高分散层状催化剂的制备及其光催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对多相催化剂在应用过程中存在的活性组分易团聚、分散度低等问题,本论文以光催化性能为导向,以催化剂活性组分的高分散为切入点,将催化活性金属元素Cr、Ti等引入水滑石(LDHs)层板,实现了原子/亚原子尺度的分散;通过进一步调控粒径尺寸,实现了缺陷位可控的无机纳米催化剂的制备,并在介观尺度进行了多级结构催化剂的组装。采用实验技术和理论计算相结合的手段,对系列LDHs催化剂的晶体结构、能级特征、金属间相互作用进行了深入研究;揭示了催化剂的结构、组成、形貌以及缺陷位等特征对催化性能的影响;发展了一系列可用于光解水制氢(或制氧)、可见光催化以及杀菌等领域的高性能催化剂,为构筑新型高分散催化剂提供了一定的实验及理论基础。
     本论文的主要研究内容与结果如下:
     1、采用本实验室创制的成核晶化隔离法,将具有可见光吸收性质的Cr元素引入LDHs层板中,合成了MCr–LDHs (M=Cu, Ni, Zn)催化剂,在可见光催化方面展现了良好的性能。CrO_6基元在LDHs介质中的高度分散,导致了MCr–LDHs较窄的禁带宽度,可充分吸收太阳光中的可见光部分,提高了光生载流子的生成效率;LDHs层状结构表面存在大量的OH基团,有助于捕获空穴进而产生自由基,提升了载流子的传输效率。高的载流子生成和分离传输效率是高催化活性的主要原因。该方法可以进一步拓展制备具有可见光响应的氢氧化物或氧化物,有望应用于催化,吸附等领域。
     2、基于LDHs层板金属元素高度分散的特点,将TiO_6引入到层板中,获得了MTi–LDHs (M=Ni, Zn, Mg)催化剂,在光分解水制氢方面展现了非常优越的催化性能(314μmol·h~(-1)g~(-1))。结构表征证明了LDHs中TiO_6八面体通过共价键与MO_6(M=Ni, Zn, Mg)八面体相互作用,并呈现高度分散状态。此外,由于MTi–LDHs表面存在大量的缺陷位,相比层状K_2Ti_4O_9可显著降低电子–空穴复合效率。密度泛函计算显示TiO_6和MO_6通过共价作用降低了其禁带宽度,有助于吸收可见光,提高了其光催化性能。这种基于LDHs层板元素高分散的特点,引入相关表面缺陷来制备高性能催化剂,在光解水制氢以及太阳能转化方面具有潜在的应用价值。
     3、采用反相微乳液方法,合成了Ti~(3+)掺杂的NiZnTi–LDHs纳米片(4080nm),表现出优越的可见光分解水制氧性能(2700μmol·h~(-1)g~(-1))及良好的循环稳定性。采用荧光、顺磁共振等手段证实随着LDHs纳米片粒径的减小,表面的Ti3+缺陷位浓度增加;其作为光生电子的受限位降低了电子空穴的复合几率,有效提高了载流子的利用效率,从而表现出优越的可见光催化性能。基于此特征,该材料也表现出良好的可见光抗菌(大肠杆菌、金黄色葡萄球菌、酵母菌)性能。本工作提供了一种通过调变LDHs粒径来调控Ti~(3+)活性位浓度的新方法,从而实现了可见光催化性能的强化,在催化以及太阳能利用方面具有潜在应用价值。
     4、以紫藤果实豆荚为模板,采用原子气相沉积(ALD)原位生长焙烧方法,制备了具有优良光催化活性的多级结构ZnAl复合金属氧化物(MMO)。该催化剂从纳米到宏观尺度精确复制了生物模板的多级形貌。相比于利用传统共沉淀法制备的催化剂,利用生物模板获得的MMO催化剂对水中的污染物表现出更强的光催化降解能力。这是由于其形成了多孔状的多级结构,具有高的比表面积和宽的孔径分布。由于生物模板的多样性和LDHs组分的可调性,该多级结构材料在催化、吸附等领域具有广阔应用前景。
     5、采用溶胶凝胶原位生长方法,在多种基体(滤纸、海绵、棉质布)表面制备了多级结构LDHs薄膜材料;可以复制不同基体的形貌,该方法可操作性强、成本低、易于大规模制备。该薄膜材料与粉体材料相比(11mg刚果红·g~(-1)LDH),在水处理吸附染料方面展现了更强的吸附能力(20mg刚果红·g~(-1)LDH)和良好的实际可操作性。本工作提供了一种设计组装新型多级结构LDHs薄膜材料的方法,该类材料可应用于催化、吸附、薄膜分离等领域。
Heterogeneous catalysts generally suffer from serious agglomeration,and low dispersion of active site, which restricts their effective utilization.In this dissertation, the photocatalytic active site was highly dispersed bydistributing the Cr, Ti unit within layered double hydroxides (LDHs)matrix to enhance the efficiency of charge separation and improve thephotoconversion capability. The inorganic nanoparticles with surfaceactive defects were prepared through controlling the particle size. Thehierarchical assemblies were also achieved in micro scale by using thesenanoparticles as building blocks. Both experimental and theoreticalcalculations were carried out to study the crystal structure, energy levelcharacteristics and the interaction of intercalating metals, in order todemonstrate the structure-property correlation. Moreover, the applicationsin splitting water into H_2or O_2, visible-light catalysis, as well asantipathogen performance were explored. This study provided bothexperimental and computational basis for the development of novelhighly-dispersed catalysts.
     The main results of this dissertation are as follows:
     1. A family of visible-light responsive MCr–LDHs (M=Cu, Ni, Zn)photocatalyst was synthesized by a separate nucleation and aging steps(SNAS), which displays remarkable photocatalytic degradation activityunder visible-light irradiation. The high dispersion of the CrO6unit inthe LDH matrix leads to the lower band gap and the resultingpronounced visible-light absorption. In addition, the abundant OHgroups on the surface of LDH accept photogenerated holes to yieldhighly-reactive hydroxyl radicals, accounting for the excellentphotocatalytic behavior. By virtue of the facile scale-up method and theintrinsic dispersion of the MO6octahedron unit, this approach can beextended for the preparation of other metal hydroxides/oxides for thewidely application in catalysis.
     2. Series of photocatalysts for water splitting into hydrogen wereprepared by distributing TiO6unit in a layered MTi–LDHs matrix(M=Ni, Zn, Mg), which displays largely-enhanced H_2–productionphotocatalytic activity (314μmol·h~(-1)g~(-1)) as well as excellent recyclableperformance. Structure measurements reveal that a high dispersion ofTiO6octahedra in the LDH matrix was obtained by the formation ofM~(2+)–O–Ti network, rather different from the aggregation state of TiO6in the inorganic layered material K_2Ti_4O_9. Furthermore, theelectron–hole recombination process was significantly depressed in the Ti-containing LDH materials relative to bulk Ti oxide, which isattributed to the abundant surface defects that serve as trapping sitesfor photogenerated electrons. A theoretical study based on DFTcalculation demonstrates that electronic structure of the TiO6unit wasmodified by adjacent MO6octahedron via covalent interaction,accounting for its superior water splitting behavior. Therefore, thedispersion strategy for TiO6unit within a2D inorganic matrix can beused to enhance the performance in photocatalysis and energyconversion.
     3. Ti3+doped NiZnTi-LDH nanosheets with a lateral dimension of4080nm were synthesised using a reverse microemulsion method,which exhibit very high visible-light photocatalytic activity forsplitting water into oxygen (2700μmol·h~(-1)g~(-1)) and antipathogenperformance. The photoluminescence spectra demonstrate that theelectron-hole recombination process was significantly depressed in theLDH nanosheets compared with bulk LDH material, which is attributedto the abundant surface defects serving as trapping sites forphotogenerated electrons. Electron Spin Resonance (ESR)measurement reveals that a high concentration of Ti~(3+)sites aregenerated by creating nanoscized LDH platelets. This work provides afacile method for the preparation of LDH nanosheets containing a highconcentration of Ti3+active sites, which have potential applications in catalysis and solar energy utilization.
