金属氧化物半导体材料的电化学方法制备研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
21世纪是信息高度发达的社会,而支持信息社会发展的基础是材料的研究与开发。由于金属氧化物半导体材料在磁学、非线性光学、光电转换、催化、敏感特性等方面表现出广泛的应用前景,因此其成为近几年发展十分迅速的领域之一,尤其是金属氧化物材料的制备已成为研究热点。本论文主要是在传统电化学方法基础上,建立了一种工艺简单的金属氧化物半导体材料的腐蚀电化学合成方法,阐述了电解质性质对材料生长行为的影响,并揭示其相应电化学生长机理。
     首先,研究了硫酸盐电解质中氧化锌的电沉积行为,揭示了硫酸盐在诱导所制备的晶体由棒状氧化锌向片状碱式硫酸锌转变过程中所起的重要作用。在较低的硫酸根浓度下,电极表面主要发生直立的棒状氧化锌电沉积过程。随着硫酸盐浓度的增高,电极附近的离子溶度积常数高于相应碱式盐溶解度,导致片状碱式硫酸锌在电极表面沉积。
     其次,系统提出了不同支持电解质性质、浓度及锌离子浓度下,氧化锌电偶沉积行为及机理。结果表明电解质中锌离子浓度是控制电偶沉积氧化锌形貌的主要因素。在较低的锌离子浓度下,氧气的电化学还原速度相对高于锌离子的扩散速率,从而使氧化锌首先在棒状顶部沉积形成锥形的氧化锌,而在较高的浓度下,则易于形成棒状的氧化锌。对于支持电解质性质来说,硝酸根易于参与阴极还原反应加速锌阳极的钝化,导致氧化锌电偶沉积驱动力的迅速下降。硫酸根能够在金属表面优先活性吸附加速锌阳极溶解过程,进而导致片状碱式硫酸锌的生成。相比之下,氯离子同样具有强烈的激活作用,不仅增加了电偶沉积驱动力,而且促进了氯离子在氧化锌中的掺杂,从而导致氧化锌的紫外发射峰强度减弱并发生蓝移。此外,空气中退火可有效改变电偶沉积氧化锌的结晶质量和光致发光性能。300℃退火后,氧化锌表面所吸附的氢氧根及醋酸根离子发生热分解,导致氧化锌的晶体质量提高和紫外发光性能增强。而400℃退火后,氢和氯的释放导致新的表面缺陷引入氧化锌晶体中,从而使氧化锌的紫外发射峰明显减弱,可见光发射明显增强。
     再次,基于腐蚀宏电池原理,设计了一种简单的氧化亚铜电偶沉积工艺,同时研究了电解质性质对氧化亚铜电偶沉积行为的影响。结果显示阴离子的性质对氧化亚铜的电偶沉积驱动力及其生长行为产生重要影响。在硫酸盐,硝酸盐和氟化物介质中,电偶沉积驱动力较小,阴离子的吸附作用使所制备的氧化亚铜易于发展(111)晶面,而在氯化物介质中,氯离子具有强烈的激活作用不仅可获得较大的电偶沉积驱动力,而且使氧化亚铜易于显示(100)晶面,以立方体的形式生长于衬底上。同时,在氯化物介质中易于产生氯离子的掺杂现象。
     最后,基于腐蚀微电池原理,采用电偶取代方法合成了棒状氧化锌修饰的铜枝晶结构,并通过扩散限制聚集模型解释了铜枝晶的生长机理。结果表明所制备的铜枝晶结构中铜作为树干和树枝,氧化锌分别修饰于枝晶表面,而且通过改变电解质组成,可有效的调控铜枝晶的生长行为。该方法提供了一种简单易行的Cu/ZnO复合物制备工艺,其有利于该复合物作为催化剂在甲醇合成方面的应用。
In the 21th century, the research and development of material has evolved as the base for supporting the development of information. Metal oxide semiconductor materials have been the research focus due to their potential applications in magnetic, nonlinear optical, optoelectronic conversion, catalyst and sensing. In particularly, the research on the preparation of metal oxide material has attracted people's great concern. This dissertation focused on the preparation of metal oxide materials on the basis of electrochemical corrosion principle, and meanwhile the effects of various parameters on the growth behavior of metal oxide materials were investigated as well.
     Firstly, the effects of sulfate ions on the growth behavior were investigated by using electrodeposition. The result showed that sulfate ion concentrations play an important role in controlling the phase evolution of prepared films. When ZnSO4 concentrations are below 0.54 mM, the oriented growth of ZnO rods is enhanced with the increase of ZnSO4 concentration. Otherwise, the vertically aligned zinc hydroxysulfate plates can be formed by the incorporation of SO2- ions in nanocrystals.
