催化裂化烟气硫转移剂的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
根据国家节能减排的要求,各企业已将如何降低硫氧化物(SOx)排放问题提到了重要日程。降低催化裂化烟气中SOx排放的研究工作早在20世纪70年代就已经开始,到目前为止,主要的方法有洗涤法、加氢处理法和添加硫转移剂法。在催化裂化反再系统中添加硫转移剂是最方便、快速、有效和廉价的烟气脱硫方法。关于镁铝尖晶石(Mg-Al-spinel)型硫转移剂的研究已经相对比较成熟;但是,大多数此类硫转移剂都含有钒氧化物,致使硫转移剂的制造和使用都会造成环境污染。为此,研究具有高脱硫活性但不含钒氧化物的硫转移剂具有重要的意义。
     本文首先详细研究了硫转移剂中各种活性组分以及它们之间复配对其脱硫效果和再生能力的影响;考察了制备方法和原料性质对硫转移剂的结构性质和脱硫效果的影响。实验结果表明:稀土的主要作用是提高SO2转化成SO3的速度;铁的主要作用体现在还原阶段;而在含有铁的硫转移剂体系中钒的作用并不明显,证明钒不是一种必不可少的金属。对比酸法、碱法和浸渍法三种制备方法,发现酸法溶胶凝胶法制备的硫转移剂的脱硫效果较好,且制备方法简单,比较适合放大生产。生产过程中原料的加入顺序会对硫转移剂的脱硫效果产生影响,应根据工艺选择合适的加料顺序。硫转移剂的生产中可以选择适量的金属氧化物替代硝酸盐,这既能保持硫转移剂的脱硫效果,又能降低生产过程中氮氧化物(NOx)排放量。高脱硫活性的硫转移剂应该同时具有较多的活性中心和丰富发达的孔道。因此,本文提出并采用扩孔剂来提高硫转移剂的比表面积和孔容,该方法能明显提高硫转移剂的氧化吸硫能力和还原再生性能。
     在硫转移剂组成确定的前提下,利用本实验室的提升管循环流化床装置研究了SO2形成规律以及硫转移剂的还原再生性能。烟气中SO2的浓度与原料中的硫含量和硫的类型紧密相关。原料中的硫含量越高,烟气中SO2浓度越高,但其浓度并不与原料硫含量成线性关系。此外,延长催化剂在反应器中的停留时间,烟气中SO2的浓度降低;而提高反应温度,剂油比,汽提蒸汽量,烟气中的硫含量都先略有增加后降低。但汽提蒸汽和反应温度的影响幅度较小。这些操作条件同样对硫转移剂的脱硫性能存在不同程度的影响,适当降低反应温度,延长催化剂在提升管中的停留时间都有利于提高硫转移剂的再生能力;提高再生器的温度和主风流量,延长在再生器中的停留时间都有利于提高硫转移剂的脱硫率。
     在实验室的提升管循环流化床催化裂化装置上的评价结果表明,制备的不含钒硫转移剂具有较高的脱硫能力和较强的还原再生性能,经过长时间的运转后仍能达到80%以上的脱硫率。在中国石油大港石化公司160万t/a催化裂化装置上进行工业试验,进一步证实使用该硫转移剂可以较大幅度地降低催化裂化再生烟气中SO2的排放。加入量占催化剂藏量的2%以后,烟气中SO2脱除率能达到90%以上。硫转移剂的加入没有对产品分布和产品质量带来不利的影响,没有影响催化裂化装置的正常操作以及后续装置的运转。
     大多数炼厂都使用CO助燃剂,如能将硫转移剂赋予一定的助燃功能,可降低助剂的使用成本。本文在前期研制的硫转移剂中,引入铜,并适当调整铈的用量,制备出了硫转移和CO助燃双功能助剂。增加助剂中铜的含量或铈的含量都有利于提高硫转移剂的助燃活性,但是铜含量过高,硫转移剂的脱硫活性降低较为明显,在硫转移剂中引入2%的铜,其助燃剂活性就高于目前常用的铜铝-铈铝复合氧化物,且具有较高的脱硫稳定性和助燃稳定性。
According to the national requirements of saving energy and reducing emissions, many companys committed to reduce SOx emission. The study on reducing SOx emission for FCC flue gas has already begun in the early 1970s. So far, general methods include washing, hydrotreating and adding sulfur transfer additive. Adding sulfur transfer additive to the reactor and regenerator system of FCCU is the fastest, cheapest, most convenient and effective method for flue gas desulphurization. Comparatively, the study on magnesium aluminum spinel-based sulfur transfer additive is more mature. However, most of these additives contain vanadium oxide, which causes new pollution in the process of production and utilization. Therefore, developing the sulfur transfer additive without vanadium is very important.
