硫酸盐竹浆制备人纤浆的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黏胶纤维的发展一直备受关注。长期以来,黏胶纤维的生产原料主要来自棉浆粕及木浆粕。众所周知,现今森林资源匮乏,而棉花产量锐减,造成了浆粕生产原料供不应求,黏胶纤维的生产企业生存发展受到威胁。因此,合理开发利用竹材制备人纤浆粕具有重要意义:一方面为粘胶纤维的生产原料开辟了新渠道,促进竹子产业化发展;另一方面也可进一步提高纺织产业的核心竞争力。
     竹子在我国具有种植面积广、种类繁多、蓄积量大等特点,且生长周期短,种植3-5即可成林砍伐,可满足于粘胶纤维生产企业的原料需求。竹材纤维细长,纤维素含量接近木材,是制备人纤浆的优质原料。
     本论文以福建省资源丰富的麻竹为原料,通过硫酸盐法制浆(KP),两段氧脱木素(OO)、木聚糖酶处理(X)、二氧化氯漂白(D)、碱处理(E)、酸处理(A)的无元素氯(ECF)漂白工艺制备出适用于黏胶纤维生产的高级溶解浆。论文对两段氧脱木素、木聚糖酶处理、二氧化氯漂白、冷碱处理、酸处理工艺进行优化;并对漂白过程中溶解浆化学组成、纤维形态及超分子结构进行了表征。
     结果表明:(一)两段氧脱木素最佳工艺条件为:一段,NaOH用量3.0%、氧压0.9MPa、温度80℃、时间40min、MgSO40.5%、浆浓10%;二段,NaOH用量2.0%、氧压0.3MPa、温度100℃、时间60min、MgSO40.5%、浆浓10%。在此优化条件下的浆料性能:聚戊糖12.68%,α-纤维素90.83%,卡伯值7.2,白度44.2%ISO,黏度44.55mPa.s,灰分1.28%;(二)木聚糖酶处理最佳工艺条件为:酶用量127.2IU.g-1,浆浓4%,时间40min, pH值9.0,温度55℃。在此优化条件下的浆料性能是:聚戊糖13.77%,α-纤维素87.58%,白度87.74%ISO,黏度17.96mPa.s,灰分0.133%;(三)二氧化氯漂白最优工艺为:ClO2用量1.52%,NaOH用量0.76%,温度75℃,浆浓10%,时间120min。在此优化条件下的浆料性能:聚戊糖12.96%,α-纤维素93.92%,卡伯值1.34,白度76.9%ISO,黏度36.34mPa.s,灰分0.76%;(四)碱处理优化后的工艺为:用碱量10.0%,温度60℃,时间60min,浆浓10%。在此优化条件下的浆料性能为:聚戊糖8.80%,α-纤维素92.80%,卡伯值4.6,白度59.0%ISO,黏度14.15mPa.s,灰分0.45%;(五)酸处理优化后的工艺为:pH值3.0,温度50℃,时间30min,浆浓5%,DTPA用量0.5%。在此优化条件下的浆料性能:聚戊糖14.86%,α-纤维素86.45%,白度88.6%ISO,黏度11.41mPa.s,灰分0.013%。
     硫酸盐竹浆经无元素氯漂白后,α-纤维素含量为95.19%,满足人纤浆粕要求,且聚戊糖降至6.52%、灰分有效降低至0.14%,白度提高至86.8%ISO,黏度下降至11.80mPa.s。氧脱木素、二氧化氯漂白能够高效的除去浆中的木素,木素下降率分别是62.5%、69.6%。X-ray分析结果表明,氧脱木素及漂白处理后竹浆粕晶型结构未发生改变,属于纤维素Ⅰ型;在KP-OO-X-D1-E处理的过程中,随着半纤维素、木素、树脂、果胶等杂质的除去,纤维素结晶度由59.77%提高至70.26%。
Recently, the development and utilization of bamboo materials has attracted great attention as the most abundant renewable biomass materials which can be used in viscose fiber production, Although, the cotton linters and wood pulp have been used as starting materials for production of viscose fiber for long time; nowadays, the shortage of cotton linters and wood materials puts the factory at the severe status. Consequently, research and development of bamboo pulp as viscose fiber materials could not only open a new way to produce cellulosic fiber, but also play a significant role in solving the wood fiber shortage problem and also improve the viscose fiber production technology and product quality.