     Secondly, the effects of various parameters including chemical nature and concentration of electrolyte, Zn2+ concentration on the galvanic deposition of ZnO were explored by using the principle of macro-cell. The results showed that Zn2+ concentration exerts important effects on the morphology of ZnO. The taper-like ZnO crystals are apt to be produced at lower Zn(Ac)2 concentrations, while the rod-like ZnO crystals with enhanced orientation tend to be grown at higher Zn(Ac)2 concentrations. As to supporting electrolyte, ZnO nanorods are grow in KNO3 and KCl electrolytes, while sheet-like zinc hydroxysulfate plates are formed in K2SO4 electrolyte. Besides, KNO3 electrolyte is inclined to accelerate the passivation of Zn anode, resulting in the sharp decrease of driving force for galvanic deposition. In contrast, KCl and K2SO4 electrolytes facilitate zinc dissolution by anionic adsorption on the metal surface and subsequent participation in the active dissolution process, thus leading to the incorporation of anions into nanocrystals. Moreover, the increase of NaCl electrolyte concentration significantly increases the driving force of galvanic deposition, and meanwhile promotes the blue-shift of UV emission of ZnO. After air annealing at 300℃and 400℃, the UV emission is first enhanced then quenched sharply, while the visible emission tends to be enhanced tremendously. The origin of the changes in PL spectra after annealing is related to the introduction of new defect induced by the release of H and Cl dopants.
     Then, a facile route to prepare Cu2O crystals was described basing on the principle of galvanic cell, and meanwhile the effects of chemical nature on the growth behavior of Cu2O crystals were also elucidated. The results showed that the morphologies of galvanically obtained Cu2O crystals are mainly dependent on the nature of anions in aqueous solution. The cubic Cu2O crystals are formed in chloride media, while the truncated octahedral crystals are grown in sulfate. nitrate and fluoride media. Besides, the incoporation of Cl into Cu2O crystals occurs in cloride electrolyte.
     Finally, a simple route to synthesize ZnO decorated copper dentrites was detailedly demonstrated basing on the principle of micro-corrosion cell. The result showed that these' copper dendrites possess a pronounced trunk and highly ordered branches distributed on both sides of the trunk. Meanwhile, both the trunk and branches are decorated with ZnO rods. The diffusion-limited aggregation (DLA) model was used to explain the fractal growth of Cu dendritic structures. This method provides a facile way to synthesize Cu/ZnO composites, which facilitates their potential applications in catalysts for methanol synthesis.
引文
[1]Yu H B. Melton A, Jani O, Jampana B, Wang S J, Gupta S, et al. MOCVD Growth of High-Hole Concentration (>2×1019 cm-3) P-Type InGaN for Solar Cell Application [J]. Photovoltaic Materials and Manufacturing Issues,2009,1123:89-93.
    [2]Kemmler M, Lazell M, O'Brien P, Otway D J. MOCVD of CuInE2 (where E=S or Se) and related materials for solar cell devices [J]. Chemical Processing of Dielectrics. Insulators and Electronic Ceramics, 2000,606:147-152.
    [3]熊金平,叶皓,赵景茂,左禹.氧化物薄膜电化学沉积的研究进展[J].材料保护,2002,35(2):4-6.
    [4]张金波,赵新丽,李炳生,刘益春,申德振.等离子体增强化学气相沉积法制备氧化锌薄膜[J].扬州大学学,2006,9(4):42-45.
    [5]Komatsu S, Sato Y, Hirano D, Nakamura T, Koga K, Yamamoto A, et al. P-type sp3-bonded BN/n-type Si heterodiode solar cell fabricated by laser-plasma synchronous CVD method [J]. Journal of Physics D-Applied Physics,2009,42(22):225107.
    [6]Al-Kuhaili M F. Characterization of copper oxide thin films deposited by the thermal evaporation of cuprous oxide (Cu2O) [J]. Vacuum,2008,82(6):623-629.
    [7]王成彪,彭志坚,李蔚君,朱娜,杨义勇,付志强.热蒸发制备ZnO纳米材料形貌控制与生长动力学[J].人工晶体学报,2009,38:191-194.
    [8]权乃承,高斐,孙杰,刘立慧,郝培风.真空热蒸发制备ZnS薄膜及其特性的研究[J].电源技术,2010,34(1):28-31.