     The role of different active components in the sulfur transfer additive on SO2 removal and regeneration performances were discussed in this paper. Moreover, the effect of preparation methods and raw material properties were investigated. The results showed that rare earth may increase the rate of SO2 converting to SO3, and iron may accelerate the reducing rate of sulfur transfer additive. The fact that the vanadium oxide in sulfur transfer additive system with iron does not play important role was verified by experiments. Comparing alkali method, acid method with impregnation method, it was found that the sulfur transfer additive prepared by gel with acid exhibited better desulfurization performance, and possessed the characterization of simple preparation and suitability to produce in large scale. The sequence of adding raw materials during the production of sulfur transfer additives affected SO2 removal performance, so proper sequence should be chosen. Using metal oxide instead of nitrate may reduce NOx emissions and keep high SO2 removal. Sulfur transfer additives need both abundant active sites and pores. The method, which increasing the BET specific surface area and pore volume by using pore-expanding agents, was devised and adopted in this paper. This method could obviously increase oxidizability and reducibility of the sulfur transfer additives.
     The affecting factors of SO2 formation in FCC reaction-regeneration systems and the reducibility of sulfur transfer additives were investigated in the riser circulating fluidized bed units. The SO2 concentration in flue gas related to sulfur content and raw materials closely. It increases with sulfur content of raw materials non-linearly. In addition, the concentration of SO2 decreases with the prolonging of residence time; and it increases first and then decreases with the increasing reaction temperature, catalyst/oil ratio and stripping steam content. But reaction temperature and stripping steam do not affect it much. These operating conditions also affect the performance of sulfur transfer additives in various extents. The regeneration performance of sulfur transfer additives increased with increasing reaction temperature and prolonging residence time in the riser. The SO2 removal performance rises with the increase in regeneration temperature, quantity of regeneration air and the extention of residence time in the regenerator.
     The sulfer transfer additive was evaluated in the riser circulating fluidized bed unit. The results confirmed that the additives without vanadium oxide show excellent SO2 removal and regeneration performances. The rate of SO2 removal is more than 80% during the long running process. The commercial test of the sulfur transfer additive was carried out in a 1.6 million t/a FCCU in Dagang Petrochemical Company, PetroChina Corporation. The results also confirmed that the additive may remove most of SO2 in the FCCU flue gas. Adding 2% additive, more than 90% SO2 was removed. Moreover, adding the additive did not affect the distribution and quality of the products, and the operation of the unit.
     If sulfur transfer additives can promote the combustion of CO, the cost of using additives may be reduced because it is unnecessary to use CO combustion-promoting additives alone. Through introducing Cu and adjusting the amount of Ce in the sulfur transfer additives, a bifunctional additive combining SO2 removal and CO combustion was prepared. The combustion-promoting performance of the bifunctional additives improves with the content of Cu or Ce. However, the SO2 removal performance drops obviously when excessive Cu was loaded. The additive with 2% CuO has ideal SO2 removal performance and the similar combustion-promoting performance as that of copper-cerium aluminium composite oxides.
