镁铝尖晶石催化剂载体的制备与表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镁铝尖晶石具有很高的热稳定性,不易烧结,高的机械强度和硬度,良好的耐蚀性、耐磨性,低的热膨胀系数,同时具有碱性和酸性两种活性中心这一独特的表面性质,在化学反应中广泛地用作催化剂和催化剂载体。目前制备的以镁铝尖晶石为载体的催化剂,在工业应用过程中,存在稳定性较差,易失活等缺点,主要因为制备载体的骨架结构晶态不完整,载体粒子尺寸较大或焙烧不完全,导致催化剂比表面积和孔容变小。本文旨在采用醇盐水解结合水热法制备具有完整晶态骨架,一定形貌和比表面积的催化剂载体材料,有利于镁铝尖晶石催化剂载体性能的提高及工业化应用。
     本文采用镁片和铝片合成镁铝双金属醇盐,水解制备均匀溶胶,然后采用水热法制得了特殊形貌和孔结构的镁铝尖晶石催化剂载体。用TG-DTA、SEM、TEM、XRD、N2吸附-脱附对制备样品进行了表征,考察合成过程中水热反应温度、水热反应时间、加水量、表面活性剂CTAB及加量、矿化剂、焙烧温度等条件对合成产物的骨架结构,组织形貌以及比表面积孔结构等性能的影响。
     实验结果表明:镁铝双金属醇盐室温水解产物是镁铝羟基化合物,主要是MgAl2(OH)8组成,经过水热反应后得到的主要是γ-AlOOH和镁铝羟基复合物,随着水热反应温度和反应时间的改变,制备的前驱物的相组成没有改变,只是衍射峰强度发生稍微改变;制备载体颗粒表面的片状结构不断长大,比表面积不断地减少。随着加水量的增加,制备的镁铝尖晶石由片状不断地长成块状结构,且比表面积大幅度下降。
     经过水热反应后的镁铝尖晶石载体颗粒表面具有片状结构,且孔道结构呈蠕虫状,具有较大的比表面积,焙烧后,颗粒形貌并没有改变。通过添加表面活性剂CTAB及改变其含量,得到了颗粒表面片层结构排列更规则,孔道结构更规整、更紧密,比表面积增大,适量的表面活性剂能够明显改善镁铝尖晶石载体材料的比表面积和孔结构特征,而过量的表面活性剂对制备的镁铝尖晶石有不利影响。
     焙烧温度对镁铝尖晶石骨架结构的影响最为明显,醇盐水解产物水热反应后在450℃就有尖晶石相的生成,600℃就得到了完整晶态骨架结构,随着温度的提高,样品的衍射峰强度不断增加,晶粒尺寸长大,比表面积不断降低。
Magnesium aluminate spinel (MgAl2O4) is one of the end-members of the spinel group minerals, which shows a unique combination of properties like high thermal stablity, high mechanical strength and hardness, high chemical inertness against both acidic and basic slag, abrasion resistance, low thermal expansion coefficient. Meanwhile, owing to its good catalytic activity and two active centers as acid and alkaline, MgAl2O4 spinel has been widely used as catalysts or catalyst support in chemical reactions. Nowadays MgAl2O4 spinel catalyst supports present the bad stability and easily lose its activity and so on in industrial application process. The main reason is that skeleton crystalline state of as-synthesized MgAl2O4 spinel is imperfect, particle size of supports is larger or imperfect calcination, which leads to diminishing specific surface area and pore volume of catalyst support. The paper’s purpose is that hydration of alkoxide combines hydrothermal methed to prepare the MgAl2O4 catalyst support of perfect skeleton crystalline state, special surface topography and larger specific surface area, with a view to improve the performance of MgAl2O4 catalyst support and in favor of industrial application.