    [9]张溪文,韩高荣.真空热蒸发碲化镉薄膜的结构组成和光电性能研究[J].真空科学与技术,2001,21(3):229-232.
    [10]Ramanery F, Dias G O, Guerra C, Vilela J M C, Andrade M S, Branco J R T, et al. Microstructure, and properties of the silicon thin films grown by e-beam evaporation for solar cell applicaton [J]. Proceedings of 3rd World Conference on Photovoltaic Energy Conversion, Vols a-C,2003:299-302.
    [11]张彬,林碧霞,傅竹西,施朝淑.用电子束热蒸发技术制备ZnO薄膜[J].发光学报,2001,22(3):309-311.
    [12]Fernandez S, Naranjo F B. Optimization of aluminum-doped zinc oxide films deposited at low temperature by radio-frequency sputtering on flexible substrates for solar cell applications [J]. Solar Energy Materials and Solar Cells,2010,94(2):157-163.
    [13]da Cunha A F, Kurdzesau F, Salome P M P. Cu(In,Ga)Se2 prepared by a 2 and 3-stage hybrid RF-magnetron sputtering and Se evaporation method:Properties and solar cell performance [J]. Advanced Materials Forum Iii, Pts 1 and 2,2006,514-516:93-97.
    [14]Soliman M M, Shabana M M, Abulfotuh F. CdS/CdTe solar cell using sputtering technique [J]. Renewable Energy,1996,8(1-4):386-389.
    [15]李林娜,陈新亮,孙建,耿新华,赵颖.溅射气压对直流电源磁控溅射制备掺铝氧化锌薄膜性能的影响[J].人工晶体学报,2010,39:118-122.
    [16]江贵生,张杰.感应耦合辅助磁控溅射氧化锌薄膜在铜铟硒薄膜太阳能电池中的界面[J].功能材料与器件学报,2009,15(4):409-413.
    [17]Velde T S T. Production of Cadmium Sulfide Copper Sulfide Solar Cell by Means of a Solid-State Reaction [J]. Energy Conversion,1975,14(3-4):111-115.
    [18]Anamt M N, Radiman S, Huang N M, Yarmo M A, Ariyanto N P, Lim H N, et al. Sol-gel hydrothermal synthesis of bismuth-TiO2 nanocubes for dye-sensitized solar cell [J]. Ceramics International, 2010,36(7):2215-2220.
    [19]Ilican S, Caglar Y, Caglar M, Kundakci M, Ates A. Photovoltaic solar cell properties of CdxZn1-xO films prepared by sol-gel method [J]. International Journal of Hydrogen Energy,2009,34(12):5201-5207.
    [20]Hocevar M, Krasovec U O, Berginc M, Drazic G, Hauptman N, Topic M. Development of TiO2 pastes modified with Pechini sol-gel method for high efficiency dye-sensitized solar cell [J]. Journal of Sol-Gel Science and Technology,2008,48(1-2):156-162.
    [21]Murayama M, Yamazaki E, Nishikawa N, Hashimoto N, Mori T. Low-temperature fabrication of TiO2 necking electrode by sol-gel method and its application to dye-sensitized solar cell [J]. Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers, 2006,45(10A):7917-7921.
    [22]葛春桥,薛亦渝,胡小锋,郭爱云.溶胶-凝胶方法制备AZO薄膜及其光电性能研究[J].真空电子技术,2005(1):20-21.
    [23]高荣顺,傅刚.陈环.溶胶-凝胶法制备ZnO薄膜光电导紫外光敏器件[J].压电与声光.2009,31(2):227-233.
    [24]Chavhan S, Sharma R. Growth and optoelectronic characteristic of n-Si/p-CuIn(S1-xSex)2 thin-film solar cell by solution growth technique [J]. Journal of Crystal Growth,2006,293(1):52-56.
    [25]Kusama H, Arakawa H. Influence of pyrimidine additives in electrolytic solution on dye-sensitized solar cell performance [J]. Journal of Photochemistry and Photobiology a-Chemistry,2003,160(3):171-179.
    [26]Kumara G R R A, Konno A, Senadeera G K R, Jayaweera P V V, De Silva D B R A, Tennakone K. Dye-sensitized solar cell with the hole collector p-CuSCN deposited from a solution in n-propyl sulphide [J]. Solar Energy Materials and Solar Cells,2001,69(2):195-199.