     As an abundant resource in China, bamboo has been used as an important raw material for production of viscose fiber for its unique characteristics, such as long fiber length, higher cellulose content which is close to wood materials.
     In this paper, Dendrocalamus latiflorus Mnuro, which is abundant in Fujian province, was used as raw material to prepare high quality dissolving pulp by Kraft pulping and OO-X-D-E-A bleaching processes. Each bleaching stage was optimized and thus to produce high quality dissolving pulp.The two-stage oxygen delignification process was studied. The results showed that, the optimum conditions of two-stage oxygen delignification were as followed: NaOH consumption 3.0%, oxygen pressure 0.9MPa, temperature 60℃, reaction time 40min, MgSO4 consumption 0.5%, consistency 10% and NaOH consumption 2.0% , oxygen pressure 0.3MPa, temperature 100℃, reaction time 60min, MgSO4 consumption 0.5%, consistency 10%. The pulp properties under these optimum conditions were as followed: pentosan content 12.68%,α-cellulose content 90.83%, kappa number 7.2, brightness 44.2%ISO, viscosity 44.55mPa.s, ash content 1.28%. The enzyme treatment process was studied. The results showed that, the optimum parameters of enzyme treatment process were as followed: enzyme dosage 127.2IU.g-1, consistency of 4%, reaction time 30min, pH 9.0, reaction temperature 55℃. The pulp properties under these optimum conditions were as followed: pentosan content 13.77%,α-cellulose content 87.58%, brightness 87.74%ISO, viscosity 17.96mPa.s, ash content 0.133%. The chlorine dioxide bleaching process was studied. The results showed that, the optimum parameters of chlorine dioxide bleaching process were as followed: 1.52% of ClO2 consumption, 0.76% of NaOH consumption, reaction temperature 75℃, consistency of 10%, reaction time 30min. The pulp properties under these optimum conditions were as followed: pentosan content 12.96%,α-cellulose content 93.92%, kappa number 1.34, brightness 76.9%ISO, viscosity36.34mPa.s, ash content 0.76%. The alkaline treatment process was studied. The results showed that, the optimum parameters of alkaline treatment process were as followed: 10.0% of NaOH consumption, reaction temperature 60℃, reaction time 60min, consistency of 10%. The pulp properties under these optimum conditions were as followed: pentosan content 8.80%,α-cellulose content 92.80%, kappa number 4.6, brightness 59.0%ISO, viscosity14.15mPa.s, ash content 0.45%. The acid treatment process was studied. The results showed that, the optimum parameters of acid treatment process were as followed: pH 3.0, reaction temperature 30℃, reaction time 30min, consistency of 5%, 0.5% of DTPA consumption. The pulp properties under these optimum conditions were as followed: pentosan content 14.86%,α-cellulose content 86.45%, brightness 88.6%ISO, viscosity14.41mPa.s, ash content 0.013%.
     The mechanism of dissolving pulp from Bamboo Kraft Pulp was shown. Bamboo Kraft Pulp upgraded to dissolving pulp by the Elemental Chlorine Free Bleaching stage.α-cellulose content reached 95.19% after bleaching and purification, which met the satisfaction of dissolving pulp production. And the pentosan content reduced to 6.52%、ash content dropped to 0.14%, brightness raised to 86.8%ISO, viscosity fell to 11.80mPa.s. Oxygen delignifation, chlorine dioxide bleaching were the high active delignification treatments, lignin reduction ratio 62.5% and 69.6%. The results of FT-IR and X-ray revealed that, characteristic absorption peaks about bamboo pulp fiber were belong to the typical absorption in cellulose; there was no crystalline transformation of the crystalline structure in the treated samples and showed cellulose I structure. After E bleaching, the degree of crystallization was up from 59.77% to 70.26%, indicated that hemicellulose, lignin, colophony, pectine and other amorphous materials were gradually removal.