引文
[1]杨本宏.我国酸雨危害现状及防治对策[J].合肥联合大学学报,2000,10(2):102-106
    [2] Bhattacharyya J A,Woltermann G M,Yoo J S,et al.Catalytic SOx abatement:The role of magnesium aluminate spinel in the removal of SOx from fluid catalytic cracking (FCC) flue gas [J].Ind Eng Chem Res,1988,27 (8):1356-1360
    [3]杨德凤.从催化裂化烟气分析结果探讨再生设备的腐蚀开裂[J].石油炼制与化工, 2000,32(3):49-53
    [4]陈良,施力.FCC硫转移复合助剂的研究[J].燃料化报,2005,33(1):83-88
    [5]杨秀霞,董家谋.控制催化裂化装置烟气中硫化物排放的技术[J].石化技术,2001,8 (2):126-130
    [6]王一男.烟气脱硫技术在催化裂化中的应用[J].化工时刊,2005,19(12):38-40
    [7] Weaver E H,Eagleson S T.FCCU particulate emissions control for the refinery mactⅡstandard-system design for the 21stcentury[C].NPRA,AM-99-18
    [8]刘忠林,林大泉.催化裂化装置排放的二氧化硫问题及对策[J].石油炼制与化工,1999,30(3):44-48
    [9] Gilman K R,Vincent H B,Walker H F.The cost of controlling air emissions generated by FCCU’s[C].NPRA,AM-98-15
    [10]严万洪,张志刚,陈秀梅.催化裂化烟气脱硫技术的研究进展[J].科技资讯,2008,(7):244-245
    [11] William B D,Bandel G.Integrated environmental solution for FCCU SO2 -SO3-PM2.5 emissions[C].NPRA,AM-05-65
    [12]刘鸿元.THIOPAQ生物脱硫技术[J].中氮肥,2002(5):53-57
    [13]徐明.烟气二氧化硫污染控制技术发展及现状[J].安徽师范大学学报(自然科学版),2001,24 (2):187-189
    [14]柯晓明.控制催化裂化再生烟气中SOx排放的技术[J].炼油设计,1999,29(8):50-54
    [15]张海燕,许星.国外烟气脱硫技术的发展与我国的现状[J].有色金属设计,2003,30(1):38-42
    [16]刘峰,陈庆岭.FCC再生烟气脱硫脱氮技术进展[J].化工中间体,2009(8):24-30
    [17] Bertolacini R J,Lehmann G..Catalytic cracking with reduced emission of sulfur oxides[P].US3835031,1974-09-10
    [18]刘奎.炼油厂SO2排放控制[J].炼油技术与工程,2007,37(9):54-58
    [19]齐文义,丁全福,郝代军.催化裂化再生烟气中污染物助剂的研究进展[J].炼油技术与工程,2008,38(6):53-56
    [20]朱仁发,谭乐成,王金安,等.调变组分对流化催化裂化助剂脱硫性能的影响[J].华东理工大学学报,2000,26(2):149-153
    [21]李林波,许金山,梁颖杰,等.催化裂化烟气硫转移剂的研究进展[J].齐鲁石油化工,2003,31(3):237-239
    [22]朱仁发,李承烈.FCC再生烟气的脱硫助剂研究进展[J].化工进展,2000,(3):22-29
    [23] Bertolacini R J,Hirschberg E H,Modica F S.Process for removing sulfur oxides from a gas[P].US4381991,1983-05-03
    [24] Yoo J S , Jaecker J A . Process for combusting solid sulfur containing material[P].US4957892,1990-09-18
    [25] Kim G.Metal passivation/SOx control compositions for FCC[P].US5407878,1995-04-18
    [26] Lowell P S,Schwitzgebel K.Selection of metal oxide for removing SO2 from flue gas[J].Ind & Eng Chem Process Des &Develop,1971,10(3):384-390
    [27] Gladrow E M , Schuette W L , Reid A . Sulfur transfer process in catalytic cracking[P].US4240899,1980-12-23
    [28] Blanton W A,Flanders R L.Process for controlling sulfur oxides using an alumina impregnated catalyst[P].US4332672,1982-06-01
    [29]罗珍.减少催化裂化SOx排放的硫转移助剂[J].炼油设计,2000(11):60-62
    [30] Lewis P H,DAI E P,Holst E H.Control of SOx emission[P].US4626419,1986-12-02
    [31] Yoo J S,Radlowski C A,Karch J A,et al.Metal-containing spinel composition and process of using same[P].US4790982,1988-12-13
    [32] Bhattacharyya A,Cormier J W,Woltermann G M.Alkaline earth metal spinels and processes for making[P]. US4728635,1988-03-01
