骢.超分子层状结构[M].北京:科学出版社,2003:125-185
    [89]. Rives V. Layered Double Hydroxides:Present and Future [M]. Nova Science Publishers:New York,2001
    [90]. Cygan R. T., Greathouse J. A., Heinz H, Kalinichev A G Molecular models and simulations of layered materials [J]. J. Mater. Chem.,2009,19:2470-2481
    [91]. Brindley G W., Kikkawa S. Thermal behavior of hydrotalcite and of anion-exchanged forms of hydrotalcite [J]. Clays Clay Miner.,1980,28:87-91
    [92]. Reichle W. T. Anionic clay minerals [J]. Chemitech,1986,16:58-63
    [93]. Boriotti S., Dennis D. Layered double hydroxides:Present and Future [M]. New York:Nova Science Publishers,2001
    [94]. Genin J. M. R. Thermodynamic equilibria in aqueous suspersions of synthesis and natural Fe(Ⅱ)-Fe(Ⅲ) green rusts:occurrences of the mineral in hydromorphic soils [J]. Environ. Sci. Technol.,1998,32:1058-1068
    [95]. Baltpurvins K. A., Burns R. C., Lawrance G A., Stuart A. D. Effect of Ca2+, Mg+, and anion type on the aging of iron(Ⅲ) hydroxide precipitates [J]. Environ. Sci. Technol.,1997,31:1024-1032
    [96]. Yang W. S., Kim Y, Liu P. K. T., Sahimi M., Tsotsis T. T., A study by in situ techniques of the thermal evolution of the structure of a Mg-Al-CO3 layered double hydroxide [J]. Chem. Eng. Sci.,2002,57,2945-2953
    [97]. Kanezaki E., Direct observation of a metastable solid phase of Mg/Al/CO3-layered double hydroxide by means of high temperature in situ powder XRD and DTA/TG [J]. Inorg. Chem.,1998,37:2588-2590
    [98]. Cavani F., Trifiro F., Vaccari A. Hydrotalcite-type anionic clays:Preparation, properties and applications [J]. Catal. Today,1991,11:173-301
    [99]. Valente J. S., Figueras F., Gravelle M., Kumbhar P., Lopez J., Besse J.-P. Basic properties of the mixed oxides obtained by thermal decomposition of hydrotalcites containing different metallic compositions [J]. J. Catal.,2000,189: 370-381
    [100]. Constantino V. R. L., Pinnavaia T. J. Basic properties of Mg2+1-xAl3+x layered double hydroxides intercalated by carbonate, hydroxide, chloride, and sulfate anions [J]. Inorg. Chem.,1995,34:883-892
    [101]. Millange F., Walton R. I., O'Hare D. Time-resolved in site X-ray diffraction study of the liquid-phase reconstruction of Mg-Al-carbonate hydrotalcite-like compounds [J]. J. Mater. Chem.,2002,10:1713-1720
    [102]. Bellotto M., Rebours B., Clause O., Lynch J., Bazin D., Elkaim E, A reexamination of hydrotalcite crystal chemistry [J]. J. Phys. Chem.,1996,100: 8527-8534
    [103]. Zhao Y., Li F., Zhang R., Evans D. G., Duan X. Preparation of layered double hydroxide nanomaterials with a uniform crystallite size using a new method involving separate nucleation and aging steps [J]. Chem. Mater.,2002,14: 4286-4291
    [104]. Evans D. G, Duan X. Preparation of layered double hydroxides and their applications as additives in polymers, as precursors to magnetic materials and in biology and medicine [J].Chem. Commun.,2006:485-496
    [105]. Drezdzon M. A. Synthesis of isopolymetalate-pillared hydrotalcite via organic-anion-pillared precursors [J]. Inorg. Chem.,1988,27:4628-4632
    [106]. Tetsuya S., Shinsuke Y., Katsuhiko T. Photopolymerization of 4-vinylbenzoate and m- and p-phenylenediacrylates in hydrotalcite interlayers [J]. Superamolecular Sci.,1998,5:303-308