     4. Hierarchically macro/meso porous mixed metal oxides (MMO)framework with multilevel3D morphologies from nanoscale tomacroscale was fabricated by using a combination of an atomic layerdeposition (ALD) process in situ growth calcination process. It wasfound that the MMO framework can be used as an effective andrecyclable photocatalyst and exhibits higher photocatalytic activitythan the corresponding MMO powdered sample. This is due to thehierarchical structure of the biomorphic MMO framework along with ahigh specific surface area and wide pore size distribution. Our studydemonstrates an exciting approach for enhancing the chemicalperformance of conventional catalysts through biomimicking. It isanticipated that this new strategy can be employed to fabricate variousbio-templated LDH films as well as MMO frameworks.
     5. Various LDH films on different substrates (paper, sponge andcloth) were obtained by sol–gel deposition and subsequent in situgrowth procedure, which replicate the morphological properties of thetemplates with advantages of easy manipulation, low-cost, and largesurface area. The obtained films show higher adsorption capacity andexcellent ability to remove dye (20mg·g1LDHCongo Red), comparedwith the corresponding powdered samples (11mg·g1LDHCongo Red).By virtue of the facile sol–gel replication and in situ growth technique, it is expected that a wide variety of LDH films with complicatedmorphologies can be fabricated in a similar way. Therefore, this workprovides new possibilities for the rational design and fabrication ofhierarchical LDH films, which can be potentially applied in the fieldsof catalysts, adsorbents and membrane separation.
引文
[1]中国能源编辑部.中国的能源政策(2012)白皮书发布[J].中国能源,2012:1.
    [2]周树田. CO加氢制备C2含氧化合物铑基催化剂的结构效应[D]博士,中国科学院研究生院(大连化学物理研究所),大连,2006.
    [3] Beijing Air Pollution Soars to Hazard Level.http://www.bbc.co.uk/news/world-asia-china-20998147.
    [4] Schloegl R. The Role of Chemistry in the Energy Challenge [J]. ChemSusChem,2010,3:209-222.
    [5]刘美英.钽基氮氧化物上可见光光催化分解水制氢研究[D]博士,中国科学院研究生院(大连化学物理研究所),大连,2006.
    [6]王锐. CH4/CO2重整反应中Rh基催化剂上CeO2的助剂作用研究[D]博士,中国科学院研究生院(大连化学物理研究所),2007.
    [7] Su D S. Editorial: Chemistry of Energy Conversion and Storage [J]. ChemSusChem,2012,5:443-445.
    [8]能源局副局长解读“十二五”规划能源领域关键词[J].资源与人居环境,2011:21.
    [9] Yan N, Xiao C, Kou Y. Transition Metal Nanoparticle Catalysis in Green Solvents [J]. Coord.Chem. Rev.,2010,254:1179-1218.
    [10]谢在库.从催化导向性基础研究到工业应用的若干创新思路与实践——庆祝闵恩泽先生九十华诞[J].催化学报,2013:209-216.
    [11]何鸣元.以催化技术创新贡献国民经济50年——记闵恩泽先生的主要科学技术成就和贡献[J].化学进展,2008:185-196.
    [12]吴越.应用催化基础[M].北京,化学工业出版社,2009.
    [13]钱逸泰.结晶化学导论(第3版)[M].合肥,中国科学技术大学出版社,2009.
    [14] Bell A T. The Impact of Nanoscience on Heterogeneous Catalysis [J]. Science,2003,299:1688-1691.
    [15] Zhou K B, Wang X, Sun X M, Peng Q, Li Y D. Enhanced Catalytic Activity of Ceria Nanorodsfrom Well-Defined Reactive Crystal Planes [J]. J. Catal.,2005,229:206-212.
    [16] Zhou K, Li Y. Catalysis Based on Nanocrystals with Well-Defined Facets [J]. Angew. Chem.Int. Ed.,2012,51:602-613.
    [17] Ertl G. Reactions at Surfaces: From Atoms to Complexity (Nobel Lecture)[J]. Angew. Chem.Int. Ed.,2008,47:3524-3535.
    [18] Somorjai G A, Park J Y. Molecular Surface Chemistry by Metal Single Crystals andNanoparticles from Vacuum to High Pressure [J]. Chem. Soc. Rev.,2008,37:2155-2162.
    [19] Joo S H, Park J Y, Tsung C-K, Yamada Y, Yang P, Somorjai G A. Thermally StablePt/Mesoporous Silica Core-Shell Nanocatalysts for High-Temperature Reactions [J]. NatureMater.,2009,8:126-131.
    [20] Yamada Y, Tsung C-K, Huang W, Huo Z, Habas S E, Soejima T, Aliaga C E, Somorjai G A,Yang P. Nanocrystal Bilayer for Tandem Catalysis [J]. Nat. Chem.,2011,3:372-376.
    [21] Sun Y G, Xia Y N. Shape-Controlled Synthesis of Gold and Silver Nanoparticles [J]. Science,2002,298:2176-2179.
    [22] Bratlie K M, Lee H, Komvopoulos K, Yang P, Somorjai G A. Platinum Nanoparticle ShapeEffects on Benzene Hydrogenation Selectivity [J]. Nano Lett.,2007,7:3097-3101.
    [23] Xie X, Li Y, Liu Z-Q, Haruta M, Shen W. Low-Temperature Oxidation of Co Catalysed byCo3O4Nanorods [J]. Nature,2009,458:746-749.
    [24] Yang H G, Sun C H, Qiao S Z, Zou J, Liu G, Smith S C, Cheng H M, Lu G Q. Anatase TiO2Single Crystals with a Large Percentage of Reactive Facets [J]. Nature,2008,453:638-U634.
    [25] Jiang Z-Y, Kuang Q, Xie Z-X, Zheng L-S. Syntheses and Properties of Micro/NanostructuredCrystallites with High-Energy Surfaces [J]. Adv. Funct. Mater.,2010,20:3634-3645.
    [26] Xia Y, Xiong Y, Lim B, Skrabalak S E. Shape-Controlled Synthesis of Metal Nanocrystals:Simple Chemistry Meets Complex Physics?[J]. Angew. Chem. Int. Ed.,2009,48:60-103.
    [27] Tao A R, Habas S, Yang P. Shape Control of Colloidal Metal Nanocrystals [J]. Small,2008,4:310-325.
    [28] Esch F, Fabris S, Zhou L, Montini T, Africh C, Fornasiero P, Comelli G, Rosei R. ElectronLocalization Determines Defect Formation on Ceria Substrates [J]. Science,2005,309:752-755.
    [29] Liu X, Zhou K, Wang L, Wang B, Li Y. Oxygen Vacancy Clusters Promoting Reducibility andActivity of Ceria Nanorods [J]. J. Am. Chem. Soc.,2009,131:3140-3141.
    [30] Kong M, Li Y, Chen X, Tian T, Fang P, Zheng F, Zhao X. Tuning the Relative ConcentrationRatio of Bulk Defects to Surface Defects in TiO2Nanocrystals Leads to High PhotocatalyticEfficiency [J]. J. Am. Chem. Soc.,2011,133:16414-16417.
    [31] Zuo F, Wang L, Wu T, Zhang Z, Borchardt D, Feng P. Self-Doped Ti3+Enhanced Photocatalystfor Hydrogen Production under Visible Light [J]. J. Am. Chem. Soc.,2010,132:11856-11857.
    [32] Qiao B, Wang A, Yang X, Allard L F, Jiang Z, Cui Y, Liu J, Li J, Zhang T. Single-AtomCatalysis of Co Oxidation Using Pt-1/Feox [J]. Nat. Chem.,2011,3:634-641.
    [33] Fu Q, Li W-X, Yao Y, Liu H, Su H-Y, Ma D, Gu X-K, Chen L, Wang Z, Zhang H, Wang B, BaoX. Interface-Confined Ferrous Centers for Catalytic Oxidation [J]. Science,2010,328:1141-1144.
    [34] Ta N, Liu J, Chenna S, Crozier P A, Li Y, Chen A, Shen W. Stabilized Gold Nanoparticles onCeria Nanorods by Strong Interfacial Anchoring [J]. J. Am. Chem. Soc.,2012,134:20585-20588.
    [35] Tedsree K, Li T, Jones S, Chan C W A, Yu K M K, Bagot P A J, Marquis E A, Smith G D W,Tsang S C E. Hydrogen Production from Formic Acid Decomposition at Room TemperatureUsing a Ag-Pd Core-Shell Nanocatalyst [J]. Nature Nanotech.,2011,6:302-307.
