半干法脱硫灰用作水泥缓凝剂的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国控制和削减SO_2排放力度的不断加大,烟气脱硫已进入快速发展阶段。半干法脱硫技术具有流程简单、占地面积少、无污水排放等优点,但其副产脱硫灰生成量较高,组成上以硫酸钙、亚硫酸钙和残余脱硫剂为主,如何有效加以资源化利用已成为当前急需解决的重要课题,也是制约相关脱硫技术发展的关键因素。本文采集不同产地的脱硫灰,采用XRF、XRD、SEM、激光粒度分析和TG-DTA等测试手段对其化学成分、物理性质、物相组成、颗粒形貌和热稳定性进行了研究,同时测定了灰中重金属离子、氟离子的溶出特性和PAHs的含量;探讨了不同掺量的硫酸钙、亚硫酸钙、氧化钙及脱硫灰对水泥凝结时间及强度的影响,结合不同龄期水泥水化产物的XRD和SEM结果,分析其对水泥水化和凝结硬化的机理;同时研究了硫酸钙、亚硫酸钙、氧化钙及脱硫灰对水泥早期水化过程中电导率的影响,通过对比掺加脱硫灰的水泥和纯熟料(100%)水泥早期水化产物的微观结构,探讨脱硫灰用作水泥缓凝剂的缓凝机理,最后对添加脱硫灰的水泥耐久性进行了研究。研究表明:
     1)半干法脱硫灰物相组成主要有CaSO_3、CaSO_4、CaCO_3、刚玉及莫来石等,是高钙型脱硫灰;其颗粒为不规则形,呈多孔状,结构疏松。标准浸出试验结果表明脱硫灰不具有浸出毒性;脱硫灰中的多环芳烃以3、4、5环物质为主。
     2)在硫酸钙加入量占水泥质量的0.5~5%,亚硫酸钙加入量不超过水泥质量的2%以及固定CaSO_4掺量3.4%、氧化钙加入量不超过水泥质量的3.2%这三种情况下水泥样品的凝结时间、安定性和强度均符合《通用硅酸盐水泥》(GB 175-2007)标准。掺入硫酸钙的水泥主要水化产物为CSH凝胶、Ca(OH)_2和钙矾石晶体(AFt),掺入亚硫酸钙的水泥主要水化产物为水化硅酸钙(CSH)凝胶、Ca(OH)_2和单硫型水化硫铝酸钙(AFm)。
     3)采用BOX-Behnken的中心组合设计模型,以CaSO_4·2H_2O掺入量、CaSO_3·1/2H_2O掺入量以及CaO的掺入量为主要的考察因子(自变量),探讨水泥体系凝结时间的变化规律。通过响应曲面分析了各因素对凝结时间的影响程度和显著性:硫酸钙掺入量>氧化钙掺入量>亚硫酸钙掺入量,且以硫酸钙掺入量为主要因素。
     4)固定SO_3为1.5%时,采用脱硫灰复掺矿渣生产的水泥,脱硫灰掺量在12%范围内制成的水泥性能均符合《通用硅酸盐水泥》(GB 175-2007)标准,其中脱硫灰掺量为5%时制成的水泥性能最好。掺入脱硫灰的水泥主要水化产物为AFt、CSH凝胶、AFm和氢氧化钙。
     5)电导率试验结果表明硫酸钙、亚硫酸钙、脱硫灰都具有缓凝作用。脱硫灰中含有一定量的硫酸钙和亚硫酸钙,它主要通过影响铝酸三钙(C_3A)的水化,水化初期快速产生AFt和AFm的细小晶体,包裹在熟料颗粒表面,阻止熟料矿物与水作用,从而延缓了水化的进程。
     6)脱硫灰复掺矿渣生产的水泥具有良好的抗冻性和干收缩性,但是较普通硅酸盐水泥此种水泥抗硫酸盐侵蚀较差,可考虑在今后的研究中加入某些外加剂。
As the strengthening of SO_2 emission control in China, flue gas desulfurization has entered the rapid development stage. Semi-dry desulfurization technology has some advantages, such as simple process, small space-occupy and no sewage discharge, but the output of byproduct—desulfurization ash is higher, which is composed of calcium sulfate, calcium sulfite and residual desulfurizer etc. How to reuse the ash effectively has become important issues, which is the main constraint of the promotion of semi-dry desulfurization technology. In this experiment, chemical composition, physical nature, phase of composition, particlemorpholog and thermal stability of semi-dry desulfurization ash collected from different plants were studied by XRF, XRD, SEM, laser particle size analysis, TG-DTA and other modern testing means. Heavy metal ions, fluoride ion in the dissolution of the ash and PAHs content were also determined. This article focused on the influence of the different content of CaSO_4, CaSO_3, CaO and desulfurization ash on setting time and strength of cement. Cement hydration products of different ages were tested by XRD and SEM. The mechanism of cement hydration and paste was researched simultaneously. At the same time, the impact of CaSO_4, CaSO_3, CaO and desulfurization ash on the conductivity of cement in the early hydration process were tested respectively. The mechanism of which desulfurization ash is used as cement retarder was explored through comparing the micro-structure of early hydration products of cement produced with desulfurization ash and clinker (100%) cement. At last, a pilot study of durability of cement adding the ash was conducted. The results have been shown as follows:
     1) Semi-dry desulfurization ash is a kind of high calcium ash which is composed of CaSO_3, CaSO_4, CaCO_3, corundum, and mullite etc. And its particles are irregular in shape and porous. Standard leaching test results show that the desulfurization ash does not have the leaching toxicity, and the content of 3, 4, 5-ring polycyclic aromatic hydrocarbons in desulfurization ash is higher.
     2) In the three cases of the addition of CaSO_4·2H_2O is from 0.5 to 5%, the incorporation of CaSO_3·0.5H_2O is less than 2% by mass and the amount of CaO did not exceed 3.2% when CaSO_4 content fixed at 3.4% in cement, the setting time, stability and the strength of cement all meet the requirement of《Common Portland Cement》(GB 175-2007). The hydration products of cement which mixed with CaSO_4 are CSH gel, Ca(OH)2 and ettringite crystals (AFt), while hydration products of the cement mixed with CaSO_3 are CSH gel, Ca(OH)_2 and single S-typed hydration sulphoaluminate (AFm).
     3) The variation of setting time in cement system was studied through Box-Benhnken design and response surface methodology (RSM), and the main factors are the addition of CaSO_4·2H_2O, CaSO_3·0.5H_2O and CaO. The results showed that the successive order of factors affecting setting time was: CaSO_4·2H_2O incorporation>CaO incorporation>CaSO_3·0.5H_2O incorporation.
     4) When the addition of SO_3 is fixed at 1.5%, the performance of cement which is produced by desulphurization ash and slag meet the requirement of the standard of《Common Portland Cement》(GB 175-2007) when the addition of desulphurization ash is less than 12% by mass, and when the dosage of desulphurization ash is 5% , it shows the best performance. The hydration products of cement adding desulfurization ash are mainly AFt, CSH gel, AFm and Ca(OH)_2.
     5) Conductivity test results show that calcium sulfate, calcium sulfite and desulfurization ash have a retarding effect on cement. A certain amount of calcium sulfate and calcium sulfite contained in ash, which mainly influenced the hydration of C_3A. Small crystals of AFt and AFm were formed rapidly in the early hydration, wrapping in the clinker particle surface to prevent the action of clinker minerals and water, which delaying the hydration processes.
     6) Cement produced by desulphurization ash and slag has good performance of frost resistance and dry shrinkage, but sulphate resistance of which is poor compared with ordinary Portland cement, so it could be considered to add certain admixtures in cement in future study.