    [107]. Pausch I., Lohse H. H., Schurmann K., Allmann R. Synthesis of disordered and Al-rich hydrotalcite-like compounds [J]. Clays Clay Miner.,1986,34: 507-511
    [108]. Costantino U., Marmottini F., Nocchetti M., Vivani R. New synthetic routes to hydrotalcite-like compounds-characterisation and properties of the obtained materials [J]. Eur. J. Inorg. Chem.,1998,10:1439-1446
    [109]. Ogawa M., Kaiho H. Homogeneous precipitation of uniform hydrotalcite particles [J]. Langmuir,2002,18:4240-4242
    [110]. Oh J. M., Hwang S. H., Choy J. H. The effect of synthetic conditions on tailoring the size of hydrotalcite particles [J]. Solid State Ionics,2002,151: 285-291
    [111]. Xu Z. P., Lu G. W. Hydrothermal synthesis of Layered Double Hydroxides (LDHs) from mixed MgO and A12O3:LDH formation mechanism [J]. Chem. Master.,2005,17:1055-1062
    [112]. Tongamp W., Zhang Q., Saito F. Preparation of meixnerite (Mg-Al-OH) type layered double hydroxide by a mechanochemical route [J]. Journal of Material Science,2007,42:9210-9215
    [113]. Valente J. S., Cantu M. S., Figueras F. A simple environmentally friendly method to prepare versatile hydrotalcite-like compounds [J]. Chem. Mater., 2008,20:1230-1232
    [114]. Salmones J., Zeifert B., Garduno M. H., Contreras-Larios J., Acosta D. R., Serrano A. R., Garcia L. A. Synthesis and charaterization of hydrtalcites by mechanical milling and conventional method [J]. Catal. Today,2008,133-135: 886-890
    [115]. Roncolatto R. E., Cardoso M. J. B., Lam Y. L., Schmal M. FCC SOx additives deactivation [J]. Ind. Eng. Chem. Res.,2006,45:2646-2650
    [1]. Otterstedt J. E., Gevert S. B., Jaras S. G and Menon P.G. Fluid catalytic cracking of heavy (residual) oil fractions:a review [J]. Appl. Catal.,1986,22:159-179
    [2]. Anderson S., Pompe R. and Vannerberg N. G. SOx adsorption/desorption processes on y-alumina for SOx transfer catalyst [J]. Appl. Catal.,1985,16: 49-58
    [3]. Stern A. C., Boubel R.W., Turner D. B., Fox D. L. Fundamentals of Air Pollution,2nd ed. [M] Academic Press, Orlando, FL,1984
    [4]. Corma A., Palomares A. E. and Rey F. Optimization of SOx additives of FCC catalysts based on MgO-Al2O3 mixed oxides produced from hydrotalcites [J]. Appl. Catal. B:Environ.,1994,4:29-43
    [5].陈俊武,曹汉昌主编,催化裂化工艺与工程[M].北京,中国石化出版社,1995
    [6].张广林,王国良主编,炼油助剂应用手册[M].北京,中国石化出版社,2003
    [7]. Corma A., Martinez C., Ketley G, Blair G. On the mechanism of sulfur removal during catalytic cracking [J]. Appl. Catal. A:General,2001,208:135-152
    [8]. McArthur D. P., Simpson H. D., Baron K. Oil & Gas J.,1981,79:55-59
    [9].汤海涛,凌珑,王龙延,含硫原油加工过程中的硫转化规律[J].炼油设计,1999,29:9-15
    [10]. Byrne J. W., Speronello B. K., Levenberger E. L. Oil Gas J.1984,82:101-103
    [11]. Magnabosco L. M. Principles of the SOx Reduction Thechnology in Fluid catalytic cracking Units, Fluid Catalytic Cracking VII:Materials, Methods and Process Innovations [M]. Studies in Surface Science and Catalysis,2007,166: 253-305
    [12]. Hirschberg E. H. and Bertolacini R. J. Catalytic control of SOx emissions from Fluid Catalytic Cracking units, Fluid Catalytic Cracking-Role in Modern Refining, MC Occelli ed. [M], ACS Symp. Ser.375, Am. Chem. Soc, Washington, DC,1988,114-145