    [36] Tedsree K, Chan C W A, Jones S, Cuan Q, Li W-K, Gong X-Q, Tsang S C E. C-13Nmr GuidesRational Design of Nanocatalysts Via Chemisorption Evaluation in Liquid Phase [J]. Science,2011,332:224-228.
    [37] Zhao Y, Eley C, Hu J, Foord J S, Ye L, He H, Tsang S C E. Shape-Dependent Acidity andPhotocatalytic Activity of Nb2O5Nanocrystals with an Active Tt (001) Surface [J]. Angew.Chem. Int. Ed.,2012,51:3846-3849.
    [38] Zhou X, Qu J, Xu F, Hu J, Foord J S, Zeng Z, Hong X, Tsang S C E. Shape SelectivePlate-Form Ga2O3with Strong Metal-Support Interaction to Overlying Pd for Hydrogenation ofCO2to CH3OH [J]. Chem. Commun.,2013,49:1747-1749.
    [39] Liao F, Zeng Z, Eley C, Lu Q, Hong X, Tsang S C E. Electronic Modulation of a Copper/ZincOxide Catalyst by a Heterojunction for Selective Hydrogenation of Carbon Dioxide toMethanol [J]. Angew. Chem. Int. Ed.,2012,51:5832-5836.
    [40] Su D S, Schloegl R. Nanostructured Carbon and Carbon Nanocomposites for ElectrochemicalEnergy Storage Applications [J]. ChemSusChem,2010,3:136-168.
    [41] Mou X, Zhang B, Li Y, Yao L, Wei X, Su D S, Shen W. Rod-Shaped Fe2O3as an EfficientCatalyst for the Selective Reduction of Nitrogen Oxide by Ammonia [J]. Angew. Chem. Int.Ed.,2012,51:2989-2993.
    [42] Zhang J, Liu X, Blume R, Zhang A, Schloegl R, Su D S. Surface-Modified Carbon NanotubesCatalyze Oxidative Dehydrogenation of N-Butane [J]. Science,2008,322:73-77.
    [43] Fujishima A, Honda K. Electrochemical Photolysis of Water at a Semiconductor Electrode [J].Nature,1972,238:37-38.
    [44] Liu S, Han L, Duan Y, Asahina S, Terasaki O, Cao Y, Liu B, Ma L, Zhang J, Che S. Synthesisof Chiral TiO2Nanofibre with Electron Transition-Based Optical Activity [J]. Nat. Commun.,2012,3. DOI:10.1038/ncomms2215
    [45] Swierk J R, Mallouk T E. Design and Development of Photoanodes for Water-SplittingDye-Sensitized Photoelectrochemical Cells [J]. Chem. Soc. Rev.,2013,42:2357-2387.
    [46] Osterloh F E. Inorganic Nanostructures for Photoelectrochemical and Photocatalytic WaterSplitting [J]. Chem. Soc. Rev.,2013,42:2294-2320.
    [47] Baliarsingh N, Mohapatra L, Parida K. Design and Development of a Visible Light HarvestingNi-Zn/Cr-CO2-3LDH System for Hydrogen Evolution [J]. J. Mater. Chem. A,2013,1:4236-4243.
    [48]温福宇,杨金辉,宗旭,马艺,徐倩,马保军,李灿.太阳能光催化制氢研究进展[J].化学进展,2009:2285-2302.
    [49] Yang X F, Cui H Y, Li Y, Qin J L, Zhang R X, Tang H. Fabrication of Ag3PO4-GrapheneComposites with Highly Efficient and Stable Visible Light Photocatalytic Performance [J].ACS Catal.,2013,3:363-369.
    [50] Yang N, Liu Y, Wen H, Tang Z, Zhao H, Li Y, Wang D. Photocatalytic Properties ofGraphdiyne and Graphene Modified TiO2: From Theory to Experiment [J]. Acs Nano,2013,7:1504-1512.
    [51] Ma S S K, Hisatomi T, Maeda K, Moriya Y, Domen K. Enhanced Water Oxidation on Ta3N5Photocatalysts by Modification with Alkaline Metal Salts [J]. J. Am. Chem. Soc.,2012,134:19993-19996.
    [52] Yan H, Yang J, Ma G, Wu G, Zong X, Lei Z, Shi J, Li C. Visible-Light-Driven HydrogenProduction with Extremely High Quantum Efficiency on Pt-Pds/Cds Photocatalyst [J]. J.Catal.,2009,266:165-168.
    [53] Chen X, Liu L, Yu P, Mao S S. Increasing Solar Absorption for Photocatalysis with BlackHydrogenated Titanium Dioxide Nanocrystals [J]. Science,2011,11:746-750.
    [54] Zhang N, Zhang Y H, Pan X Y, Fu X Z, Liu S Q, Xu Y J. Assembly of Cds Nanoparticles onthe Two-Dimensional Graphene Scaffold as Visible-Light-Driven Photocatalyst for SelectiveOrganic Transformation under Ambient Conditions [J]. J. Phys. Chem. C,2011,115:23501-23511.
    [55]舒心.钛基复合光催化材料的制备及性能研究[D]博士,北京化工大学,北京,2009.
    [56]徐新.水滑石基半导体复合材料的制备及其光催化性能研究[D]博士,北京化工大学,2011.
    [57] Li Q, Guo B, Yu J, Ran J, Zhang B, Yan H, Gong J R. Highly Efficient Visible-Light-DrivenPhotocatalytic Hydrogen Production of Cds-Cluster-Decorated Graphene Nanosheets [J]. J.Am. Chem. Soc.,2011,133:10878-10884.
    [58] Chen X, Shen S, Guo L, Mao S S. Semiconductor-Based Photocatalytic Hydrogen Generation[J]. Chem. Rev.,2010,110:6503-6570.
    [59] Zou Z G, Ye J H, Sayama K, Arakawa H. Direct Splitting of Water under Visible LightIrradiation with an Oxide Semiconductor Photocatalyst [J]. Nature,2001,414:625-627.
    [60] Maeda K, Teramura K, Lu D L, Takata T, Saito N, Inoue Y, Domen K. Photocatalyst ReleasingHydrogen from Water-Enhancing Catalytic Performance Holds Promise for HydrogenProduction by Water Splitting in Sunlight [J]. Nature,2006,440:295-295.
    [61] Liu Q, Zhou Y, Kou J, Chen X, Tian Z, Gao J, Yan S, Zou Z. High-Yield Synthesis of Ultralongand Ultrathin Zn2GeO4Nanoribbons toward Improved Photocatalytic Reduction of CO2intoRenewable Hydrocarbon Fuel [J]. J. Am. Chem. Soc.,2010,132:14385-14387.
    [62] Chen C, Ma W, Zhao J. Semiconductor-Mediated Photodegradation of Pollutants underVisible-Light Irradiation [J]. Chem. Soc. Rev.,2010,39:4206-4219.
    [63]科学家开发低成本染料敏化太阳能电池.http://paper.sciencenet.cn/htmlpaper/201212121385814026641.shtm?id=26641.
    [64] Chen X, Li C, Graetzel M, Kostecki R, Mao S S. Nanomaterials for Renewable EnergyProduction and Storage [J]. Chem. Soc. Rev.,2012,41:7909-7937.
    [65] Wang Z L, Song J H. Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays [J].Science,2006,312:242-246.
    [66]孙晓明.低维功能纳米材料的液相合成、表征与性能研究[D]博士,清华大学,北京,2005.
    [67] Herzing A A, Kiely C J, Carley A F, Landon P, Hutchings G J. Identification of Active GoldNanoclusters on Iron Oxide Supports for Co Oxidation [J]. Science,2008,321:1331-1335.
    [68] Geng F, Ma R, Sasaki T. Anion-Exchangeable Layered Materials Based on Rare-EarthPhosphors: Unique Combination of Rare-Earth Host and Exchangeable Anions [J]. Acc. Chem.Res.,2010,43:1177.
    [69] Zhao M-Q, Zhang Q, Huang J-Q, Wei F. Hierarchical Nanocomposites Derived fromNanocarbons and Layered Double Hydroxides-Properties, Synthesis, and Applications [J].Adv. Funct. Mater.,2012,22:675-695.
    [70] Wang Q, O'Hare D. Recent Advances in the Synthesis and Application of Layered DoubleHydroxide (LDH) Nanosheets [J]. Chem. Rev.,2012,112:4124-4155.