引文
[1] A. GAREA, I. FERNANDEZ, M. FERNANDEZ, et al. Fly Ash/Calcium Hydroxide Mixture for SO2 Removal: Structural Properties and Maximum Yield. Chemical Engineers Journal, 1997, 66(3): 171-179
    [2]陈俊峰,黄振仁,廖传华.烟气脱硫在我国的发展现状及研究进展.电站系统工程, 2008, 24(4): 4-6
    [3]黄海斌.脱硫石膏用于水泥缓凝剂的试验与应用.福建建材, 2009(03): 42-43
    [4] X. L. GUO, H. S. SHI. Thermal Treatment and Utilization of Flue Gas Desulphurization Gypsum as an Admixture in Cement and Concrete. Construction and Building Materials, 2008, 22(7): 1471-1476
    [5]石宗利,朱桂华,刘文伟.工业副产品石膏在墙体材料中的应用研究.中国建材, 2008(11): 113-116
    [6]钱骏,徐强.干法脱硫灰渣的性能及应用探索.粉煤灰, 2003(5): 43-46
    [7]付晓茹,翟建平,黎飞虎,等.金陵热电厂脱硫灰的理化性能研究.粉煤灰综合利用, 2005(2): 14-16
    [8]孙俊民,姚强,曹慧芳,等.燃煤固体产物的资源特性与应用前景.粉煤灰, 2004(4): 34-38
    [9]田刚,王红梅,张凡.脱硫灰的综合利用.能源环境保护, 2003, 17(6): 49-53
    [10]王乾,段钰锋.半干法烟气脱硫技术.能源研究与利用, 2007(4): 1-4
    [11]孙厚良.喷雾干燥在环保领域中的应用.林产化工通讯, 2005, 39(6): 29-33
    [12]李晓斐,傅大放,马光.半干法烟气脱硫新技术-粉末-颗粒喷动床技术.环境污染治理技术与设备, 2002, 3(6): 53-56
    [13]郝吉明,王书肖,陆勇琪.燃煤二氧化硫污染控制技术手册.北京:化学工业出版社, 2001
    [14]周全.火电厂LIFAC脱硫灰渣的处置与应用.粉煤灰综合利用, 1995(2): 9-12
    [15]潘红樱.飞灰和脱硫残渣的利用.海外之窗, 2000(1): 59-61
    [16] T. PANUWAT, S. PING, W. HAROLD, et al. Variability of Inorganic and Organic Constituents in Lime Spray Dryer Ash. Fuel, 2005, 84(14-15): 1820-1829
    [17]王文龙,施正伦,骆仲泱,等.流化床脱硫灰渣的特性与综合用研究.电站系统工程, 2002,18(5): 19-21
    [18] L. CHEN, W. A. DICK, S. N. ELSON. Flue Gas Desulfurization By-Products Additions to Acid Soil: Alfalfa Productivity and Environmental Quality. Environmental Pollution, 2001, 114(2): 161-168
    [19] J. J. SLOAN, R. H. DOWDY, M. S. DOLAN, et al. Plant and Soil Responses to Field-AppliedFlue Gas Desulfurization Residue. Fuel, 1999, 78(2): 169-174
    [20]葛云甫,鲍新才.燃煤电厂脱硫灰渣的建材利用问题.粉煤灰综合利用, 1999(2): 54-56
    [21]张凡,张伟,杨霓云,等.半干半湿法烟气脱硫技术研究.环境科学研究, 2000, 13(1): 60-64
    [22]王文龙,崔琳,马春元,等.干法半干法脱硫灰的特性与综合利用研究.电站系统工程, 2005, 21(5): 27-29
    [23]苏达根,陈康,韩潇,等.脱硫灰在水泥工业中的应用.矿产综合利用, 2006(5): 39-42
    [24]刘辉敏.亚硫酸钙对C3A和C4AF凝结时间的影响.硅酸盐通报, 2006, 25(3): 68-73
    [25]王文龙,任丽,董勇,等.半干法烟气脱硫产物对水泥缓凝作用的研究.水泥, 2008(3): 1-4
    [26]傅伯和,葛介龙,郑月华.干法脱硫灰用作水泥混合材及缓凝剂的可行性研究.电力环境保护, 2002, 16(4): 35-38
    [27]林贤熊,叶光锐.排烟脱硫副产品亚硫酸钙作水泥缓凝剂的研究.粉煤灰, 2003, 15(2): 15-17
    [28]何廷树.混凝土外加剂.西安:陕西科学技术出版社, 2003: 56-62
    [29]苏达根.水泥与混凝土工艺.北京:化学工业出版社, 2004: 142
    [30] X. C. QIAO, C. S. POON, C. CHEESEMAN, et al. Use of Flue Gas Desulphurisation (FGD) Waste and Rejected Fly Ash in Waste Stabilization/Solidification Systems. Waste Management, 2006, 26(2): 141-149
    [31]段玖祥,薛建明.炉内喷钙炉后活化脱硫副产品的综合利用.电力环境保护, 2005, 21(2): 7-9
    [32]钱枫,曹慧芳,张漆芳.钙基脱硫灰渣浸出特性研究.北京工商大学学报(自然科学版), 2003, 21(l): 19-24