    [13]. Habashi F., Mikhail S. A., Van K. V. Reduction of sulfates by hydrogen [J]. Can. J. Chem.,1976,54:3646-3650
    [14]. Bhattacharyya A. A., Woltermann G. M., Yoo J. S., Karch J. A., and Cormier W. E. Catalytic SOx abatement:the role of magnesium aluminate spinel in the removal of SOx from fluid catalytic cracking (FCC) flue gas [J]. Ind. Eng. Chem. Res.,1988,27:1356-1360
    [15]. Yoo J. S., Bhattacharyya A. A. Additives for the catalytic removal of fluid catalytic cracking unit flue gas pollutants [M]. Studies in Surface Science and Catalysis,1993,76:531-562
    [16]. Yoo J. S., Bhattacharyya A. A, Radlowski C. A. De-SOx catalyst:an XRD study of magnesium aluminate spinel and its solid solutions [J]. Ind. Eng. Chem. Res., 1991,30:1444-1447
    [17]. Bertolacini R. J., Lehmann G. M., Wollaston E. G. Catalytic cracking with reduced emission of sulfur oxides, USP 3835031,1974
    [18]. Van Broekhoven, Emanuel H. Catalyst composition and absorbent which contain an anionic clay, USP 4866019,1989
    [19]. Bhattacharyya A., Foral M. J., Reagan W. J. Absorbent and process for removing sulfur oxides from a gaseous mixture, USP 5426083,1995
    [20].蒋文斌,郑曼英,陈蓓艳,达志坚,桂跃强,黄轶,罗珍.一种硫转移催化剂及其制备方法,CN 1334316A,2002
    [21].蒋文斌,张万虹,朱玉霞,达志坚.浸渍过程中Ce3+的扩散与吸附及其对CeO2/MgAl2O4·xMgO性能的影响[J].石油学报(石油加工),2004,20:13-19
    [22]. Wang J.A., Chen L.F., Limas-Ballesteros R., Montoya A., Dominguez J.M. Evaluation of crystalline structure and SO2 storage capacity of a series of composition-sensitive De-SO2 catalysts [J]. J. Mol. Catal. A:Chem.,2003,194: 181-193
    [23]. Sanchez-Cantu M., Perez-Diaz L. M., Maubert A. M., Valente J. S. Dependence of chemical composition of calcined hydrotalcite-like compounds for SOx reduction [J]. Catal. Today,2010,150:332-339
    [24]. Pereira H. B., Polato C. M. S., Monteiro J. L. F., Henriques C. A. Mn/Mg/Al-spinels as catalysts for SOx abatement:Influence of CeO2 incorporation and catalytic stability [J]. Catal. Today,2010,149:309-315
    [25]. Polato C. M. S., Henriques C. A., Neto A. A., Monteiro J. L. F. Synthesis characterization and evaluation of CeO2/Mg, Al-mixed oxides as catalysts for SOx removal [J]. J. Mol. Catal. A:Chem.,2005,241:184-193
    [26]. Zhao Y., Li F., Zhang R., Evans D. G., Duan X. Preparation of layered double hydroxide nanomaterials with a uniform crystallite size using a new method involving separate nucleation and aging steps [J]. Chem. Mater.,2002,14: 4286-4291
    [27]. Zhao Y., Jiao Q.Z., Evans D. G, Duan X. Mechanism of pore formation and structural characterization for mesoporous Mg-Al composite oxides [J]. Sci. in China (Ser. B),2002,45:38-45
    [28]. Vaccari A. Clays and catalysis a promising future[J]. Appl. Clay Sci.,1999,14: 161-198
    [29].段雪,张法智,插层组装与功能材料[M].北京,化学工业出版社,2007
    [30]. Rives V. Layered Double Hydroxides:Present and Future [M]. Nova Science Publishers:New York,2001
    [31]. Jitianu M., Balasoiu M., Marchidan R., Zaharescu M., Crisan D., Craiu M. Thermal behaviour of hydrotalcite-like compounds:study of the resulting oxidic forms [J]. Inter. J. Inorg. Mater.,2000,2:287-300