    [71] Sideris P J, Nielsen U G, Gan Z, Grey C P. Mg/Al Ordering in Layered Double HydroxidesRevealed by Multinuclear NMR Spectroscopy [J]. Science,2008,321:113-117.
    [72] Pisson J, Taviot-Gueho C, Israeli Y, Leroux F, Munsch P, Itie J P, Briois V, Morel-Desrosiers N,Besse J P. Staging of Organic and Inorganic Anions in Layered Double Hydroxides [J]. J. Phys.Chem. B,2003,107:9243-9248.
    [73]安哲,何静,段雪.基于层状前驱体制备活性位高分散催化材料[J].催化学报,2013:225-234.
    [74] Zhang F, Xiang X, Li F, Duan X. Layered Double Hydroxides as Catalytic Materials: RecentDevelopment [J]. Catal. Surv. Asia.,2008,12:253-265.
    [75] Zhao M-Q, Zhang Q, Zhang W, Huang J-Q, Zhang Y, Su D S, Wei F. Embedded High DensityMetal Nanoparticles with Extraordinary Thermal Stability Derived from Guest-Host MediatedLayered Double Hydroxides [J]. J. Am. Chem. Soc.,2010,132:14739-14741.
    [76] He S, Zhang S T, Lu J, Zhao Y F, Ma J, Wei M, Evans D G, Duan X. Enhancement of VisibleLight Photocatalysis by Grafting Zno Nanoplatelets with Exposed (0001) Facets onto aHierarchical Substrate [J]. Chem. Commun.,2011,47:10797-10800.
    [77] He L, Huang Y, Wang A, Wang X, Chen X, Jose Delgado J, Zhang T. A Noble-Metal-FreeCatalyst Derived from Ni-Al Hydrotalcite for Hydrogen Generation from N2H4Center DotH2O Decomposition [J]. Angew. Chem. Int. Ed.,2012,51:6191-6194.
    [78] Roeffaers M B J, Sels B F, Uji-i H, De Schryver F C, Jacobs P A, De Vos D E, Hofkens J.Spatially Resolved Observation of Crystal-Face-Dependent Catalysis by Single TurnoverCounting [J]. Nature,2006,439:572-575.
    [79] He J, Wei M, Li B, Kang Y, Evans D. G, Duan X, Preparation of Layered Double Hydroxides[J]. Struct. Bonding,2006,119:89-119.
    [80] Zhao Y, Li F, Zhang R, Evans David G, Duan X, Preparation of Layered Double-HydroxideNanomaterials with a Uniform Crystallite Size Using a New Method Involving SeparateNucleation and Aging Steps [J]. Chem. Mater.,2002,14:4286-4291.
    [81] Kong X, Rao X, Han J, Wei M, Duan X. Layer-by-Layer Assembly of Bi-Protein/LayeredDouble Hydroxide Ultrathin Film and Its Electrocatalytic Behavior for Catechol [J]. Biosens.Bioelectron.,2010,26:549-554.
    [82] Lei X, Zhang F, Yang L, Guo X, Tian Y, Fu S, Li F, Evans D G, Duan X. Highly CrystallineActivated Layered Double Hydroxides as Solid Acid-Base Catalysts [J]. AIChE Journal,2007,53:932-940.
    [83] Guo X, Zhang F, Xu S, Evans D G, Duan X. Preparation of Layered Double Hydroxide Filmswith Different Orientations on the Opposite Sides of a Glass Substrate by in Situ HydrothermalCrystallization [J]. Chem. Commun.,2009:6836-6838.
    [84] Guo X, Zhang F, Evans D G, Duan X. Layered Double Hydroxide Films: Synthesis, Propertiesand Applications [J]. Chem. Commun.,2010,46:5197-5210.
    [85] Ma R, Liu Z, Takada K, Iyi N, Bando Y, Sasaki T. Synthesis and Exfoliation of Co2+-Fe3+Layered Double Hydroxides: An Innovative Topochemical Approach [J]. J. Am. Chem. Soc.,2007,129:5257-5263.
    [86] Liu Z P, Ma R Z, Osada M, Iyi N, Ebina Y, Takada K, Sasaki T. Synthesis, Anion Exchange,and Delamination of Co-Al Layered Double Hydroxide: Assembly of the ExfoliatedNanosheet/Polyanion Composite Films and Magneto-Optical Studies [J]. J. Am. Chem. Soc.,2006,128:4872-4880.
    [87] Hu G, O'Hare D. Unique Layered Double Hydroxide Morphologies Using ReverseMicroemulsion Synthesis [J]. J. Am. Chem. Soc.,2005,127:17808-17813.
    [88] Wang C J, Wu Y A, Jacobs R M J, Warner J H, Williams G R, O’Hare D. Reverse MicelleSynthesis of Co Al LDHs: Control of Particle Size and Magnetic Properties [J]. Chem. Mater.,2011,23:171.
    [89] Chen H, Zhang F, Fu S, Duan X. In Situ Microstructure Control of Oriented Layered DoubleHydroxide Monolayer Films with Curved Hexagonal Crystals as Superhydrophobic Materials[J]. Adv. Mater.,2006,18:3089-3093.
    [90] Chen C, Gunawan P, Lou X W D, Xu R. Silver Nanoparticles Deposited Layered DoubleHydroxide Nanoporous Coatings with Excellent Antimicrobial Activities [J]. Adv. Funct.Mater.,2012,22:780-788.
    [91] Han J, Dou Y, Zhao J, Wei M, Evans D G, Duan X. Flexible CoAl LDH@PEDOT Core/ShellNanoplatelet Array for High-Performance Energy Storage [J]. Small,2013,9:98-106.
    [92]郭孝孝. LDHs薄膜的取向生长及性能研究[D]博士,北京化工大学,北京,2009.
    [93]闫东鹏.无机/有机复合超分子层状光功能材料的组装及性能:实验与理论研究[D]博士,北京化工大学,北京,2012.
    [94]韩景宾.层状结构无机—有机复合薄膜材料的组装及性能研究[D]博士,北京化工大学,2011.
    [95]李仓.基于层状双羟基复合金属氧化物构筑结构取向薄膜及其性能研究[D]博士,北京化工大学,2008.
    [96]史文颖.发光分子/水滑石插层复合物薄膜的组装及其光学性能和原型传感器件研究[D]博士,北京化工大学,2010.
    [97]邹鲁.尖晶石型复合金属氧化物功能材料的制备、表征及其性能研究[D]博士,北京化工大学,北京,2008.
    [98] Han J, Dou Y, Wei M, Evans D G, Duan X. Erasable Nanoporous Antireflection CoatingsBased on the Reconstruction Effect of Layered Double Hydroxides [J]. Angew. Chem. Int. Ed.,2010,49:2171-2174.
    [99] Li F, Duan X. Applications of Layered Double Hydroxides [J]. Structural and Bonding,2006,119:193-223.
    [100] Evans D G, Xue D A. Preparation of Layered Double Hydroxides and Their Applications asAdditives in Polymers, as Precursors to Magnetic Materials and in Biology and Medicine [J].Chem. Commun.,2006,46:485-496.
    [101] Gomes Silva C, Bouizi Y, Fornes V, Garcia H. Layered Double Hydroxides as Highly EfficientPhotocatalysts for Visible Light Oxygen Generation from Water [J]. J. Am. Chem. Soc.,2009,131:13833-13839.
    [102] Teramura K, Iguchi S, Mizuno Y, Shishido T, Tanaka T. Photocatalytic Conversion of CO2inWater over Layered Double Hydroxides [J]. Angew. Chem. Int. Ed.,2012,51:8008-8011.
    [103] Sastre F, Corma A, Garcia H.185Nm Photoreduction of CO2to Methane by Water. Influenceof the Presence of a Basic Catalyst [J]. J. Am. Chem. Soc.,2012,134:14137-14141.
    [104] Gao P, Li F, Xiao F, Zhao N, Sun N, Wei W, Zhong L, Sun Y. Preparation and Activity ofCu/Zn/Al/Zr Catalysts Via Hydrotalcite-Containing Precursors for Methanol Synthesis fromCO2Hydrogenation [J]. Catal. Sci. Technol.,2012,2:1447-1454.
    [105] Yu J H, Wang X P, Li L D, Hao Z P, Xu Z P, Lu G Q. Novel Multi-Functional Mixed-OxideCatalysts for Effective Nox Capture, Decomposition, and Reduction [J]. Adv. Funct. Mater.,2007,17:3598-3606.