引文
[1] http://plas.wcoat.com/Article/view/id-14262.
    [2]化纤园地.我国化学纤维浆粕产量增速迅猛.精细化工原料及中间体. 2010(4): 42.
    [3] http://www.texindex.com.cn/Articles/2003-12-12/4770.html, 2011.3.11.
    [4] http://baike.baidu.com/view/179436.htm, 2011.3.11.
    [5]张裕,申晓平.竹纤维的应用与开发.现代纺织技术, 2003, 11(3): 51.
    [6]张戌社,宁辰校.竹/玻璃纤维复合建筑材料及其应用[J].建筑技术与应用, 2002(2): 6-7.
    [7]吴叶青.竹资源的深加工产品-竹纤维与竹炭制品[J].浙江林业科技, 2002, 22(4): 77-79.
    [8] Moe Moe Thwe, Kin liao. Durability of bamboo-glass-reinforced polymetnmatrix hybrid composites[J]. Composites Science and Technology, 2003, 63(3-4): 375-387.
    [9] http://www.ap-summit.org/Html/cooperation/1000546792.html, 2011.3.11.
    [10] http://www.stock1.com.cn/f5.asp?s=000832&p=008, 2011.03.05.
    [11]程鲁常.人造纤维浆粕制造工艺[M].北京:中国轻工业出版社, 1966.
    [12]谢来苏,詹怀宇.制浆原理与工程[M].北京:中国轻工业出版社, 2006.
    [13]鲁玲,朱亦仁等. FeSO4/H2O2/UV体系处理化纤厂棉浆粕黑液的研究.工业安全与环保, 2007, 33(4): 10.
    [14]仓飞,孙金莲,夏重光.浅谈棉浆粕的渗透漂白.人造纤维, 1998(1): 15.
    [15]人造板通讯.木业资讯, 2004(1): 37.
    [16]李华,辉朝茂.中国竹类多样性特征及其保护研究进展.云南大学学报, 2008, 30(SI): 443-445.
    [17]宿颖峰,杨琐廷.竹纤维其产品的最新研究.山西纺织化纤, 2005(1): 2-3.
    [18]周衡书,钟文燕.竹纤维的开发与应用.纺织科学研究[J], 2003(4): 30-36.
    [19]陈国符,邬义明.植物纤维化学[M].北京:轻工业出版社, 1980.
    [20]罗先珍.竹子制备人造纤维浆粕工艺探讨.人造纤维, 2004(4): 2.
    [21]邹超贤.开发竹子人纤浆粕、促进竹子产业化发展[J]. 2003,(2): 19-24.
    [22]上海化纤浆粕总厂.竹浆粕变性生产工艺:中国, CN02112175. 3, 2002-12-18.
    [23]罗先珍.竹子人造纤维浆粕的制备.广西化纤通讯, 2003(03): 2-4.
    [24]吕卫军,蒲俊文.毛竹制粘胶纤维浆粕的蒸煮技术研究. Pape r Sc ience & Technology, 2005(24): 5-7.
    [25]宋晓峰,唐淑娟,王建刚.再生竹纤维浆粕的制备研究[J].上海纺织科技, 2005(5): 16 -18.
    [26]杨凌云,杨宝,喻云水.竹纤维分离方法探讨及其产品开发.中国人造板, 2006, 4: 16-18.
    [27]王荣荣.竹纤维漂白工艺的优化设计.纺织科技进展, 2006, 1: 65-67.
    [28]王运利,姚金波,陈杰等.提高竹纤维用浆粕中甲纤含量的研究.合成纤维, 2006, 10: 9-11.
    [29]胡可信,曾光明,郭振华等.芦苇预水解硫酸盐法人纤浆粕的制备及其预水解动力学研究.中国造纸学报, 2007, 1(22): 7-11.
    [30]宜宾丝丽雅股份有限公司.生产人造纤维用竹浆粕的制造方法:中国, 200610022118.X,2007-05-30.