    [33]朱法华,尤一安,张宝康.原西德燃煤电厂固体废弃物填埋技术. 1996, 12(2): 32-36
    [34]田刚.半干半湿法脱硫灰在水泥行业中应用的实验研究. [北京化工大学硕士论文]. 2004: 19-21
    [35]张瑞荣,贾海红. LIFAC脱硫灰的特性及其研究现状.粉煤灰综合利用, 2003(6): 33-35
    [36] J. ODAA, S. NOMURAA, A. YASUHARA, et al. Mobile Sources of Atmospheric Olycyclic Aromatic Hydrocarbons in a Roadway Tunnel. Atmospheric Environment. 2001, 35(28): 4819-4827
    [37] B. M. KIM, C. H. RONALD. APPlication of Safer Model to the Los Angeles PM10 Data. Atmospheric Environment, 2000, 34(11): 1747-1759
    [38] S. V. PISUPATI, R. S. WASCO, A. W. SCARONI. An Investigation on Polycyclic Aromatic Hydrocarbon Emissions from Pulverized Coal Combustion Systems. Hazardous Materials, 2000, 74(1-2): 91-107
    [39] K. L. LIU, W. XIE, Z. B. ZHAO, et al. Investigation of Polycyclic Aromatic Hydrocarbons inFly Ash from Fluidized Bed Combustion Systems. Environment Science & Technology, 2000, 34: 2273-2279
    [40] P. SUN, L. K. WEAVERS, P. TAERAKUL, et al. Characterization of Polycyclic Aromatic Hydrocarbons (PAHs) on Lime Spray Dryer (LSD) Ash Using Different Extraction Methods. Chemosphere, 2006, 62(2): 265-274
    [41]陆胜勇,徐旭,李晓东,等.燃煤流化床锅炉PAHs排放的试验研究.环境科学学报, 2002, 22(1): 123-125
    [42]金保升,赵健植,仲兆平,等.基于响应曲面法研究喷淋塔的脱硫效率.东南大学学报(自然科学版), 2007, 37(3): 446-450
    [43] F. P. QIAN, M. Y. ZHANG. Study of the Natural Vortex Length of a Cyclone with Response Surface Methodology. Computer and Chemical Engineering, 2006, 29(10): 2155-2162
    [44] J. B. FRANDSEN, S. KILL, J. E. JOHNSSON. Optimation of a Wet FGD Pilot Plant Using Fine Limestone and Organic Acids. Chemical Engineering Science, 2007, 56(10): 3275-3287
    [45] A. H. KIKAW, T. NAKAMOTO, M. MORISHITA, et al. New Wet FGD Process Using Granular Limestone. Industrial & Engineering Chemistry Research, 2006, 41(12): 3028-3036
    [46] Y. C. LIN, C. S. CHYANG. Radial Gas Mixing in a Fluidized Bed Using Response Surface Methodology. Powder Technology, 2007, 131(1): 48-55
    [47]周明凯,周丽娜,魏小胜.电阻率法研究磷及石灰对水泥凝结硬化的影响.武汉理工大学学报, 2007, 29(8): 37-40
    [48] L. H. HANSSON. Electrical Resistivity Measurements of Portland Cement Based Materials. Cement and Concrete Research, 1983, 13(15): 46-48
    [49] B. P. HUGHES, A. K. O. CENG. New Technique for Determining the Electrical Resistivity of Concrete. Magazine of concrete search, 1985, 37: 243-248
    [50]乔龄山.水泥凝结时间的新检测方法——电导率的测定.水泥, 2005(1): 65
    [51]张巨松,邓嫔,高云胜,等.矿物掺合料及硫酸钠对混凝土早期电导率的影响.沈阳建筑大学学报(自然科学版), 2008, 24(5): 814-818
    [52] Z. HE, Z. J. LI. Non-contact Resistivity Measurement for Characterization of the Hydration Process of Cement-paste with Excess Alkali. Advanced in Cement Research, 2004, 15(1): 29-34.