    [33] Radford H D,D’souza G J.Removal of carbon monoxide and sulfur oxides from refinery flue gases[P].US4146463,1979-03-27
    [34] Blanton W A,Flanders R L.Process for removing sulphur from a gas[P].US4071436,1976-3-11
    [35] Annesser R J,Balogh S A.Catalytic cracking[P].US3699037,1970-10-28
    [36] Flanders R L,Blanton W A.Method for removing pollutants from catalyst regenerator flue gas[P].US4115250,1978-9-19
    [37] Flanders R L,Blanton W A.Process for removing pollutants from catalyst regenerator flue gas[P].US4115251,1978-9-19
    [38] Blanton W A.Sulfur oxides control in cracking catalyst[P].US 4243556,1978-12-4
    [39] Vasalos I A.Catalytic cracking with reduced emission of noxious gases[P].US 4153534,1976-5-8
    [40] Vasalos I A,Ford W D.Catalytic cracking with reduced emission of noxious gases[P].US4153535,1976-12-8
    [41] Harry S G.Catalyst and method of preparing same[P].US3930987,1974-5-30
    [42] Longo J M.Process for the desulfurization of Flue gas[P].US4001375,1974-8-21
    [43] Vasilios D D,Iacovos A V.Evaluation and kinetics of commercially available additives for SOx control in fluid catalytic cracking units [J].Ind. Eng. Chem. Res,1992,31(12):2741-2748
    [44] Yoo J S,Karch J A,Poss R F,et al.Alkaline earth metal,aluminum-containing spinel compositions and methods of using sam[P].WO8606090,1985-4-18
    [45] Yoo J S,Jaecker J A.Catalyst and process for conversion of hydrocarbons [P].US4469589,1984-9-4
    [46] Yoo J S , Jaecker J A . Catalyst and process for conversion of hydrocarbons[P].US4472267,1984-09-18
    [47] Joseph P D,Prashanth R K,Harvey G S,et al.Oxidation of sulfur dioxide to sulfur trioxide over supported vanadia catalysts [J].Applied Catalysis B,1998,19(2):103-117
    [48] Bhattacharyya A,Foral M J,Reagan W J.Absorbent and process for removing sulfur oxides from a gaseous mixture [P].US5426083,1995-06-20
    [49] Corma A,Palamares A E,Rey F.Optimization of SOx additives of FCC catalysts bases on MgO/Al2O3 mixed oxides produced from hydrotalcites [J].Appl Catal B,1994,4(1):29-43
    [50] Krishna S,Hsieh C R,English A R,et al.Additives improve FCC process [J].Hydrocarbon Process,1991,70(11):59-65
    [51] Bhattacharyya A,Cormier W E,Woltermann G M.Alkaline earth metal spinels and processes for making [P].US 4728637,1988-03-01
    [52] Kim G.SOx control compositions [P].US5288675,1994-02-22
    [53]程文萍,梁学正,杨建国等.FCC硫转移剂MgAlCuFe复合氧化物的结构与性能:Fe和Cu含量的影响[J].催化学报,2009,30(1):31-36
    [54] van Broekhoven E H.Catalyst composition and absorbent which contain an anionic clay [P].EP0278535,1988-08-17
    [55] van Broekhoven E H.Catalyst composition and absorbent which contain an anionic clay [P].US4866091,1989-9-12
    [56] Salerno Polato C M,Henriques C A,Neto A A,et al.Synthesis,Characterization and Evaluation of CeO2/Mg,Al-mixed Oxides as Catalysts for SOx Removal[J].Journal of Molecular Catalysis A:Chemical,2005,241: 184-193