     The stoichiometric magnesium sheet and aluminum sheet were used as reagents to synthesize the Mgnesium-Aluminum double metal alkoxide. The synthesized alkoxide was hydrolyzed with deionized water under stirring, until generating the homogeneous sol. The hydrolyzate was added into high-pressure autoclave with magnetic stirrer for hydrothermal synthesis, dried and calcined. At last the products of special topography and pore structure were gained. The powders as-sythesized were characterized by TGA-DTA、SEM、TEM、XRD、and N2 adsorption-desorption isotherms to study the effect of different synthesis conditions on the properties of MgAl2O4 spinel or precursor, including hydrothermal temperature、hydrothermal duration、additive water content、surfactant CTAB and additive content、mineralizer and calination temperature, and so on.
     The results indicated that hydrolysate of Mgnesium-Aluminum double metal alkoxide was Mgnesium-Aluminum hydroxide compounds, mainly including MgAl2(OH)8, and the precursor was mainly composed of AlOOH and Mgnesium-Aluminum hydroxide compounds by hydrothermal reaction. With the increment of hydrothermal temperature and extension of hydrothermal duration, the phase composition of the precursor as-synthesized were not changed, just only intensity of diffraction peak had a little bit of increment, and relative content of both changed a little; the sheet of powder surface grew larger, and its specific surface area diminished gradually. MgAl2O4 spinel grew into blocky structure from sheet structure gradually and had lower specific surface area with the increment of adding water.
     The results indicated that MgAl2O4 spinel powders particle surface by hydrothermal method was made up of sheet structure. And it had wormlike pore structures and large specific surface area in a structure, which is a relic of the morphology even after calcination. By adding right amount of surfactant CTAB, the sheet structure of particle surface grew regularly, its pore structure was more regular and compacter, and had larger specific surface area, while the excess of surfactant CTAB had adverse effect.
     The effect of calcination temperature on MgAl2O4 spinel skeleton structure was the most significant. The spinel phase began to be formed at 450℃by hydrothermal reaction with alkoxide hydrolysate. And the perfect crystalline state skeleton structure was formed at 600℃. With the increment of calcination temperature, the diffraction peak intensity of samples increased gradually, the crystalline grain grew bigger and its specific surface area diminished gradually.
引文
[1]赵骧.催化剂[M].北京:中国物质出版社.2001:1-4
    [2]汪灵.矿物材料的概念与本质[J].矿物岩石.2006,26(2)
    [3]潘屡让.固体催化剂在设计与制备[M].南开大学出版社.1993:54-57
    [4] Arai H.M.Machida in:Thermal stabilization of catalyst supports and their application to hightemperature catalytic combustion, Appl. Catal.A 138 (1996) 161 [5] Dean J.A. Lange’s Handbook of Chemistry[M].New York:McGraw-Hill Book Company,1972
    [6] E.Ryshkewitch.Oxide ceramics[M].Academic Press.New York:1960,pp:257-274
    [7]赵九生,时其昌,马福善,等.催化剂生产原理[M].北京:科学出版社,1986.287-288.
    [8]隋生.BASF K8-11催化剂一氧化碳变换反应动力学研究[J].沈阳化工学院学报.1995,9(4):241-243
    [9]施小红,梁峰.耐硫变换催化剂的性能及工业应用[J].气体净化.2004,4(2):21-24
    [10]刘伟华,张同来,吴萍,等.耐硫变换催化剂的性能及工业应用.气体净化,2004,4(2):21-24
    [11]毛鹏生,张新堂,纵秋云,等.新型CO耐硫变换催化剂的工业应用[J].工业技术.1999 (12):827-832
    [12]李袖章,梅立伟,纵秋云.QDB-04型CO耐硫变换催化剂的硫化总结.氮肥技术,2008,29(6):42-44
    [13]吴昌祥.QDB-04型耐硫变换催化剂在哈尔滨气化厂的应用.工业催化,2006,14(12):25-27
    [14]连奕新,王会芳,陈汉宗,等.XH-1型无钾耐硫变换催化剂的试生产与工业侧线试验[J].现在化工.2007.2,27(2):49-52
    [15]范立明,陈杰,李军,等.RSM型耐硫CO变换催化剂性能评价[J].化学工程.2008.4,36(4):45-48
    [16]朱洪法.催化剂载体[M].北京:化学工业出版社,1980:301.