    [106] Liu P, Guan Y, van Santen R A, Li C, Hensen E J M. Aerobic Oxidation of Alcohols overHydrotalcite-Supported Gold Nanoparticles: The Promotional Effect of Transition MetalCations [J]. Chem. Commun.,2011,47:11540-11542.
    [107] Zhang F, Zhao X, Feng C, Li B, Chen T, Lu W, Lei X, Xu S. Crystal-Face-Selective Supportingof Gold Nanoparticles on Layered Double Hydroxide as Efficient Catalyst for Epoxidation ofStyrene [J]. Acs Catal.,2011,1:232-237.
    [108] Cadars S, Layrac G, Gerardin C, Deschamps M, Yates J R, Tichit D, Massiot D. Identificationand Quantification of Defects in the Cation Ordering in Mg/Al Layered Double Hydroxides [J].Chem. Mater.,2011,23:2821-2831.
    [109] Ma X-Y, Chai Y-Y, Evans D G, Li D-Q, Feng J-T. Preparation and Selective AcetyleneHydrogenation Catalytic Properties of Supported Pd Catalyst by the in SituPrecipitation-Reduction Method [J]. J. Phys. Chem. C,2011,115:8693-8701.
    [110] He Y-F, Feng J-T, Du Y-Y, Li D-Q. Controllable Synthesis and Acetylene HydrogenationPerformance of Supported Pd Nanowire and Cuboctahedron Catalysts [J]. Acs Catal.,2012,2:1703-1710.
    [111] Mi F, Chen X, Ma Y, Yin S, Yuan F, Zhang H. Facile Synthesis of Hierarchical Core-ShellFe3O4@MgAl-LDH@Au as Magnetically Recyclable Catalysts for Catalytic Oxidation ofAlcohols [J]. Chem. Commun.,2011,47:12804-12806.
    [112] Zhao S, Xu J, Wei M, Song Y-F. Synergistic Catalysis by Polyoxometalate-IntercalatedLayered Double Hydroxides: Oximation of Aromatic Aldehydes with Large Enhancement ofSelectivity [J]. Green Chem.,2011,13:384-389.
    [113] Zhao L-W, Shi H-M, Wang J-Z, He J. Nanosheet-Enhanced Enantioselectivity in theVanadium-Catalyzed Asymmetric Epoxidation of Allylic Alcohols [J]. Chem. Eur. J.,2012,18:9911-9918.
    [114] Zhao L-W, Shi H-M, Wang J-Z, He J. Nanosheet-Enhanced Asymmetric Induction of ChiralAlpha-Amino Acids in Catalytic Aldol Reaction [J]. Chem. Eur. J.,2012,18:15323-15329.
    [115] Wang Q, Luo J, Zhong Z, Borgna A. CO2Capture by Solid Adsorbents and Their Applications:Current Status and New Trends [J]. Energy Environ. Sci.,2011,4:42.
    [116] Wang Q, Tay H H, Zhong Z, Luo J, Borgna A. Synthesis of High-Temperature CO2Adsorbentsfrom Organo-Layered Double Hydroxides with Markedly Improved CO2Capture Capacity [J].Energy Environ. Sci.,2012,5:7526-7530.
    [117] He S, Zhao Y, Wei M, Evans D G, Duan X. Fabrication of Hierarchical Layered DoubleHydroxide Framework on Aluminum Foam as a Structured Adsorbent for Water Treatment [J].Ind. Eng. Chem. Res.,2012,51:285-291.
    [118] Zhao Y, He S, Wei M, Evans D G, Duan X. Hierarchical Films of Layered Double Hydroxidesby Using a Sol-Gel Process and Their High Adaptability in Water Treatment [J]. Chem.Commun.,2010,46:3031-3033.
    [119] Lv L, He J, Wei M, Evans D G, Zhou Z. Treatment of High Fluoride Concentration Water byMgAl-CO3Layered Double Hydroxides: Kinetic and Equilibrium Studies [J]. Water Res.,2007,41:1534-1542.
    [120] Lv L A, He J, Wei M, Evans D G, Duan X. Uptake of Chloride Ion from Aqueous Solution byCalcined Layered Double Hydroxides: Equilibrium and Kinetic Studies [J]. Water Res.,2006,40:735-743.
    [121] Shao M, Ning F, Zhao Y, Zhao J, Wei M, Evans D G, Duan X. Core-Shell Layered DoubleHydroxide Microspheres with Tunable Interior Architecture for Supercapacitors [J]. Chem.Mater.,2012,24:1192-1197.
    [122]段雪,张法智.插层组装与功能材料[M].北京,化学工业出版社,2007.
    [123]段雪,张法智.无机超分子材料的插层组装化学[M].北京,科学出版社,2009.
    [124]孔祥贵.基于水滑石纳米材料构筑新型电化学传感器及其性能研究[D]博士,北京化工大学,北京,2012.
    [125]孙智勇.层状无机超分子材料取向薄膜的组装及性能研究[D]博士,北京化工大学,北京,2012.
    [126] Wong Y, Markham K, Xu Z P, Chen M, Lu G Q, Bartlett P F, Cooper H M. Efficient Deliveryof Sirna to Cortical Neurons Using Layered Double Hydroxide Nanoparticles [J]. Biomater.,2010,31:8770-8779.
    [127] Li S, Li J, Wang C J, Wang Q, Cader M Z, Lu J, Evans D G, Duan X, O'Hare D. CellularUptake and Gene Delivery Using Layered Double Hydroxide Nanoparticles [J]. J. Mater.Chem. B,2013,1:61-68.
    [128] Kong X, Shi S, Han J, Zhu F, Wei M, Duan X. Preparation of Glycy-L-Tyrosine IntercalatedLayered Double Hydroxide Film and Its in Vitro Release Behavior [J]. Chem. Eng. J.,2010,157:598-604.
    [129] Khan A I, Ragavan A, Fong B, Markland C, O'Brien M, Dunbar T G, Williams G R, O'Hare D.Recent Developments in the Use of Layered Double Hydroxides as Host Materials for theStorage and Triggered Release of Functional Anions [J]. Ind. Eng. Chem. Res.,2009,48:10196-10205.
    [130]李蕾.类水滑石材料新制备方法及结构与性能的理论研究[D]博士,北京化工大学,2002.
    [131]段雪,矫庆泽,郭灿雄,李蕾,李峰,何静阴离子层柱结构选择性红外吸收材料及制备方法[P].中国专利, CN1315481,2001-10-03.
    [132]段雪,李蕾,孙鹏一种新型无机-有机复合的选择性紫外阻隔材料及制备方法[P].中国专利, CN1318595,2001-10-24.
    [133] http://www.gzs.buct.edu.cn/hg_html/2/yingyongyanjiuchengguo/2012/1107/156.html.
    [134]段雪,孙鹏,王作新,何静,张保国一种制备硼酸酯型汽车液压制动液的方法[P].中国专利, CN1107506,1995-08-30.
    [135]段雪,史文颖,卫敏,林彦军,吴少鹏,余剑英一种耐老化沥青用镁铝基层状双氢氧化物紫外阻隔材料[P].中国专利, CN102180614A,2011-09-14.
    [136]江磊,段雪,宋家庆,林彦军,卫敏,徐向宇,吕志一种高效催化裂化烟气硫转移剂活性组元的制备方法[P].中国专利, CN101905118A,2010-12-08.
    [1] Gratzel M. Photoelectrochemical Cells [J]. Nature,2001,414:338-344.
    [2] Zhang Z, Long J, Xie X, Lin H, Zhou Y, Yuan R, Dai W, Ding Z, Wang X, Fu X. Probing theElectronic Structure and Photoactivation Process of Nitrogen-Doped TiO2Using DRS, PL, andEPR [J]. Chemphyschem,2012,13:1542-1550.
    [3] Tang Y, Di W, Zhai X, Yang R, Qin W. NIR-Responsive Photocatalytic Activity and Mechanismof NaYF4:Yb,Tm@TiO2Core-Shell Nanoparticles [J]. ACS Catal.,2013,3:405-412.
    [4] Takanabe K, Domen K. Preparation of Inorganic Photocatalytic Materials for Overall WaterSplitting [J]. Chemcatchem,2012,4:1485-1497.
    [5] Liu G, Yang H G, Wang X, Cheng L, Pan J, Lu G Q, Cheng H-M. Visible Light ResponsiveNitrogen Doped Anatase Tio2Sheets with Dominant {001} Facets Derived from Tin [J]. J. Am.Chem. Soc.,2009,131:12868-12869.