    [31]吕卫军,蒲俊文,闫智陪等.竹制溶解浆生产新工艺的研究.林产化学与工业. 2008,28(1): 59-62.
    [32]李雍,蒲俊文,漆小华.竹浆粕漂前与漂后木聚糖酶处理的对比.纸和造纸. 2008, 27(6): 70-72.
    [33]马彩霞,李新平,杜敏.提高马尾松木纤维用浆粕中甲纤含量的研究.合成纤维.2009(3): 30-33.
    [34]章伟,何建新,李克兢等.竹浆粕的预水解与硫酸盐蒸煮工艺.纺织学报. 2009, 30(10): 31-36.
    [35]张焕志,李振峰,薛振军等.竹子化纤浆酸处理工艺的研究.中国学术电子期刊. 2009: 11-13.
    [36]何建新,章伟,李克兢等.竹浆粕在漂白流程中的XPS分析.纺织学报. 2009, 30(12): 13-17.
    [37]薛振军,李振峰.制备低木素/高溶解性漂白竹材溶解浆的探讨.纸和造纸. 2009, 28(10): 19-22.
    [38]李雍,蒲俊文.竹制溶解浆粕蒸煮新工艺.北京林业大学学报. 2009, 31(1): 165-167.
    [39] Bourbonnais R, Paice M. G.Demethylation and delignificaion of kraft pulp by Trametes versicolor in the presence of 2, 2-azinobis (3-ethylbenthiazoline-6-sulfonate) [J]. Appl Environ microbial, 1992, 36: 823-827.
    [40] L.Levin, F.Forchiassin. Influence of growth conditions on the production of xylanolytic enzymes by Trametes trogii[J]. Word Journal of Microbiology and Biotechnology, 1998, 14(3).
    [41] Christov LP. Prior BA Repeated treatments with Aureobasidium pullulans hemicellulases and alkali enhance biobleaching of sulphite pulps. 1996(18).
    [42] Carlos Vila, Valent′?n Santos, Juan Carlos Parajo.Dissolving pulp from TCF bleached Acetosolvbeech pulp. Chem Technol Biotechnol. 2004: 1098-1104.
    [43] Ron Janzon , Ju¨rgen Puls, Andreas Bohn.Upgrading of paper grade pulps to dissolving pulpsby nitren extraction: yields, molecular and supramolecularstructures of nitren extracted pulps. Cellulose (2008) 15: 739-750.
    [44] Ron Janzon , Bodo Saake, Ju¨rgen. PulsUpgrading of paper-grade pulps to dissolving pulps by nitren extraction: properties of nitren extracted xylansin comparison to NaOH and KOH extracted xylans. Cellulose (2008) 15: 161-175.
    [45] M. Sarwar Jahan. Studies on the effect of prehydrolysis and aminein cooking liquor on producing dissolving pulp from jute. Wood Sci Technol (2009) 43: 213-224.
    [46] David Ibarra, Viviana Ko¨pcke, Monica Ek. Exploring enzymatic treatments for the production ofdissolving grade pulp from different wood and non-wood paper grade pulps. Holzforschung, 2009, Vol. 63, pp: 721-730.
    [47] Baya Bouiri and Moussa Amrani. PRODUCTION OF DISSOLVING GRADE PULP FROM ALFA. BioResources , 2008, 5(1), 291-302.
    [48]周学飞,刘伯林,李元禄.制浆漂白技术新进展.纤维素科学与技术, 1999, 7(3): 56.
    [49] Zhang shengyou, Deng Xiaojuan, Yu Yaxin. Enzymes Improve ECF Bleaching of Pulp. Word pulp and paper: 2008,(27)2: 6.
    [50] Dillner, B., Larsson, L-O., and Tibbling, P.. Nonchlorine bleaching of pulp produced by the modified continuous cooking process. Tappi J.. 1990, 73(8): 167-172.
    [51] Patthasarathy, V.R., Rudie, G.F.. Modified chlorine dioxide delignification of softwood pulps for high brightness and ultra-low AOX. Tappi J.. 1966, 79(5): 171.