    [27]Takahiro N, Hajime H, Masahiro A, Wu X Z, Takashi O. Dye-sensitized solar cell fabrication with hydrothermal synthesized TiO2 and evaluation the power generation efficiency [J]. Electroceramics in Japan Xi,2009,388:293-296.
    [28]Pavasupree S, Jitputti J, Ngamsinlapasathian S, Yoshikawa S. Hydrothermal synthesis, characterization, photocatalytic activity and dye-sensitized solar cell performance of mesoporous anatase TiO2 nanopowders [J]. Materials Research Bulletin,2008,43(1):149-157.
    [29]Huang C Y, Hsu Y C, Chen J G, Suryanarayanan V, Lee K M, Ho K C. The effects of hydrothermal temperature and thickness of TiO2 film on the performance of a dye-sensitized solar cell [J]. Solar Energy Materials and Solar Cells,2006,90(15):2391-2397.
    [30]Uchida S, Chiba R, Tomiha M, Masaki N, Shirai M. Hydrothermal synthesis of titania nanotube and its application for dye-sensitized solar cell [J]. Nanotechnology in Mesostructured Materials, 2003,146:791-794.
    [31]蔡毅,韩阳,赵莲花.水热法制备微晶氧化亚铜[J].延边大学学报,2009,35(1):58-59.
    [32]朱振峰,杨冬,刘辉,孙洪军,张建权,郭丽英.氧化锌自组装微球的微波水热合成与影响因素[J].功能材料, 2010.41(1):55-58.
    [33]Cui J B, Gibson U J. A Simple Two-Step Electrodeposition of Cu2O/ZnO Nanopillar Solar Cells [J]. Journal of Physical Chemistry C,2010,114(14):6408-6412.
    [34]Ichimura M, Takagi H. Fabrication of ZnO/SnS heterostructures by the electrodeposition method for solar cell application [J]. Proceedings of Ises Solar World Congress 2007:Solar Energy and Human Settlement, Vols Ⅰ-Ⅴ,2007:1280-1284.
    [35]Katayama J, Ito K, Matsuoka M, Tamaki J. Performance of Cu2O/ZnO solar cell prepared by two-step electrodeposition [J]. Journal of Applied Electrochemistry,2004,34(7):687-692.
    [36]Kois J, Ganchev M, Kaelin M, Bereznev S, Tzvetkova E, Volobujeva O, et al. Electrodeposition of Cu-In-Ga thin metal films for Cu(In,Ga)Se2 based solar cells [J]. Thin Solid Films,2008,516(18): 5948-5952.
    [37]刘志锋,雅菁,辛颖,鄂磊,赵丹.氧化锌薄膜的阴极电沉积法制备及性能[J].天津城市建设学院学报,2009,15(3):222-227.
    [38]刘芳洋,赖延清,张治安,刘军,匡三双,李轶,et a1.电化学沉积太阳电池用CuInSe2和Cu(In,Ga) Se2薄膜的研究进展[J].材料导报,2009,23(9):36-45.
    [39]刘庆,陆文雄,印仁和.电化学法制备纳米材料的研究现状[J].材料保护,2004,,37(2):33-36.
    [40]曹胜男,郭志超,王光灿.直流电沉积制备一维ZnSe半导体纳米材料[J].电子元件与材料,2007,26(7):14-16.
    [41]王孝广,潘勇,周兆锋,王宝华,彭冰川,周益春.直流电沉积法制备镍纳米线(阵列)及其磁性能研究[J].功能材料, 2008,39(2):209-212.
    [42]赵建坡,田宝丽,万绍明,杜祖亮.直流电沉积法制备单晶Ag纳米棒阵列[J].功能材料,2009,40(7):1208-1210.
    [43]王翠英,陈祖耀.交流电沉积法制备金属氧化物纳米材料及形貌控制[J].化学物理学报,2001,14(3):350-354.
    [44]王学华,陈归,李承勇,杨亮,曹宏,周伟民.交流电化学沉积铜纳米线阵列及其机理探讨[J].材料工程,2010(8):20-23.
    [45]李怀祥,赵婧,王瑞华.方波脉冲电沉积氧化锌薄膜的研究[J].山东师范大学学报,2005,20(2):48-50.
    [46]薛玉君,兰明明,李济顺,刘红彬,马伟.超声_脉冲电沉积制备Ni-CeO2纳米复合材料[J].特种铸造及有色合金,2009,29(4):313-316.
    [47]薛玉君,刘红彬,兰明明,库祥臣,李济顺.超声条件下脉冲电沉积Ni-CeO2纳米复合镀层的高温抗氧化性[J].中国有色金属学报,2010,20(8):1599-1604.