    [32]. Kanezaki E, Direct observation of a metastable solid phase of Mg/Al/CO3-layered double hydroxide by means of high temperature in situ powder XRD and DTA/TG [J]. Inorg. Chem.,1998,37:2588-2590
    [33]. Lowell P. S., Schwitzgebel K., Parsons T. B., Sladek K. J. Selection of metal oxides for removing SO2 from flue gas [J]. Ind. Eng. Chem. Process Des. Dev., 1971,10:384-390
    [34]. Bensitel M., Waqif M., Saur O., and Lavalley J. C. The structure of sulfate species on magnesium oxide [J]. J. Phy. Chem.,1989,93:6581-6582
    [35]. Waqif M., Saur O., and Lavalley J. C., Wang Y., Morrow B. A. Evaluation of magnesium aluminate spinel as a sulfur dioxide transfer catalyst [J]. Appl. Catal., 1991,71:319-331
    [36]. Waqif M., Saad A. M., Bensitel M., Bachelier J., Saur O. and Lavalley J. C. Comparative study of SO2 adsorption on metal oxides [J]. J. Chem. Soc. Faraday Trans.,1992,88:2931-2936
    [37]. Waqif M., Bazin P., Saur O., Lavalley J. C., Blanchard G., Touret O. Study of ceria sulfation [J]. Appl. Catal. B:Environ.,1997,11:193-205
    [38]. Kocaefe D., Karman D., Steward F. R. Comparison of the sulfation rates of calcium, magnesium and zinc oxides with SO2 and SO3 [J]. Can. J. Chem. Eng., 1985,63:971-977
    [39]. Kocaefe D., Karman D., Steward F. R. Interpretation of the sulfation rate of CaO, MgO, and ZnO with SO2 and SO3 [J]. AIChE. J.,1987,33:1835-1843
    [1]. Hirschberg E. H. and Bertolacini R. J. Catalytic control of SOx emissions from Fluid Catalytic Cracking units, Fluid Catalytic Cracking-Role in Modern Refining, MC Occelli ed. [M], ACS Symp. Ser.375, Am. Chem. Soc, Washington, DC,1988,114-145
    [2]. Byrne J. W., Speronello B. K., Levenberger E. L. Oil Gas J.1984,82:101-103
    [3]. O'Conell M., Morris M. A. New ceria-based catalysts for pollution abatement [J]. Catal. Today,2000,59:387-393
    [4]. Trovarelli A., Leitenburg C., Boaro M., Dolcetti G. The utilization of ceria in industrial catalysis [J]. Catal, Today,1999,50:353-367
    [5]. Wang J. A., Chen L. F., Li C. L. Roles of cerium oxide and the reducibility and recoverability of the surface oxygen species in the CeO2/MgAl2O4 catalysts [J]. J. Mol. Catal. A:Chem.,1999,139:315-323
    [6]. Waqif M., Bazin P., Saur O., Lavalley J. C., Blanchard G., Touret O. Study of ceria sulfation [J]. Appl. Catal. B:Environ.,1997,11:193-205
    [7]. Lowell P. S., Schwitzgebel K., Parsons T. B., Sladek K. J. Selection of metal oxides for removing SO2 from flue gas [J]. Ind. Eng. Chem. Process Des. Dev., 1971,10:384-390
    [8]. DeBerry D. W., Sladek K. J. Rates of reaction of SO2 with metal oxides [J]. Can. J. Chem. Eng.,1971,49:781-785
    [9]. Bertolacini R. J., Hirschberg E. H., Modica F. S. Process for Removing Sulfur Oxides from a Gas. USP4423019,1983
    [10]. Bertolacini R. J., Hirschberg E. H., Modica F. S. Process for Removing Sulfur Oxides from a Gas. USP4381991,1983
    [11]. Yoo J. S., Bhattacharyya A. A, Radlowski C. A. De-SOx catalyst:an XRD study of magnesium aluminate spinel and its solid solutions [J]. Ind. Eng. Chem. Res., 1991,30:1444-1447
    [12]. Stamires D., O'Connor P., Jones W. Oxidic Metal Composition, its Preparation and Use as Catalyst Composition. US20090118559,2009