    [52]黄六莲,陈礼辉,张建春等.中小径竹硫酸盐浆氧脱木素技术的研究.中华纸业, 2006, 27(9): 43.
    [53] Dence, C.W., Reeve, D.W., Eds. Pulp Bleaching: Principles and Practice. TAPPI PRESS: Atlanta, 1996.
    [54]史军伟,张奇媛,赵丽.中浓氧脱木素技术与装备.湖北造纸, 2001(1): 8.
    [55]曹石林.竹子清洁制浆漂白及氧脱木素过程中含氧自由基的作用机理研究.博士学位论文.华南理工大学, 2006: 57.
    [56] R. YANG, A. RAGAUSKAS, H. JAMEEL. Oxygen degradation and spectroscopic characterization of hardwood kraft lignin. Ind. Eng. Chem. Res., 41, 5941-5948, 2002.
    [57] S. NENKOVA, I. VALCHEV, G. SIMEONOVA,“Possibilities for increasing the effectiveness of oxygen delignification of hardwood kraft pulp”, Journal of Pulp and Paper Science, 29(10), 324-327, 2003
    [58] Guay, D.F.. Mechanisms of oxidative degradation of carbohydrates during oxyen delignification . Ph.D. Thesis, University of Marine, 1999.
    [59]李瑞瑞,李军,吴绘敏.桉木硫酸盐浆的氧脱木素.纸和造纸, 2010, 29(7): 7.
    [60]张洪涛,李友明.分散剂在纤维悬浮液中的应用进展[J].造纸化学品, 2000(4): 36-41.
    [61]张爱萍,秦梦华,徐清华.白腐菌及其酶在制浆造纸工业中的应用研究进展[J].西南造纸, 2005(2): 57.
    [62]陈杰姚,金波,王运利等.生物酶法提高竹浆粕甲种纤维素含量的研究.中国造纸, 2006, 26(6): 5-7.
    [63]李彩霞,刘书钗,房桂干.木聚糖酶酶活测定方法的探讨.西北轻工业学院学报, 2002, 20(6): 95-96.
    [64]刘福娟.竹浆粕的制取工艺及其对纤维素结构/性能的影响.硕士学位论文.东华大学, 2006: 35-36.
    [65]章艺,李甲孝,刘昱等.二氧化氯在造纸工业的应用及前景.中华纸业, 2004, 25(12): 47-49.
    [66]刘秀琼.二氧化氯的漂白及制备方法.广州化工, 2009, 37(4): 67.
    [67]陈学江.碱纤中半纤的监测及控制.人造纤维, 2006(4): 16.
    [68] David Ibarra, Viviana Kopcke, Per Tomas Larsson, et al. Combination of alkaline and enzymatic treatments as a process for upgrading sisal paper-grade pulp to dissolving-grade pulp. Bioresource Technology, 2010: 7416-7423.
    [69]陈嘉翔.制浆化学.北京:中国轻工业出版社, 1990.
    [70]章文林.常规三段漂白的探讨. China Academic Journal Electronic Publishing House, 1994-2010: 45.
    [71]杨淑蕙.植物纤维化学[M].北京:中国轻工业出版社, 2006.
    [72]马伟华.浆粕质量要适应粘胶纤维生产.人造纤维, 2006(6): 28-29.
    [73]昝天将,高秀珍.漂洗二次酸处理新工艺的探索与应用.人造纤维, 1998(2): 20-21.
    [74] http://elec.wanfangdata.com.cn/qikan/periodical.articles/hnlgdxxb/hnlg2000/0002/000206.htm
    [75]劳嘉葆.酸处理对除去漂白机械浆中阴离子垃圾的影响.造纸化学品, 2004(3): 47-48.
    [76]齐培菊,苑松崎.调整漂洗酸处理工艺缩短半浆漂洗周期.人造纤维, 2001,(4): 29.
    [77]黄茂福.螯合剂及其在印染工业中的应用.印染, 2001,1: 37-38.