    [6] Zong X, Yan H, Wu G, Ma G, Wen F, Wang L, Li C. Enhancement of Photocatalytic H2Evolution on CdS by Loading Mos2as Cocatalyst under Visible Light Irradiation [J]. J. Am.Chem. Soc.,2008,130:7176-7177.
    [7] Li Z, Xie Z, Zhang Y, Wu L, Wang X, Fu X. Wide Band Gap P-Block Metal OxyhydroxideInooh: A New Durable Photocatalyst for Benzene Degradation [J]. J. Phys. Chem. C,2007,111:18348-18352.
    [8] Li Z, Dong T, Zhang Y, Wu L, Li J, Wang X, Fu X. Studies on In(OH)(Y)S-Z Solid Solutions:Syntheses, Characterizations, Electronic Structure, and Visible-Light-Driven PhotocatalyticActivities [J]. J. Phys. Chem. C,2007,111:4727-4733.
    [9] Khodja A A, Sehili T, Pilichowski J F, Boule P. Photocatalytic Degradation of2-Phenylphenolon TiO2and ZnO in Aqueous Suspensions [J]. J. Photochem. Photobiol. A,2001,141:231-239.
    [10] Goto H, Hanada Y, Ohno T, Matsumura M. Quantitative Analysis of Superoxide Ion andHydrogen Peroxide Produced from Molecular Oxygen on Photoirradiated TiO2Particles [J]. J.Catal.,2004,225:223-229.
    [11] Weckhuysen B M, Wachs I E, Schoonheydt R A. Surface Chemistry and Spectroscopy ofChromium in Inorganic Oxides [J]. Chem. Rev.,1996,96:3327-3350.
    [12] Spiccia L, Marty W. The Fate of "Active" Chromium Hydroxide, Cr(OH)3.3H2O, in AqueousSuspension. Study of the Chemical Changes Involved in Its Aging [J]. Inorg. Chem.,1986,25:266-271.
    [13] Yang X F, Cui H Y, Li Y, Qin J L, Zhang R X, Tang H. Fabrication of Ag3PO4-GrapheneComposites with Highly Efficient and Stable Visible Light Photocatalytic Performance [J]. ACSCatal.,2013,3:363-369.
    [14] Maeda K, Sakamoto N, Ikeda T, Ohtsuka H, Xiong A, Lu D, Kanehara M, Teranishi T, DomenK. Preparation of Core-Shell-Structured Nanoparticles (with a Noble-Metal or Metal Oxide Coreand a Chromia Shell) and Their Application in Water Splitting by Means of Visible Light [J].Chem. Eur. J.,2010,16:7750-7759.
    [15]赵芸.层状双金属氢氧化物及氧化物的可控制备和应用研究[D]博士,北京化工大学,2002.
    [16] Segall M D, Lindan P J D, Probert M J, Pickard J, Hasnip P J, Clark S J, Payne M C.First-Principles Simulation: Ideas, Illustrations and the Castep Code [J]. J. Phys. Condens.Matter,2002,14:2717-2744.
    [17] Perdew J P, Burke K, Ernzerhof M. Generalized Gradient Approximation Made Simple [J].Phys. Rev. Lett.,1996,77:3865–3868.
    [18] Vanderbilt D. Soft Self-Consistent Pseudopotentials in a Generalized Eigenvalue Formalism [J].Phys. Rev. B,1990,41:7892-7895.
    [19] Roussel H, Briois V, Elkaim E, de Roy A, Besse J P. Cationic Order and Structure of
    [Zn Cr Cl] and [Cu Cr Cl] Layered Double Hydroxides: A XRD and EXAFS Study [J]. J.Phys. Chem. B,2000,104:5915.
    [20] Garcia-Garcia J M, Perez-Bernal M E, Ruano-Casero R J, Rives V. Chromium andYttrium-Doped Magnesium Aluminum Oxides Prepared from Layered Double Hydroxides [J].Solid State Sci.,2007,9:1115-1125.
    [21] Arana J, Rodriguez Lopez V M, Dona Rodriguez J M, Herrera Melian J A, Perez Pena J. TheEffect of Aliphatic Carboxylic Acids on the Photocatalytic Degradation of P-Nitrophenol [J].Catal. Today,2007,129:185-193.
    [22] Yatmaz H C, Akyol A, Bayramoglu M. Kinetics of the Photocatalytic Decolorization of an AZOReactive Dye in Aqueous Zno Suspensions [J]. Ind. Eng. Chem. Res.,2004,43:6035-6039.
    [23] Huang J, Ding K, Hou Y, Wang X, Fu X. Synthesis and Photocatalytic Activity of Zn2GeO4Nanorods for the Degradation of Organic Pollutants in Water [J]. ChemSusChem,2008,1:1011-1019.
    [24] Farrauto R J, Liu Y, Ruettinger W, Ilinich O, Shore L, Giroux T. Precious Metal CatalystsSupported on Ceramic and Metal Monolithic Structures for the Hydrogen Economy [J]. Catal.Rev.,2007,49:141-196.
    [25] Tong H, Ouyang S, Bi Y, Umezawa N, Oshikiri M, Ye J. Nano-Photocatalytic Materials:Possibilities and Challenges [J]. Adv. Mater.,2012,24:229-251.
    [26] Osterloh F E. Inorganic Nanostructures for Photoelectrochemical and Photocatalytic WaterSplitting [J]. Chem. Soc. Rev.,2013,42:2294-2320.
    [27] Kubacka A, Fernandez-Garcia M, Colon G. Advanced Nanoarchitectures for SolarPhotocatalytic Applications [J]. Chem. Rev.,2012,112:1555-1614.
    [28] Han H, Frei H. In Situ Spectroscopy of Water Oxidation at Ir Oxide Nanocluster Driven byVisible Tiocr Charge-Transfer Chromophore in Mesoporous Silica [J]. J. Phys. Chem. C,2008,112:16156-16159.
    [29] Nakamura R, Frei H. Visible Light-Driven Water Oxidation by Ir Oxide Clusters Coupled toSingle Cr Centers in Mesoporous Silica [J]. J. Am. Chem. Soc.,2006,128:10668-10669.
    [30] Qiu X Q, Miyauchi M, Sunada K, Minoshima M, Liu M, Lu Y, Li D, Shimodaira Y, Hosogi Y,Kuroda Y, Hashimoto K. Hybrid CuxO/TiO2Nanocomposites as Risk-Reduction Materials inIndoor Environments [J]. Acs Nano,2012,6:1609-1618.
    [31] Gomes Silva C, Bouizi Y, Fornes V, Garcia H. Layered Double Hydroxides as Highly EfficientPhotocatalysts for Visible Light Oxygen Generation from Water [J]. J. Am. Chem. Soc.,2009,131:13833-13839.
    [32] Lee Y, Choi J H, Jeon H J, Choi K M, Lee J W, Kang J K. Titanium-Embedded Layered DoubleHydroxides as Highly Efficient Water Oxidation Photocatalysts under Visible Light [J]. EnergyEnviron. Sci.,2011,4:914-920.
    [33] Gunjakar J L, Kim T W, Kim H N, Kim I Y, Hwang S J. Mesoporous Layer-by-Layer OrderedNanohybrids of Layered Double Hydroxide and Layered Metal Oxide: Highly Active VisibleLight Photocatalysts with Improved Chemical Stability [J]. J. Am. Chem. Soc.,2011,133:14998-15007.
    [34] Sideris P J, Nielsen U G, Gan Z, Grey C P. Mg/Al Ordering in Layered Double HydroxidesRevealed by Multinuclear Nmr Spectroscopy [J]. Science,2008,321:113-117.
    [35] Shu X, An Z, Wang L, He J. Metal Oxide-Sensitized TiO2and TiO2-XNxwith Efficient ChargeTransport Conduits [J]. Chem. Commun.,2009:5901-5903.
    [36] Das N, Samal A. Synthesis, Characterisation and Rehydration Behaviour of Titanium(Iv)Containing Hydrotalcite Like Compounds [J]. Microporous Mesoporous Mater.,2004,72:219-225.
    [37] He M, Feng X, Lu X H, Ji X Y, Liu C, Bao N Z, Xie J W. A Controllable Approach for theSynthesis of Titanate Derivatives of Potassium Tetratitanate Fiber [J]. J. Mater. Sci.,2004,39:3745-3750.