    [13]. Jones W., Stamires D., O'Connor P., Brady M. Process for the Preparation of an Oxidic Catalyst Composition Comprising a Divalent and a Trivalent Metal. US20090048097,2009
    [14]. Vierheilig A. A. Sulfur Oxide Removing Additives and Methods for Partial Oxidation Conditions. WO2008055160,2008
    [15]. Lee S. J., HeeKwon J., Suk Y. J., Tae J. L., Chung K. R., and Jae C. K. Regenerable MgO-based SOx removal sorbents promoted with cerium and iron oxide in RFCC [J]. Ind. Eng. Chem. Res.,2005,44:9973-9978
    [16]. Lee S. J., Jung S. Y., Lee S. C., Jun H. K., Ryu C. K., Kim J. C. SO2 Removal and Regeneration of MgO-Based Sorbents Promoted with Titanium Oxide [J]. Ind. Eng. Chem. Res.,2009,48:2691-2696
    [17]. Polato C. M. S., Henriques C. A., Neto A. A., Monteiro J. L. F. Synthesis characterization and evaluation of CeO2/Mg, Al-mixed oxides as catalysts for SOx removal [J]. J. Mol. Catal. A:Chem.,2005,241:184-193
    [18]. Polato C. M. S., Rodrigues A. C. C., Monteiro J. L. F., Henriques C. A. High Surface Area Mn, Mg, Al-spinels as Catalyst Additives for SOx Abatement in Fluid Catalytic Cracking Units [J]. Ind. Eng. Chem. Res.,2010,49:1252-1258
    [19]. Gavaskar V. S., Abbasian J. Dry Regenerable Metal Oxide Sorbents for SO2 Removal from Flue Gases.1. Development and Evaluation of Copper Oxide Sorbents [J]. Ind. Eng. Chem. Res.,2006,45:5859-5869
    [20]. Cantu M., Salinas E. L., Valente J. S. SOx Removal by Calcined MgAlFe Hydrotalcite-like Materials:Effect of the Chemical Composition and the Cerium Incorporation Method [J]. Environ. Sci. Technol.,2005,39:9715-9720
    [21]. Centi G., Perathoner S. Role of the Size and Texture Properties of Copper-on-Alumina Pellets during the Simultaneous Removal of SO2 and NOX from Flue Gas [J]. Ind. Eng. Chem. Res.,1997,36:2945-2953
    [22]. Centi G., Perathoner S. Behaviour of SOx-traps derived from ternary CuMgAl hydrotalcite materials [J]. Catal. Today,2007,127:219-222
    [23]. Wen B., He M.Y., Costello C. Simultaneous Catalytic Removal of NOx, SOx, and CO from FCC Regenerator [J]. Energy & Fuels,2002,16:1048-1053
    [24]. Cheng W.P., Yu X.Y., Wang W.J., Liu L., Yang J.G., He M.Y. Synthesis characterization and evaluation of Cu/MgAlFe as novel transfer catalyst for SOx removal [J]. Catal. Comm.,2008,9:1505-1509
    [25]. Kocaefe D., Karman D., Steward F. R. Comparison of the sulfation rates of calcium, magnesium and zinc oxides with SO2 and SO3 [J]. Can. J. Chem. Eng., 1985,63:971-977
    [26]. Kocaefe D., Karman D., Steward F. R. Interpretation of the sulfation rate of CaO, MgO, and ZnO with SO2 and SO3 [J]. AIChE. J.,1987,33:1835-1843
    [27]. Hartman M., Svoboda K. Physical Properties of Magnesite Calcines and their Reactivity with Sulfur Dioxide [J]. Ind. Eng. Chem. Process Des. Dev.,1985,24: 613-621
    [28]. Schoonheydt R. A., Lunsford J. H. Infrared Spectroscopic Investigation of the Adsorption and Reactions of SO2 on MgO [J]. J. Catal.,1972,26:261-271
    [29]. Bensitel M., Waqif M., Saur O., and Lavalley J. C. The structure of sulfate species on magnesium oxide [J]. J. Phy. Chem.,1989,93:6581-6582
    [30]. Waqif M., Saad A. M., Bensitel M., Bachelier J., Saur O. and Lavalley J. C. Comparative study of SO2 adsorption on metal oxides [J]. J. Chem. Soc. Faraday Trans.,1992,88:2931-2936