    [57]朱仁发,李承烈.流化催化裂化脱硫添加剂的研究进展[J].化工科技,2000,8(1): 50-55
    [58] Vierheilig A A.Compounds,compositions and methods to reduce SOx emissions from fcc units [P].US20030203806,2003-10-30
    [59] Vierheilig A A . Process for making , and use of anionic clay materials[P].US2003096697,2003-5-22
    [60] Pinnavain T J,Amarasekera J,Polansky C A.Layered double hydroxide sorbents for the removal of SOx from flue gas and other gas streams[P].US5114898,1992-5-19
    [61]刘忠生,方向晨,戴文军.炼油厂SOx和NOx排放及其控制技术[J].抚顺烃加工技术2005,(2):1-9
    [62]钱伯章.催化裂化硫转移助剂发展现状[J].天然气与石油,2003:66
    [63]杨一青,庞新梅,刘从华,等.催化裂化烟气硫转移助剂的研究进展[J].炼油与化工,2008,19(3):1-5
    [64]梁颖杰,李林波,周忠国,等.催化裂化烟气硫转移剂的开发与应用[J].石化技术与应用,2003,21(2):140-143
    [65]李林波,周忠国,许金山,等.多功能催化裂化烟气硫转移剂的工业应用[J].石油炼制与化工,2001,32(5):13-16
    [66]陈德胜,侯典国.催化裂化烟气SOx转移助剂的工业应用[J].石油炼制与化工,2003,34 (4):43-47
    [67]王斌,王涛.催化裂化再生烟气SOx转移剂RFS的开发[J].石油炼制与化工,2002,33(6):37-40
    [68]朱仁发,戴亚,李承烈.脱硫助剂氧化吸硫原位还原研究[J].安徽师范大学学报(自然版),1999,22(4):342-344
    [69] Wang Jin-an,Zhu Ze-lin,Li Cheng-lie.Pathway of the cycle between the oxidative adsorption of so2 and the reductive decomposition of sulfate on the mgal2-xfexo4 catalyst[J].Journal of Molecular Catalysis A:Chemical,1999,139(1):31–41
    [70]肖莉,边建东,王昕,等.流化催化裂化烟气脱硫助剂的制备及其脱硫活性[J].化工环保,2006,26(6):514-517
    [71]陈清,沈本贤,凌昊.改性USY型FCC催化剂对硫转移性能的影响[J].华东理工大学学报,2004,30(6):623-624
    [72]齐文义,王龙延,郭海卿,等.LST-1液体硫转移助剂的研究[J].炼油设计,2000,30(9):5-8
    [73]杜泉盛,刘忠杰.利用助剂法降低催化裂化再生烟气SOx排放[J].石油化工环境保护,2001,(4):40-45
    [74]姚志强,武迎建.LT-8硫转移剂在II套催化裂化装置的工业应用[J].江西石油化工,2002,14(1):9-14
    [75]冯明,杨彬.HL-9硫转移剂的工业应用[J].齐鲁石油化工,2002,30(1):16-18
    [76] Alexeev O S,Krishnamoorthy S,Ziebarth M S,et al.Characterization of pd-based Fcc Co/NOx control additives by in situ FTIR and extended x-ray absorption fine structure spectroscopies[J].Catalysis Today,2007,127(1-4):176-188
    [77] Iliopoulou E F,Efthimiadis E A,Vasalos I A,et al.Effect of Rh-based additives on NO and CO formed during regeneration of spent FCC catalyst[J].Applied Catalysis B:Environmental,2004,47(3):165-175
    [78] Iliopoulou E F,Efthimiadis E A,Vasalos I A,et al.Ir-based additives for NO reduction and CO oxidation in the FCC regenerator:evaluation,characterization and mechanistic studies[J].Applied Catalysis B: Environmental,2005,60(3-4):277-288
    [79] Komvokis V G.,Iliopoulou E F,Vasalos I A,et al.Development of optimized cu–zsm-5 denox catalytic materials both for HC-SCR applications and as FCC catalytic additives[J].Applied Catalysis A:General,2007,325(2):345-352
    [80]田荣娟,鲁占全,赵思韬.富氧条件下NOx的选择性催化还原技术进展[J].河北工业科技,2007,24(4):247-250
    [81] Harriott P,Markussen J M.Kinetics of sorbent regeneration in the copper oxide process for flue gas cleanup[J].Ind Eng Chem Res,1992,31(1):373-379
    [82] Deng S G.,Lin Y S.Synthesis,stability,and sulfation properties of sol-gel-derived regenerative sorbents for flue gas desulfurization[J].Ind Eng Chem Res,1996,35(4):1429-1437.