    [17]向德辉,翁玉攀,李庆水,等.固体催化剂[M].北京:化学工业出版社.1983:48-49.
    [18]张彤.低温变换催化剂硫化过程中的几个问题[J].化工设计通.1995,21(3):18-22.
    [19] Busca G,Lorenzelli V,Escribano V S,etal.Catal.1991,131:167-177
    [20] Murthy I A P S,Swamy C S.Catalytic decomposition of 2-propanol on Co1+xAl2?xO4 spinel system[J]. Catal Lett.1994,27:103-112
    [21] Murthy I A P S,Swamy C S.Catalytic behaviour of NiAl2O4 spinel upon hydrogen treatment[J]. Catal Mater.Sci.1993,28:1194-1198
    [22]刘希尧,王淑菊,郭俐聪.氧化铝基表层镁铝尖晶石的研究[J].催化学报.1994,15(1):1
    [23] Qiu Yejun,Chen Jixiang,Zhang Jiyan. Effects of MgO promoter on properties of Ni/Al2O3 catalysts for partial oxidation of methane to syngas[J].Frontiers of Chemical Engineering in China.2007,1(2) :167-171
    [24] Lercher J A, Colombier Ch, Vinek H,etal.Catalysis by Acids and Bases[C].Amsterdam.The Netherlands:Else2
    [25] K.P.Surendran,P.V. Bijumon,P. Mohanan,etal.(1-x)MgAl2O4-xTiO2 dielectrics for microwave and millimeter wave applications.Applied Physics A,Materials Science and Processing.2005,81(4):823-826
    [26]王修慧,王程民,司伟,等.镁铝尖晶石粉体的性能、制备与应用趋势[J].粉末冶金技术.2009, 27(3) :222
    [27] Sonia A.Bocanegra,Adriana D.Ballarini,Osvaldo A.Scelza,etal. The influence of the synthesis routes of MgAl2O4 on its properties and behavioras support of dehydrogenation catalysts [J].Materials Chemistry and Physics.2008,111:534–541
    [28]马亚鲁.化学共沉淀法制备镁铝尖晶石粉末的研究[J].无机盐工业.1998,30(1):3-4
    [29] C . Pacurariu , I . Lazau , Z . Ecsedi , etal . New synthesis nethods of MgAl2O4 Spinel [J].J.Europ.Ceram.Soc,2007,27:707-710
    [30] Kingsley J J,Suresha K,Patil K C.Combustion synthesis of fine-particle metal aluminates [J].Mater Sci. 1990,25(2B):1305~1308
    [31]李瑞硕,王心葵,钱利敏,等.不同制法镁铝尖晶石在环己酮双聚中的应用[J].燃料化学学报.1995,23(2):144- 148.
    [32] Steven Corthals,Joris Van Nederkassel,Jan Geboers,etal.Influence of composition of MgAl2O4 supported NiCeO2ZrO2 catalysts on coke formation and catalyst stability for dry reforming of methane [J].Catalysis Today.2008,138:28–32
    [33]王金安,李承烈,戴逸云,等.硫转移剂催化剂研究,组成、结构与吸硫活性关系[J].物理化学学报.1994,10(7):581- 584.