    [48]张学会,刘峥.脉冲电沉积法制备纳米材料的研究进展[J].材料保护,2009,42(6):53-58.
    [49]司东宏,薛玉君,申晨.超声电沉积制备Ni-ZrO2纳米复合镀层及其结构和性能的研究[J].表面技术,2010,39(3):10-12.
    [50]魏攀,陈斌,何方波,王惠.锌-镍/纳米氧化铝复合电沉积及镀层结构性能研究[J].电镀与涂饰,2010,29(5):1-5.
    [51]姜吉琼.刘小华.Nd-Ni-Fe-SiC复合电沉积工艺的研究[J].电镀与环保,2009.29(4):18-21.
    [52]李远会,张晓燕,李广宇,黄碧芳.复合电沉积铜-钨合金工艺及其机理的研究[J].电镀与环保,2010.30(1):19-22.
    [53]曹银风.黄因慧.田宗军,刘志东,杨成博.喷射速度对喷射电沉积多孔金属镍的影响[J].电镀与精饰,2010,32(4):11-13.
    [54]刘润,宫凯.喷射电沉积纳米晶镍机理及工艺研究[J].机械科学与技术,2010,29(8):997-1001.
    [55]谭俊,高玉琳,钱耀川,邢汝鑫.工作电压对喷射电沉积Ni镀层形貌及性能的影响[J].装甲兵工程学院学报,2009,23(6):80-83.
    [56]Nishino J, Chatani S, Uotani Y, Nosaka Y. Electrodeposition method for controlled formation of CdS films from aqueous solutions [J]. Journal of Electroanalytical Chemistry,1999,473(1-2):217-222.
    [57]Luan Y M, An M Z, Zhang W J, Le S R, Yang M. Preparation of CdS nanoparticle film by electrodeposition in CH3CSNH2 system [J]. Chinese Journal of Inorganic Chemistry,2005,21 (2):225-231.
    [58]Lade S J, Uplane M D, Lokhande C D. Studies on the electrodeposition of CdS films [J]. Materials Chemistry and Physics,1998,53(3):239-242.
    [59]Anuar K, Zainal Z, Hussein M Z, Saravanan N, Haslina I. Cathodic electrodeposition of Cu2S thin film for solar energy conversion [J]. Solar Energy Materials and Solar Cells,2002,73(4):351-365.
    [60]Anuar K, Zainal Z, Hussein M Z, Ismail H. Electrodeposition and characterization of Cu2S thin films from aqueous solution [J]. Journal of Materials Science-Materials in Electronics,2001,12(3):147-152.
    [61]De Silva K T L, Priyantha W A A, Jayanetti J K D S, Chithrani B D, Siripala W, Blake K, et al. Electrodeposition and characterisation of CuInSe2 for applications in thin film solar cells [J]. Thin Solid Films,2001,382(1-2):158-163.
    [62]Ivanova Y A, Ivanou D K, Streltsov E A. Electrodeposition of PbSe onto n-Si(100) wafers [J]. Electrochimica Acta,2008,53(15):5051-5057.
    [63]Chen R Z, Xu D S, Guo G L, Gui L L. Preparation of Ag2Se and Ag2Se1-xTex nanowires by electrodeposition from DMSO baths [J]. Electrochemistry Communications,2003,5(7):579-583.
    [64]Jiang L P, Zhang J R, Wang J, Zhu J J. Preparation of dendrits PbSe nanoparticles by sonoelectrochemical method [J]. Chinese Journal of Inorganic Chemistry,2002,18(11):1161-1164.
    [65]Sander M S, Prieto A L, Gronsky R, Sands T, Stacy A M. Fabrication of high-density, high aspect ratio, large-area bismuth telluride nanowire arrays by electrodeposition into porous anodic alumina templates [J]. Advanced Materials,2002,14(9):665-667.
    [66]Kang F, Ao J P, Sun G Z, He Q, Sun Y. Structure and photovoltaic characteristics of CuInSe2 thin films prepared by pulse-reverse electrodeposition and selenization process [J]. Journal of Alloys and Compounds,2009,478(1-2):L25-L27.
    [67]Phok S, Rajaputra S, Singh V P. Copper indium diselenide nanowire arrays by electrodeposition in porous alumina templates [J]. Nanotechnology,2007,18(47):475601.
    [68]Gu J L, Shi J L, Chen H R, Xiong L M, Shen W H, Ruan M L. Periodic pulse electrodeposition to synthesize ultra-high density CdS nanowire arrays templated by SBA-15 mesoporous films [J]. Chemistry Letters,2004,33(7):828-829.