    [83]刘钰,杨向光,张忠良,等.以水滑石为前体的Mg-Al-M复合氧化物对催化消除NOx的活性[J].催化学报,1999,20(4):450-454
    [84] Corma A.,Palomares A E,Rey F,et al.Simultaneous catalytic removal of SOx and NOx with hydrotalcite-derived mixed oxides containing copper,and their possibilities to Be Used in FCC units[J].Journal of Catalysis,1997,170(1):140-149
    [85] Palomares A E,Lo?pez-Nieto J M,La?zaroc F J,et al.Reactivity in the removal of SO2 and NOx on Co/Mg/Al mixed oxides derived from hydrotalcites[J].Applied Catalysis B: Environmental,1999,20(4):257-266
    [86] Wen B,He M Y,Costello C.Simultaneous catalytic removal of NOx,SOx,and CO from FCC regenerator[J].Energy & Fuels,2002,16(5):1048-1053
    [87] Centi G,Passarini N,Perathoner S,et al.Combined De-SOx/De- NOx reactions on a copper on alumina sorbent catalyst 1.Mechanism of SO2 oxidation adsorption [J].Ind & Eng Chem Res,1992,31(8):1947-1955
    [88]陈志,段东升,徐文长.催化裂化烟气转硫脱氮和助燃三功能催化剂FP-DSN的工业应用[J].炼油设计,2002,32(11):7-10
    [89]山红红.两段提升管催化裂化(TSRFCC)技术应用基础研究[D],石油大学,山东东营:2004
    [90] Zuhtu B,Aksahin U I.Sorption of SO2 on metal oxides in a fluidized bed[J].Ind Eng Chem Res,1988,27(3):434-439
    [91] Miguel A,Merino A.Adsorption of SO2 from flowing air by alkaline oxide containing activated carbons[J].Applied Catalysis Environmental,1997,13:229-240
    [92] Wang Z M,Lin Y S.Sol-gel-Derived alumina suplmrted copper oxide sorbent for flue gas desulfurization[J].Ind Eng Chem Res,1998,37(12):4675-4681
    [93]叶大伦编.实用无机物热力学数据手册[M].北京:冶金工业出版社.1981
    [94]汪涛,梁斌.新型Ca-Fe2O3/γ-Al2O3脱硫剂实验研究[J].天然气化工,2002,27(2):4-15
    [95] Wang J A,Li C L.SO2 adsorption and thermal stability and reducibility of sulfates formed on the magnesium–aluminate spinel sulfur-transfer catalyst[J].Applied Surface Science,2000,161(3-4):406–416
    [96] Wang J A,Chen L F,Ballesteros R L,et al.Evaluation of crystalline structure and SO2 storage capacity of a series of composition-sensitive De-SO2 catalysts[J].Journal of Molecular Catalysis A:Chemical,2003,194(1-2):181–193
    [97] Yoo J S,Bhattacharyya A A,Radlowski C A.De-SOx Catalyst: The Role of iron in iron mixed solid solution spinels,MgO·MgA12-x·FexO4[J].Ind Eng Chem Res,1992,31(5):1252-1258
    [98]陈银飞,刘华彦.MgFe氧化物催化氧化吸附SO2的研究[J].宁夏大学学报(自然科学版),2001,22(2):178-180
    [99]严加松,龙军,田辉平.拟薄水铝石胶溶性能的研究[J].石油炼制与化工.2004,35(9):38-41
    [100]陈良.催化裂化过程脱硫复合助剂的研制[D].华东理工大学,硕士学位论文:2005