    [53] P. XIE, M. S. TANG. Effect of Portland Cement Paste-aggregated Interface on Electrical Conductivity. Cemento, 1998(1): 85-89
    [54] Y. SHEN, Z. Z. XU. A New Method of Enhancing Cement-aggregate InterfaceⅡMechanical Properties and Sulphate Attack Resistance of Mortar. Cement and Concrete Research, 1992, 22(5):132-135
    [55] H. MOTZET, H. POLLMANN. Synthesis and Characterisation of Sulfite Containing AFmPhases in the System CaO-Al2O3-SO2-H2O. Cement and Concrete Research, 1999, 29(7): 1005-1011
    [56] N. JAIN, M. GARG. Effect of Cr(VI) on the Hydration Behavior of Marble Dust Blended Cement: Solidification, Leachability and XRD Analyses. Construction and Building Materials, 2008, 22(8): 1851-1856
    [57] F. MONONTAGNAROA, M. NOBILIB, P. SALATINOC, et al. Hydration Products of FBC Wastes as SO2 Sorbents: Comparison between Ettringite and Calcium Hydroxide. Fuel Processing technology, 2008(89): 47-54
    [58] A. A. LAGOSZ, J. A. MALOLEPSZY, S. B. GARRAULT. Hydration of Tricalcium Aluminate in the Presence of Various Amounts of Calcium Sulphite Hemihydrate: Conductivity Tests. Cement and Concrete Research, 2006(36): 1016-1022
    [59]韦平.应用XRD分析水泥窑灰矿渣型生态水泥水化过程的研究.水泥, 2007(7): 18-21
    [60] E. KNAPEN, D. V. GEMERT. Cement Hydration and Microstructure Formation in the Presence of Water-soluble Polymers. Cement and Concrete Research, 2009, 39(1): 6-13
    [61] A. GRUSKOVNJAK, B. LOTHENBACH, F. WINNEFELD, et al. Hydration Mechanisms of Super Sulphated Slag Cement. Cement and Concrete Research, 2008, 38(7): 983-992
    [62]杨南如,岳文海.无机非金属材料图谱手册.武汉:武汉理工大学出版社, 2000: 36-38
    [63]袁润章.胶凝材料学.武汉:武汉工业大学出版社, 1996: 93-101
    [64]沈威,黄文熙,闵盘荣.水泥工艺学.武汉:武汉工业大学出版社, 1993: 69-72
    [65]武秀兰,陈国平,嵇鹰.硅酸盐生产配方设计与工艺控制.北京:化学工业出版社, 2004: 251-256
    [66]雷仲存.工业脱硫技术.北京:化学工业出版社, 2001: 36-38
    [67] P. C. AITCIN. The Durability Characteristics of High Performance Concrete: a Review. 2003, 25(4-5): 409-420
    [68] P. K. MEHTA. Durability-Critical Issues for the Future. Concrete International, 1997, 19(7): 27-33
    [69] C. S. OUYANG. A. NANNI. Internal and External Sources of Sulfate Ions in Portland Cement Mortar: Two Types of Chemical Attack. Cement and Concrete Research, 1988, 18(5): 699-709
    [70] Z. T. CHANG, X. J. SONG. Using Limestone Aggregates and Different Cements for Enhancing Resistance of Concrete to Sulphuric Acid Attack. Cement and Concrete Research, 2005, 35(6): 1486-1494
    [71]王凯,马保国,龙世宗,等.不同品种水泥混凝土的抗酸雨侵蚀性能.武汉理工大学学报, 2009, 31(2): 1-4

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700