    [31]. Emmett P. H., Brunuaer S. The Use of Low Temperature van der Waals Adsorption Isotherms in Determining the Surface Area of Iron Synthetic Ammonia Catalysts [J]. J. Am. Chem. Soc.1937,59:1553-1564
    [32]. Nam S.W., Gavalas G. Adsorption and Oxidative Adsorption of Sulfur Dioxide on γ-Alumina [J]. Appl. Catal.,1989,55:193-213
    [33]. Wang J.A., Chen L.F., Limas-Ballesteros R., Montoya A., Dominguez J.M. Evaluation of crystalline structure and SO2 storage capacity of a series of composition-sensitive De-SO2 catalysts [J]. J. Mol. Catal. A:Chem.,2003,194: 181-193
    [34]. Trovarelli A. Catalytic properties of ceria and CeO2-containing materials [J]. Catal. Rev.,1996,38:439-520
    [35]. Giordano F., Trovarelli A., de Leitenburg C., and Giona M. A Model for the Temperature- Programmed Reduction of Low and High Surface Area Ceria[J]. J. Catal.,2000,193:273-282
    [36]. Luo T., Vohs J. M., and Gorte R. J. An Examination of Sulfur Poisoning on Pd/Ceria Catalysts [J]. J. Catal.,2002,210:397-404
    [37]. Wang J. A., Chen L. F., Li C. L. Monolayer dispersion capacity of CeO2 on the surface of the CeO2/MgAl2O4 catalyst and its effect on the De-SO2 activity [J]. J. Mater. Sci. Letters,1998,17:533-535
    [1]. Hirschberg E. H. and Bertolacini R. J. Catalytic control of SOX emissions from Fluid Catalytic Cracking units, Fluid Catalytic Cracking-Role in Modern Refining, MC Occelli ed. [M], ACS Symp. Ser.375, Am. Chem. Soc, Washington, DC,1988,114-145
    [2]. Bhattacharyya A. A., Woltermann G. M., Yoo J. S., Karch J. A., and Cormier W. E. Catalytic SOx abatement:the role of magnesium aluminate spinel in the removal of SOx from fluid catalytic cracking (FCC) flue gas [J]. Ind. Eng. Chem. Res.,1988,27:1356-1360
    [3]. Yoo J. S., Bhattacharyya A. A. Additives for the catalytic removal of fluid catalytic cracking unit flue gas pollutants [M]. Studies in Surface Science and Catalysis,1993,76:531-562
    [4]. Bhattacharyya A., Foral M. J., Reagan W. J. Absorbent and process for removing sulfur oxides from a gaseous mixture, USP 5426083,1995
    [5].段雪,张法智,插层组装与功能材料[M].北京,化学工业出版社,2007
    [6]. Van Broekhoven, Emanuel H. Catalyst composition and absorbent which contain an anionic clay, USP 4866019,1989
    [7]. Yoo J. S., Bhattacharyya A. A, Radlowski C. A. De-SOx catalyst:an XRD study of magnesium aluminate spinel and its solid solutions [J]. Ind. Eng. Chem. Res., 1991,30:1444-1447
    [8]. Corma A., Palomares A. E. and Rey F. Optimization of SOx additives of FCC catalysts based on MgO-Al2O3 mixed oxides produced from hydrotalcites [J]. Appl. Catal. B:Environ.,1994,4:29-43
    [9]. Sanchez-Cantu M., Perez-Diaz L. M., Maubert A. M., Valente J. S. Dependence of chemical composition of calcined hydrotalcite-like compounds for SOx reduction [J]. Catal. Today,2010,150:332-339
    [10]. Polato C. M. S., Henriques C. A., Neto A. A., Monteiro J. L. F. Synthesis characterization and evaluation of CeO2/Mg, Al-mixed oxides as catalysts for SOx removal [J]. J. Mol. Catal. A:Chem.,2005,241:184-193
    [11]. Ramachandran P. A., Doraiswamy L. K. Modeling of noncatalytic gas-solid reactions [J]. AIChE. J.,1982,28:881-899