    [34]李晓.镁铝尖晶石作为催化剂双功能助剂的研究[J].石油学报.2001.6,17(3):57-61
    [35] Owen R,Evans,Alexis T.Bell,etal.Oxidative dehydrogenation of propane over vanadia-based catalysts srpported on high-surface-area mesoporous MgAl2O4 [J].Journal of Catalysis.2004,226: 292–300
    [36] Jianjun Guo,Hui Lou, Hong Zhao,etal.Novel synthesis of high surface area MgAl2O4 spinel as catalyst suppor[J].Materials Letters.2004,58:1920– 1923
    [37] Adak A.K,Saha S K,Pramanik P.Synthesis and characterization of MgAl2O4 spinel by PVA evaporation technique [J].Mater Sci.1997,16(3):234~237
    [38] Pan xiulian,Liu Shenglin,Sheng Shishan,etal.Synthesis of spinel MgAl2O4 as a good catalyst support for partial oxidation of methane to syngas[J].Chinese J Cat.1999.1,20(1)
    [39]李军,周晓奇,宋志安,等.水热法制备镁铝尖晶石载体[J].工业催化.2003,11(10):44-49
    [40] Barj M,Bocquet J F,Chhor L,et al.Submicronic MgAl2O4 powder synthesis in supercritical ethanol [J].Mater Sci.Bull,1992, 27:2187
    [41] A.Troia a,M.Pavese,F.Geobaldo.Sonochemical preparation of high surface area MgAl2O4 spinel [J].Ultrasonics Sonochemistry.2009,16:136–140
    [42] Apirat Laobuthee,Sujitra Wongkasemjit,Enrico Traversa,etal.MgAl2O4 spinel powders from oxide one pot synthesis (OOPS) process for ceramic humidity sensors[J].Eu Ceram Soc.2000,20:91-97
    [43] Chuei-Tang Wang,Lang-Sheng Lin,Sheng-Jenn Yang.Preparation of MgAl2O4 Spinel Powder via Freeze-Drying of Alkoxide Precursors[J].J.Am.Ceram Soc.1992,75(8):2240-2243
    [44]仲维卓,华素坤.纳米材料及其水热法制备[J].上海化工.1995,11:25-26
    [45] Laudise R.A,Kolb E.D,P.L. Key.The First Processing of the International Hydrothermal Reaction[J].S.Somiya.ed.Japan,1982:527-530
    [46]苗鸿雁,董敏,丁常胜.水热法制备纳米陶瓷粉体技术[J].中国陶瓷.2004,40(4):25-26
    [47]王秀峰,王永兰,金志浩.水热法制备纳米陶瓷粉体[J].稀有金属材料与工程.1995,24(4)2-3
    [48]王秀峰,金志浩.水热法制备陶瓷粉体的机理与应用[J].陶瓷.1996,(2):21-25
    [49] Rennard R J,Freel J.J.The role of sulfur in deactivation of Pt/MgAl2O4 for propane dehydrogenation[J].Journal of Catalysis.1986,98:235
    [50] Sonia A.Bocanegra,Alberto A.Castro,Osvaldo A.Scelza,etal.Characterization and catalytic behavior in the n-butane dehydrogenation of trimetallic InPtSn/MgAl2O4 catalysts [J].Applied Catalysis A.General 333 (2007):49–56
    [51]董文生,王浩静,王心葵,等.不同载体的PtSn催化剂上丙烷脱氢性能的研究[J],天然气化工.1999.12,24:9-11
    [52]谭永放,李欣,纵秋云,等.QCS-01耐硫变换催化剂的性能及工业应用[J].工业催化.1997,(4):41-46
    [53]钱明生,A N.Awad,谭乐成,等.脱硫催化剂的酸法制备及性能研究[J].华东理工大学学报.1997,23,2:182- 186.
    [54] Nobert G,Leopold H,Wolfgang F,etal.Preparation of cyclicring-substituted primary amines [P].DE:3425629,1986-01-16.
    [55]刘智凌,廖文文,谭卫宁,等.2,6-二异丙基苯酚气相胺化催化剂Pd/尖晶石的研究[J].石油化工.1999,28:585-587
    [56] Bangala D N, Abatzoglou N,Martin J.-P, etal.Streaming refroming of naphthalene on Ni-Cr/Al2O3 catalyst doped with MgO,TiO2 and La2O3[J].Alche Journal.1998,44(4):927-936.