    [101] Magnabosco L M , Demmel E J . Synthetic spinels&processes for making them[P].US5108979,1992-4-28
    [102]熊飞,王达健,蒙延双,等.拟薄水铝石胶溶过程参数及胶团结构[J].材料与冶金学报,2004,3(3):236-240
    [103]柳云骐,宁鸿霞.催化裂化催化剂的铁污染及铁离子来源探讨[J].石油化工腐蚀与防护,1997,14(1):44-47
    [104]陈俊武.催化裂化工艺与工程[M].北京:中国石化出版社,2005,1262-1263
    [105]叶天旭,潘惠芳.FCC催化剂上镍钒的污染及其钝化机理[J].石化技术,1999 ,6 (4):226-228
    [106]伍小驹,张烈清,杨应强,等.碳酸稀土在裂化催化剂中的抗钒作用[J].稀土,2001,22(6):10-12
    [107]刘秀梅,韩秀文,包信和,等.稀土在催化裂化催化剂中的抗钒作用Ⅱ.稀土的抗钒机理[J].石油学报(石油加工),1999,15(4):39-45
    [108]李晓,谭乐成,李承烈.镁铝尖晶石作为催化裂化双功能助剂的研究[J].石油学报(石油加工),2001,17(3):57-61
    [109]胡廷芳,王海彦,陈金鹏,等.扩孔剂对β沸石催化剂FCC轻汽油醚化性能的影响[J].工业催化,2005,13(6):6-9
    [110]李凝,王强,王鹏.Al2O3扩孔条件的优化及材料性能[J].桂林工学院学报,2008,28(1):78-81
    [111]丁春华,傅吉全.添加扩孔剂对β沸石催化剂性能的影响[J].北京服装学院学报(自然科学版),2002,22(2):25-28
    [112]张长青.RFCC操作条件对硫化物生成和分布的影响[J].催化裂化,1997,l6(6):13-18
    [113]杜峰,张建芳,杨朝合.催化裂化过程中反应温度对硫转化规律的影响[J].石油与天然气化工,2006,35(4):280-282
    [114]陈俊武.催化裂化工艺与工程[M].中国石化出版社,1995,318-834
    [115]魏强,张长青,黄福样.渣油催化裂化过程中硫及其分布的影响和对策[J].炼油设计,1997,27(5):16-20
    [116]陈俊武.催化裂化工艺与工程[M].中国石化出版社,2005,1263-1264
    [117]刘有成,李小伟,刘振义,等.催化裂化硫转移剂FP-DS的开发与工业应用[J] .石油炼制与化工,2003,34(7):16-19
    [118]钱伯章.炼油化工催化技术新进展(下) [J].中国石油和化工,2004,(6):41-47
    [119]崔秋凯,冉晓丽,许孝玲,等.FCC镁铝尖晶石硫转移剂的脱硫效果及稳定性研究[J] .石化技术与应用,2008,28(6):426-430
    [120]李琬,王道.稀土钙钛矿型催化剂与Hopcalit[J].环境化学,1985,4 (2):17
    [121] Yang B L,Chan S F,Chang W S,et al.Surface enrichment in mixed oxides of Cu,Co,and Mn,and its effect on CO oxidation[J]. Journal of catalysis,1991,130(1):52-61
    [122]卢冠忠,汪仁.氧化铈在非贵金属氧化物催化剂中的作用:I.铜和铈负载型氧化物中的氧的性能[J].催化学报,1991,12 (4) :83-91
    [123]李国祥,阳霞,丁玲.非贵金属复合氧化物CO助燃剂及其研究进展[J].天津化工,2004,18(6):15-18
    [124]崔连起,王开林,张家庆,等.钙钛矿结构的金属氧化物CO助燃剂[J].石油炼制与化工,2001,32(7):29-32
    [125]崔连起,李琬,张岱山,等.CO助燃剂及其制备方法[P].CN96104701.1,1997-10-22
    [126]靳广洲,殷慧玲.氧化铈对负载型氧化铜催化剂的助催化作用[J].石油大学学报(自然科学版),1997,21(2):20-24
    [127]杜芳林,崔作林,张志琨.CO催化氧化研究进展[J].青岛化工学院学报,1999,20(1):29-36
    [128] Jones H A,Taylor H S.The reduction of copper oxide by carbon monoxide and the catalytic oxidation of carbon monoxide in the presence of copper and copper oxide[J].J Phys Chem,1923,27:623-651
    [129] Ynen C N,Weisz P B.Novel cyclic catalytic process for the conversion of hydrocarbons[P].US3364136,1968-01-16
    [130] Prigent M,Blanchard G.Catalyst supports/catalysts for the treatment of vehicular exhaust gases[P].US4985387,1991-01-15

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700