    [12]. Cao G., Strieder W., Varma A. Analysis and shape inequalities for gas-solid reactions with changing volume [J]. AIChE. J.,1995,41:324-336
    [13]. Ebrahim H. A., Application of Random-Pore Model to SO2 Capture by Lime [J]. Ind. Eng. Chem. Res.,2010,49:117-122
    [14]. Snow M. J. H., Longwell J. P., Sarofim A. F. Direct sulfation of calcium carbonate [J]. Ind. Eng. Chem. Res.,1988,27:268-273
    [15]. Wen C. Y., Ishida M. Reaction rate of sulfur dioxide with particles containing calcium oxide [J]. Environ. Sci. Tech.,1973,7:703-708
    [16]. Suyadal Y, Oguz H. Dry desulfurization of simulated flue gas in a fluidized-bed reactor for a broad range of SO2 concentration and temperature:A comparison of models [J]. Ind. Eng. Chem. Res.,1999,38:2932-2939
    [17]. Borgwardt R. H., Bruce K. R., Blake J. An investigation of product-layer diffusivity for CaO sulfation [J]. Ind. Eng. Chem. Res.,1987,26:1993-1998
    [18].杨海波,武增华,邱新平.CaO固硫反应机理研究的新进展[J].燃料化学学报,2003,31:92-96
    [19].刘妮,骆仲泱,程乐鸣,岑可法.干性条件下脱硫反应中孔分布模型的研究[J].中国电机工程学报,2005,25:147-151
    [20]. Kocaefe D., Karman D., Steward F. R. Comparison of the sulfation rates of calcium, magnesium and zinc oxides with SO2 and SO3 [J]. Can. J. Chem. Eng., 1985,63:971-977
    [21]. Kocaefe D., Karman D., Steward F. R. Interpretation of the sulfation rate of CaO, MgO, and ZnO with SO2 and SO3 [J]. AIChE. J.,1987,33:1835-1843
    [22]. Hartman M., Svoboda K. Physical properties of magnesite calcines and their reactivity with sulfur dioxide [J]. Ind. Eng. Chem. Process Des. Dev.,1985,24: 613-621
    [23].蒋文斌,张万虹,朱玉霞,达志坚.浸渍过程中Ce3+的扩散与吸附及其对CeO2/MgAl2O4·xMgO性能的影响[J].石油学报(石油加工),2004,20:13-19
    [24]. Zhao Y., Li F., Zhang R., Evans D. G, Duan X. Preparation of layered double hydroxide nanomaterials with a uniform crystallite size using a new method involving separate nucleation and aging steps [J]. Chem. Mater.,2002,14: 4286-4291
    [25]. Zhao Y., Jiao Q.Z., Evans D. G., Duan X. Mechanism of pore formation and structural characterization for mesoporous Mg-Al composite oxides [J]. Sci. in China (Ser. B),2002,45:38-45
    [26]. Sharma S. K., Kushwaha P. K., Srivastava V. K., Bhatt S. D., Jasra R. V. Effect of hydrothermal conditions on structural and textual properties of synthetic hydrtalcites of varying Mg/Al ratio [J]. Ind. Eng. Chem. Res.,2007,46: 4856-4865
    [27]. Sing K.S. W., Everett D. H., Haul R. A. W., Moscou L., Pierotti R. A., Rouquerol J., Siemieniewska T. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity [J]. Pure & Appl. Chem.,1985,57:603-619
    [28]. Gursky J. A., Blough S. D., Luna C., Gomez C., Luevano A. N., Gardner E. A., Particle-particle interactions between Layered Double Hydroxide nanoparticles [J]. J. Am. Chem. Soc.,2006,128:8376-8377
    [29]. Valente J. S., Cant M. S., Cortez J. G H., Montiel R., Bokhimi X., Lpez-Salinas E. Preparation and characterization of sol-gel MgAl hydrotalcites with nanocapsular morphology [J]. J. Phys. Chem. C.,2007,111:642-651
    [30]. Cantrell D. G., Gillie L. J., Lee A.F., Wilson K. Structure-reactivity correlations in MgAl hydrotalcite catalysts for biodiesel synthesis [J]. Appl. Catal. A: General,2005,287,183-190