    [57]华南平,杨平,杜玉和.镁铝尖晶石负载复合纳米Ru-Fe2O3 CO高变催化剂研制[J].小氮肥设计技术.2006,27(3):7-11
    [58]华南平,杨平,杜玉和.以镁铝尖晶石为载体的Fe-Cr高变催化剂的研制[J].小氮肥设计技术.2005,26(6):8-11
    [59]宋海燕,杨平,华南平,等.负载型铁基高温变换催化剂的制备和性能应用[J].工业催化.2002.11,10(6):10-14
    [60]郭清松,沈岳年,刘志双.具有镁铝尖晶石表面覆盖层的Ni/R-Al2O3催化剂[J].石油化工.1989,18(9):606-609.
    [61]李应成,闫世润,杨为民,等.SnO2-Nb2O5/MgAl2O4/α-Al2O3催化环氧乙烷水合制乙二醇[J].催化学报.2007,28(4):345-350
    [62]任彦瑾,施力.镁铝尖晶石的制备及其催化降烯烃性能研究[J].无机盐工艺.2008,40(1):17-19
    [63]张兆斌,余长春,沈师孔.甲烷部分氧化制合成气的La2O3助Ni/MgAl2O4催化剂[J].催化学报.2000,21(1):14-18.
    [64]纵秋云,毛鹏生,郭建学,等.A12O3载体的水合及其对耐硫变换催化剂性能的影响[J].大氮肥.1999,22(1):51—53.
    [65] J. -F. Pasquier, S.Komarneni.R. Roy Synthesis of MgAl2O4 spinel:seeding effects on formation temperature.Mater Sci.1991,26:3797-3802
    [66] Chuei-Tang Wang,Lang-sheng Lin,Sheng-Jenn Yang.Preparation of MgAl2O4 Spinel Powders via Freeze-Drying of Alkoxide Precursors.J Am.Ceram.Soc.1992,75(8):2240-2243
    [67] Bagshaw S A,Pinavaia T J.Mesoporous alumina molecular sieves Angew.Chem Int.Ed.Engl.1996,35(10):1102一1105
    [68] Zhang W,Pinavaia T J. Rare earth stablilization of mesoporous alumina molecular sieves assembled trhough an N0I0 pathwan.Chem.Commun.1998(11):1185-1186
    [69]张明海,叶岗,李光辉,等.薄水铝石与拟薄水铝石差异的研究.石油学报(石油加工).1999,15(2):29-32
    [70]沈钟,王果庭.胶体与表面化学(第一版).北京:化学工业出版社.1999:179
    [71] D.H.Everett.IUPAC manual of symbols and terminology for physicohemical quantities and units[J].Pure.Appl.Chem.1972,31(4):578-638
    [72]沈钟,王果庭.胶体与表面化学(第二版).北京:化学工业出版社.1999:12
    [73]段学臣,赵天从.超细五氧化锑-三氧化锑复合粉末的研制.中国有色金属学报,1994.3,4(1):91
    [74] Volpe L , Boudart M . Topotactive prenaration of powders with high specific surface area.Catal.Rev.Sci.Eng.1985,27(4):515一538
    [75] Newman A C D.Chemistry of clars and minerals.Essex,U.K:Mineralogical Society Longman Scientlfic&Technical.1987,P:161
    [76] Stefan Brühne,Saskia Gottlieb,Wolf Assmus etal.Atomic structure analysis of nanocrystalline Boehmite AlO(OH)[J].Cryst.Growth Des.2008,8 (2): 489–493
    [77] Liu Y,Ma D,Han X W,etal.Hydrothermal Synthesis of Microscale Boehmite and Gamma Nanoleaves Alumina[J].Mater Lett,2008,62(8/9):1297
    [78] Donnay J D H, Harker D.A new law of crystal morphology extending the law of Bravais.Amer Miner.1937,22:446
    [79] V. M. Sreekumar,R. M. Pillai,B. C. Pai, et al.Evolution of MgAl2O4 crystals in Al-Mg-SiO2 composites.Appl. Phys. A.90,2008:745-752.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700