    [38] Mavis B, Akinc M. Cyanate Intercalation in Nickel Hydroxide [J]. Chem. Mater.,2006,18:5317-5325.
    [39] Seftel E M, Popovici E, Mertens M, Van Tendeloo G, Cool P, Vansant E F. The Influence of theCationic Ratio on the Incorporation of Ti4+in the Brucite-Like Sheets of Layered DoubleHydroxides [J]. Microporous Mesoporous Mater.,2008,111:12-17.
    [40] Zhou L, Wang W, Xu H, Sun S, Shang M. Bi2O3Hierarchical Nanostructures: ControllableSynthesis, Growth Mechanism, and Their Application in Photocatalysis [J]. Chem. Eur. J.,2009,15:1776-1782.
    [41] Li Q, Guo B, Yu J, Ran J, Zhang B, Yan H, Gong J R. Highly Efficient Visible-Light-DrivenPhotocatalytic Hydrogen Production of CdS-Cluster-Decorated Graphene Nanosheets [J]. J. Am.Chem. Soc.,2011,133:10878-10884.
    [42] Abe R, Higashi M, Sayama K, Abe Y, Sugihara H. Photocatalytic Activity of R3Mo7andR2Ti2O7(R=Y, Gd, La; M=Nb, Ta) for Water Splitting into H2and O2[J]. J. Phys. Chem. B,2006,110:2219-2226.
    [43] Carroll E C, Compton O C, Madsen D, Osterloh F E, Larsen D S. Ultrafast Carrier Dynamics inExfoliated and Functionalized Calcium Niobate Nanosheets in Water and Methanol [J]. J. Phys.Chem. C,2008,112:2394-2403.
    [44] Tamaki Y, Furube A, Murai M, Hara K, Katoh R, Tachiya M. Dynamics of EfficientElectron-Hole Separation in TiO2Nanoparticles Revealed by Femtosecond Transient AbsorptionSpectroscopy under the Weak-Excitation Condition [J]. Phys. Chem. Chem. Phys.,2007,9:1453-1460.
    [45] Furube A, Shiozawa T, Ishikawa A, Wada A, Domen K, Hirose C. Femtosecond TransientAbsorption Spectroscopy on Photocatalysts: K4nb6o17and Ru(Bpy)2+3–Intercalated K4Nb6O17Thin Films [J]. J. Phys. Chem. B,2002,106:3065-3072.
    [46] Li F B, Li X Z. Photocatalytic Properties of Gold/Gold Ion-Modified Titanium Dioxide forWastewater Treatment [J]. Appl. Catal. A-Gen.,2002,228:15-27.
    [47] Chakraverty S, Mitra S, Mandal K, Nambissan P M G, Chattopadhyay S. Positron AnnihilationStudies of Some Anomalous Features of NiFe2O4Nanocrystals Grown in SiO2[J]. Phys. Rev. B,2005,71:024115-024123.
    [48] Kong M, Li Y, Chen X, Tian T, Fang P, Zheng F, Zhao X. Tuning the Relative ConcentrationRatio of Bulk Defects to Surface Defects in TiO2Nanocrystals Leads to High PhotocatalyticEfficiency [J]. J. Am. Chem. Soc.,2011,133:16414-16417.
    [49] Sun W, Li Y, Shi W, Zhao X, Fang P. Formation of AgI/TiO2Nanocomposite Leads to ExcellentThermochromic Reversibility and Photostability [J]. J. Mater. Chem.,2011,21:9263-9270.
    [50] Gago S, Pillinger M, Valente A A, Santos T M, Rocha J, Goncalves I S. Immobilization ofOxomolybdenum Species in a Layered Double Hydroxide Pillared by2,2'-Bipyridine-5,5'-Dicarboxylate Anions [J]. Inorg. Chem.,2004,43:5422-5431.
    [51] Wang D, Jiang H, Zong X, Xu Q, Ma Y, Li G, Li C. Crystal Facet Dependence of WaterOxidation on BiVO4Sheets under Visible Light Irradiation [J]. Chem. Eur. J.,2011,17:1275-1282.
    [52] Guo T, Wang L, Evans D G, Yang W. Synthesis and Photocatalytic Properties of aPolyaniline-Intercalated Layered Protonic Titanate Nanocomposite with a P-N HeterojunctionStructure [J]. J. Phys. Chem. C,2010,114:4765-4772.
    [1] Hou Y, Zuo F, Dagg A, Feng P Y. Visible Light-Driven Alpha-Fe2O3Nanorod/Graphene/BiV1-XMoxO4Core/Shell Heterojunction Array for EfficientPhotoelectrochemical Water Splitting [J]. Nano Lett.,2012,12:6464-6473.
    [2] Batzill M. Fundamental Aspects of Surface Engineering of Transition Metal OxidePhotocatalysts [J]. Energy Environ. Sci.,2011,4:3275-3286.
    [3] Zuo F, Wang L, Wu T, Zhang Z, Borchardt D, Feng P. Self-Doped Ti3+Enhanced Photocatalystfor Hydrogen Production under Visible Light [J]. J. Am. Chem. Soc.,2010,132:11856-11857.
    [4] Lin W Y, Frei H. Photochemical CO2Splitting by Metal-to-Metal Charge-Transfer Excitation inMesoporous ZrCu(I)-MCM-41Silicate Sieve [J]. J. Am. Chem. Soc.,2005,127:1610-1611.
    [5] Sun X, Lin J. Synergetic Effects of Thermal and Photo-Catalysis in Purification of Dye Waterover SrTi1-XMnxO3Solid Solutions [J]. J. Phys. Chem. C,2009,113:4970-4975.
    [6] Hu G, O'Hare D. Unique Layered Double Hydroxide Morphologies Using ReverseMicroemulsion Synthesis [J]. J. Am. Chem. Soc.,2005,127:17808-17813.
    [7] Lee Y, Choi J H, Jeon H J, Choi K M, Lee J W, Kang J K. Titanium-Embedded Layered DoubleHydroxides as Highly Efficient Water Oxidation Photocatalysts under Visible Light [J]. EnergyEnviron. Sci.,2011,4:914-920.
    [8] Gomes Silva C, Bouizi Y, Fornes V, Garcia H. Layered Double Hydroxides as Highly EfficientPhotocatalysts for Visible Light Oxygen Generation from Water [J]. J. Am. Chem. Soc.,2009,131:13833-13839.
    [9] Zhou K, Li Y. Catalysis Based on Nanocrystals with Well-Defined Facets [J]. Angew. Chem. Int.Ed.,2012,51:602-613.
    [10] deLeeuw D M, Simenon M M J, Brown A R, Einerhand R E F. Stability of N-Type DopedConducting Polymers and Consequences for Polymeric Microelectronic Devices [J]. Synth.Met.,1997,87:53-59.
    [11] Tsukamoto D, Shiraishi Y, Sugano Y, Ichikawa S, Tanaka S, Hirai T. Gold NanoparticlesLocated at the Interface of Anatase/Rutile TiO2Particles as Active Plasmonic Photocatalysts forAerobic Oxidation [J]. J. Am. Chem. Soc.,2012,134:6309-6315.
    [12] Xiong L-B, Li J-L, Yang B, Yu Y. Ti3+in the Surface of Titanium Dioxide: Generation,Properties and Photocatalytic Application [J]. J. Nanomater.,2012,2012:1.
    [13] Zhao Y, Chen P, Zhang B, Su D S, Zhang S, Tian L, Lu J, Li Z, Cao X, Wang B, Wei M, EvansD G, Duan X. Highly Dispersed TiO6Units in a Layered Double Hydroxide for Water-Splitting[J]. Chem. Eur. J.,2012,18:11949-11958.
    [14] Bruhwiler D, Frei H. Structure of Ni(II) and Ru(III) Ammine Complexes Grafted ontoMesoporous Silicate Sieve [J]. J. Phys. Chem. B,2003,107:8547-8556.
    [15] Fang F, Zhang J, Zhu J, Chen G, Sun D, He B, Wei Z, Wei S. Nature and Role of Ti Species inthe Hydrogenation of a NaH/Al Mixture [J]. J. Phys. Chem. C,2007,111:3476-3479.