    [31]. Nhlapo N., Motumi T., Landman E., Verryn S. M. C. and Focke W. W. Surfactant-assisted fatty acid intercalation of layered double hydroxides [J]. J. Mater.,2008,43:1033-1043
    [32]. Gerauda E., Prevot V., and Leroux F. Synthesis and characterization of macroporous MgAl LDH using polystyrene spheres as template [J]. J. Phys. Chem. Sol.,2006,67:903-908
    [33]. Wang J. A., Chen L. F., Li C. L. Monolayer dispersion capacity of CeO2 on the surface of the CeO2/MgA12O4 catalyst and its effect on the De-SO2 activity [J]. J. Mater. Sci. Letters,1998,17:533-535
    [1]. Van Broekhoven, Emanuel H. Catalyst composition and absorbent which contain an anionic clay, USP 4866019,1989
    [2]. Bhattacharyya A., Foral M. J., Reagan W. J. Absorbent and process for removing sulfur oxides from a gaseous mixture, USP 5426083,1995
    [3]. Yoo J. S., Bhattacharyya A.. A, Radlowski C. A. De-SOx catalyst:an XRD study of magnesium aluminate spinel and its solid solutions [J]. Ind. Eng. Chem. Res., 1991,30:1444-1447
    [4]. Corma A., Palomares A. E. and Rey F. Optimization of SOx additives of FCC catalysts based on MgO-Al2O3 mixed oxides produced from hydrotalcites [J]. Appl. Catal. B:Environ.,1994,4:29-43
    [5]. Sanchez-Cantu M., Perez-Diaz L. M., Maubert A. M., Valente J. S. Dependence of chemical composition of calcined hydrotalcite-like compounds for SOx reduction [J]. Catal. Today,2010,150:332-339
    [6]. Polato C. M. S., Henriques C. A., Neto A. A., Monteiro J. L. F. Synthesis characterization and evaluation of CeO2/Mg, Al-mixed oxides as catalysts for SOx removal [J]. J. Mol. Catal. A:Chem.,2005,241:184-193
    [7].蒋文斌,郑曼英,陈蓓艳,达志坚,桂跃强,黄轶,罗珍.一种硫转移催化剂及其制备方法,CN 1334316A,2002
    [8].蒋文斌,张万虹,朱玉霞,达志坚.浸渍过程中Ce3+的扩散与吸附及其对CeO2/MgAl2O4·xMgO性能的影响[J].石油学报(石油加工),2004,20:13-19
    [9]. Wang J.A., Chen L.F., Limas-Ballesteros R., Montoya A., Dominguez J.M. Evaluation of crystalline structure and SO2 storage capacity of a series of composition-sensitive De-SO2 catalysts [J]. J. Mol. Catal. A:Chem.,2003,194: 181-193
    [10]. Pereira H. B., Polato C. M. S., Monteiro J. L. F., Henriques C. A. Mn/Mg/Al-spinels as catalysts for SOx abatement:Influence of CeO2 incorporation and catalytic stability [J]. Catal. Today,2010,149:309-315
    [11]. Zhao Y., Li F., Zhang R., Evans D. G., Duan X. Preparation of layered double hydroxide nanomaterials with a uniform crystallite size using a new method involving separate nucleation and aging steps [J]. Chem. Mater.,2002,14: 4286-4291
    [12], Zhao Y., Jiao Q.Z., Evans D. G, Duan X. Mechanism of pore formation and structural characterization for mesoporous Mg-Al composite oxides [J]. Sci. in China (Ser. B),2002,45:38-45
    [13]. Vaccari A. Clays and catalysis a promising future[J]. Appl. Clay Sci.,1999,14: 161-198
    [14].段雪,张法智,插层组装与功能材料[M].北京,化学工业出版社,2007
    [15]. Rives V. Layered Double Hydroxides:Present and Future [M]. Nova Science Publishers:New York,2001
    [16]. Sing K.S. W., Everett D. H., Haul R. A. W., Moscou L., Pierotti R. A., Rouquerol J., Siemieniewska T. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity [J]. Pure & Appl. Chem.,1985,57:603-619

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700