    [78] David Ibarra, Viviana Kopcke, Per Tomas Larsson, et al. 2010. Combination of alkaline and enzymatic treatmentsas a process for upgrading sisal paper-grade pulp to dissolving-grade pulp. Bioresource Technology 101: 74416-7423.
    [79] Puls,J., Janzon,R., Saake, B.. Comparative removal of hemicelluloses from paper pulps using nitren, cuen, NaOH, and KOH. Lezinger berichte. 2006, 86: 63-70.
    [80] SEGAL L, CREELY L, MARTIN A E. An empirical method for estimating the degree of crystallinity of nativecellulose using X-ray diffractometer [J ]. Textiles Research Journal, 1959, 29: 786-794.
    [81] Shiyu Fu, Jai M. Singh, Shuangfei Wang, and Lucian A. Lucia Investigation of the Chemistry of Oxygen Delignification of Low Kappa Softwood Kraft Pulp using an Organic/Inorganic Chemical Selectivity System, Journal of Wood Chemistry and Technology, 25: 95-108, 2005.
    [82] Maria Salmela, Raimo Ale′n, Ma?n Thi Hong Vu. Description of kraft cooking and oxygen–alkali delignification of bamboo by pulp and dissolving material analysis. industrial crops and products . 28(2008 ): 47-55.
    [83] L. P. Christov and B. A. Prior. Bleaching Response of Sulfite Pulps to Pretreatment with Xylanases,Biotechnol. Prog. 1997, 13, 695-698.
    [84] Baya Bouiri, Moussa Amrani. Production of dissolving grade pulp from alfa. Bioresources, 2008, 5(1): 291-302.
    [85] Pallavi Dwivedi, V.Vivekanand, Nidhi Pareek, et al. Bleach Enhancement of Mixed Wood Pulp by Xylanase-Laccase Concoction Derived Through Co-culture Strategy. Appl Biochem Biotechnol, 2010, 160: 255-268.
    [86] Maren Freese, Ingeborh Schmidt, Klaus Fische. Hemiccellulose composition in the outer cell wall layers of paper grade and dissolving pulp. Macromol. Symp. 2006, 232: 13-18.
    [87]覃程荣,詹怀宇,王双飞等.纸浆ECF和TCF漂白过程中纤维形态变化和FT-IR分析.中国浆纸, 2008, 27(7): 15-16.
    [88]黄六莲.中小径竹硫酸盐浆无元素氯漂白技术的研究.北京林业大学, 2006: 88-91.
    [89] M Blanca Roncero, Antonio L Torres, Jose′F Colom, et al. Effect of xylanase on ozone bleaching kinetics and properties of Eucalyptus kraft pulp. Chem Technol Biotechnol , 2003, 78:1023–1031.
    [90]黄六莲,陈礼辉,张建春等.中小径竹硫酸盐浆无元素氯漂白技术的研究.上海造纸, 2006, 37(5): 10-15.
    [91]陈华馥,硫酸盐竹浆的二氧化氯漂白试验.上海造纸,2006, 32(2):10
    [92]印霞,何建新,于伟.竹浆纤维与几种浆粕纤维形态及结构的比较.纺织学报, 2008, 29(10): 19.
    [93]覃程荣,詹怀宇,王双飞等.硫酸盐竹浆ECF和TCF漂白过程中木素结构的变化.中国造纸学报, 2008, 23(4): 21-22.
    [94]杨占平,曹建华,马晓龙等.醋化级竹浆粕的制备及醋化性能. 2009, 25(7): 153.
    [95] Lindergen T, Edlund U. A multivariate characterization of crystal transformations of cellulose[J]. Cellulose, 1995, 2, 273-288.
    [96] Evans R, Newman R H, Roick U C and et al. Changes in cellulose crystallinity during kraft pulping. Comparison of infrared, x-ray diffraction and solid state NMR results[J]. Holzforschung, 1995, 49, 498-504.
    [97] Hattula T. Effect of kraft cooking on the ultrastructure of wood cellulose[J]. Paperi ja Puu, 1986, 26, 926-931.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700