    [16] Huang Z, Gu X, Cao Q, Hu P, Hao J, Li J, Tang X. Catalytically Active Single-Atom SitesFabricated from Silver Particles [J]. Angew. Chem. Int. Ed.,2012,51:4198-4203.
    [17] Aimoz L, Taviot-Gueho C, Churakov S V, Chukalina M, Daehn R, Curti E, Bordet P, Vespa M.Anion and Cation Order in Iodide-Bearing Mg/Zn-Al Layered Double Hydroxides [J]. J. Phys.Chem. C,2012,116:5460-5475.
    [18] Shao M, Han J, Wei M, Evans D G, Duan X. The Synthesis of Hierarchical Zn-Ti LayeredDouble Hydroxide for Efficient Visible-Light Photocatalysis [J]. Chem. Eng. J.,2011,168:519-524.
    [19] Chen C, Gunawan P, Lou X W D, Xu R. Silver Nanoparticles Deposited Layered DoubleHydroxide Nanoporous Coatings with Excellent Antimicrobial Activities [J]. Adv. Funct. Mater.,2012,22:780-788.
    [1] Mandlmeier B, Szeifert J M, Fattakhova-Rohlfing D, Amenitsch H, Bein T. Formation ofInterpenetrating Hierarchical Titania Structures by Confined Synthesis in Inverse Opal [J]. J.Am. Chem. Soc.,2011,133:17274-17282.
    [2] Li Y, Fu Z-Y, Su B-L. Hierarchically Structured Porous Materials for Energy Conversion andStorage [J]. Adv. Funct. Mater.,2012,22:4634-4667.
    [3] Hang Q, Maschmann M R, Fisher T S, Janes D B. Assembties of Carbon Nanotubes andUnencapsulated Sub-10-nm Gold Nanoparticles [J]. Small,2007,3:1266-1271.
    [4] Blin J L, Leonard A, Yuan Z Y, Gigot L, Vantomme A, Cheetham A K, Su B L. HierarchicallyMesoporous/Macroporous Metal Oxides Templated from Polyethylene Oxide SurfactantAssemblies [J]. Angew. Chem. Int. Ed.,2003,42:2872-2875.
    [5] Zampieri A, Mabande G T P, Selvam T, Schwieger W, Rudolph A, Hermann R, Sieber H, GreilP. Biotemplating of Luffa Cylindrica Sponges to Self-Supporting Hierarchical ZeoliteMacrostructures for Bio-Inspired Structured Catalytic Reactors [J]. Materials Science&Engineering C-Biomimetic and Supramolecular Systems,2006,26:130-135.
    [6] Sotiropoulou S, Sierra-Sastre Y, Mark S S, Batt C A. Biotemplated Nanostructured Materials [J].Chem. Mater.,2008,20:821-834.
    [7] Davis S A, Burkett S L, Mendelson N H, Mann S. Bacterial Templating of OrderedMacrostructures in Silica and Silica-Surfactant Mesophases [J]. Nature1997,385:420-423.
    [8] Mann S, Archibald D D, Didymus J M, Douglas T, Heywood B R, Meldrum F C, Reeves N J.Crystallization at Inorganic-Organic Interfaces: Biominerals and Biomimetic Synthesis [J].Science (New York, N.Y.),1993,261:1286-1292.
    [9] Bao Z, Weatherspoon M R, Shian S, Cai Y, Graham P D, Allan S M, Ahmad G, Dickerson M B,Church B C, Kang Z, Abernathy H W, III, Summers C J, Liu M, Sandhage K H. ChemicalReduction of Three-Dimensional Silica Micro-Assemblies into Microporous Silicon Replicas[J]. Nature,2007,446:172-175.
    [10] Weatherspoon M R, Cai Y, Crne M, Srinivasarao M, Sandhage K H.3D Rutile Titania-BasedStructures with Morpho Butterfly Wing Scale Morphologies [J]. Angew. Chem. Int. Ed.,2008,47:7921-7923.
    [11] Kim S-W, Han T H, Kim J, Gwon H, Moon H-S, Kang S-W, Kim S O, Kang K. Fabrication andElectrochemical Characterization of TiO2Three-Dimensional Nanonetwork Based on PeptideAssembly [J]. Acs Nano,2009,3:1085-1090.
    [12] Huang J, Wang X, Wang Z L. Controlled Replication of Butterfly Wings for Achieving TunablePhotonic Properties [J]. Nano Letters,2006,6:2325-2331.
    [13] Shin H C, Corno J A, Gole J L, Liu M L. Porous Silicon Negative Electrodes for RechargeableLithium Batteries [J]. J. Power Sources,2005,139:314-320.
    [14] Kovanda F, Jiratova K. Supported Layered Double Hydroxide-Related Mixed Oxides and TheirApplication in the Total Oxidation of Volatile Organic Compounds [J]. Appl. Clay Sci.,2011,53:305-316.
    [15] Fan G, Sun W, Wang H, Li F. Visible-Light-Induced Heterostructured Zn-Al-in Mixed MetalOxide Nanocomposite Photocatalysts Derived from a Single Precursor [J]. Chem. Eng. J.,2011,174:467-474.
    [16] Parida K M, Mohapatra L. Carbonate Intercalated Zn/Fe Layered Double Hydroxide: A NovelPhotocatalyst for the Enhanced Photo Degradation of AZO Dyes [J]. Chem. Eng. J.,2012,179:131-139.
    [17] Shao M, Wei M, Evans D G, Duan X. Hierarchical Structures Based on Functionalized MagneticCores and Layered Double-Hydroxide Shells: Concept, Controlled Synthesis, and Applications[J]. Chem. Eur. J.,2013,19:4100-4108.
    [18] Zhou Z, Zeng T, Cheng Z, Yuan W. Diffusion-Enhanced Hierarchically Macro-MesoporousCatalyst for Selective Hydrogenation of Pyrolysis Gasoline [J]. AIChE J.,2011,57:2198-2206.
    [19] Schattka J H, Wong E H M, Antonietti M, Caruso R A. Sol-Gel Templating of Membranes toForm Thick, Porous Titania, Titania/Zirconia and Titania/Silica Films [J]. J. Mater. Chem.,2006,16:1414-1420.
    [20] Dunn B, Zink J I. Sol-Gel Chemistry and Materials [J]. Acc. Chem. Res.,2007,40:729-729.
    [21] Pinna N, Niederberger M. Surfactant-Free Nonaqueous Synthesis of Metal OxideNanostructures [J]. Angew. Chem. Int. Ed.,2008,47:5292-5304.
    [22] Qiao Y, Chen H, Lin Y, Yang Z, Cheng X, Huang J. Photoluminescent Lanthanide-Doped SilicaNanotubes: Sol-Gel Transcription from Functional Template [J]. J. Phys. Chem. C,2011,115:7323-7330.
    [23] Lin Y, Qiao Y, Gao C, Tang P, Liu Y, Li Z, Yan Y, Huang J. Tunable One-Dimensional HelicalNanostructures: From Supramolecular Self-Assemblies to Silica Nanomaterials [J]. Chem.Mater.,2010,22:6711-6717.
    [24]陈虹芸.取向复合金属氢氧化物薄膜的构筑及其表面浸润性能研究[D]博士,北京化工大学,2008.
    [25] Tuerk T, Alp I, Deveci H. Adsorption of As(V) from Water Using Mg-Fe-Based Hydrotalcite(FeHT)[J]. J. Hazard. Mater.,2009,171:665-670.
    [26] Fan H, Zhu J, Sun J, Zhang S, Ai S. Ag/AgBr/CoNiNO3Layered Double HydroxideNanocomposites with Highly Adsorptive and Photocatalytic Properties [J]. Chem. Eur. J.,2013,19:2523-2530.
    [27] Guo Y, Zhu Z, Qiu Y, Zhao J. Adsorption of Arsenate on Cu/Mg/Fe/La Layered DoubleHydroxide from Aqueous Solutions [J]. J. Hazard. Mater.,2012,239:279-288.
    [28] Hu J-S, Zhong L-S, Song W-G, Wan L-J. Synthesis of Hierarchically Structured Metal Oxidesand Their Application in Heavy Metal Ion Removal [J]. Adv. Mater.,2008,20:2977-2982.
    [29] Lv L, He J, Wei M, Evans D G, Zhou Z. Treatment of High Fluoride Concentration Water byMgAl-CO3Layered Double Hydroxides: Kinetic and Equilibrium Studies [J]. Water Res.,2007,41:1534-1542.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700