    [69]Yue G H, Peng D L, Yan P X, Wang L S. Wang W, Luo X H. Structure and optical properties of SnS thin film prepared by pulse electrodeposition [J]. Journal of Alloys and Compounds.2009,468(1-2): 254-257.
    [70]An B H, Ji H M, Wu,J H, Cho M K, Yang K Y, Lee H, et al. Phase changeable silver selenide thin films fabricated by pulse electrodeposition [J]. Current Applied Physics,2009,9(6):1338-1340.
    [71]Sharma R K, Singh G, Rastogi A C. Pulsed electrodeposition of CdTe thin films:effect of pulse parameters over structure, stoichiometry and optical absorption [J]. Solar Energy Materials and Solar Cells, 2004,82(1-2):201-215.
    [72]Spanou S, Pavlatou E A. Pulse electrodeposition of Ni/nano-TiO2 composites:effect of pulse frequency on deposits properties [J]. Journal of Applied Electrochemistry,2010,40(7):1325-1336.
    [73]Sen R, Das S, Das K. Effect of Current Density on the Microstructure and Hardness of Ni-CeO2 Nanocomposite Coating Synthesized by Pulse Electrodeposition Technique [J]. Journal of Nanoscience and Nanotechnology,2010,10(12):8217-8226.
    [74]Wei S Q, Chen Y Y, Ma Y Y, Shao Z C. Fabrication of CuO/ZnO composite films with cathodic co-electrodeposition and their photocatalytic performance [J]. Journal of Molecular Catalysis a-Chemical, 2010,331(1-2):112-116.
    [75]Chen J S, Huang Y H, Wei C Z, Qiao B, Yang J M, He Y Q. A study on Ni-Al2O3 nanocomposite coating prepared by jet electrodeposition [J]. Advanced Composites Letters,2010,19(5):184-188.
    [76]Tian Z J, Wang D S, Wang G F, Shen L D, Liu Z D, Huang Y H. Microstructure and properties of nanocrystalline nickel coatings prepared by pulse jet electrodeposition [J]. Transactions of Nonferrous Metals Society of China,2010,20(6):1037-1042.
    [77]Oh J, Tak Y, Lee Y. Electrodeposition of Cu2O nanowires using nanoporous alumina template [J]. Electrochemical and Solid State Letters,2004,7(3):C27-C30.
    [78]Lee Y H, Leu I C, Wu M T, Yen J H, Fung K Z. Fabrication of Cu/Cu2O composite nanowire arrays on Si via AAO template-mediated electrodeposition [J]. Journal of Alloys and Compounds,2007,427 (1-2):213-218.
    [79]Zhang Q, Chakraborty A K, Lee W I. W18O49 and WO3 Nanorod Arrays Prepared by AAO-templated Electrodeposition Method [J]. Bulletin of the Korean Chemical Society,2009,30(1):227-229.
    [80]Wang D L, Ruan Y F, Zhang L C, Zhang S C, Ma P F. The Study on Preparation of ZnO Nanowire in AAO by Electrodeposition Method [J]. Inec:2010 3rd International Nanoelectronics Conference, Vols 1 and 2,2010:1335-1336.
    [81]Peulon S, Lincot D. Cathodic electrodeposition from aqueous solution of dense or open-structured zinc oxide films [J]. Advanced Materials,1996,8(2):166-170.
    [82]Izaki M, Omi T. Transparent zinc oxide films prepared by electrochemical reaction [J]. Applied Physics Letters,1996,68(17):2439-2440.
    [83]Elias J, Tena-Zaera R, Levy-Clement C. Electrodeposition of ZnO nanowires with controlled dimensions for photovoltaic applications:Role of buffer layer [J]. Thin Solid Films,2007,515 (24):8553-8557.
    [84]Pradhan D, Kumar M, Ando Y, Leung K T. Fabrication of ZnO Nanospikes and Nanopillars on ITO Glass by Templateless Seed-Layer-Free Electrodeposition and Their Field-Emission Properties [J]. Acs Applied Materials & Interfaces,2009,1(4):789-796.
    [85]Xu F, Lu Y N, Xia L L, Xie Y, Dai M, Liu Y F. Seed layer-free electrodeposition of well-aligned ZnO submicron rod arrays via a simple aqueous electrolyte [J]. Materials Research Bulletin,2009.44 (8):1700-1708.
    [86]Mukherjee N, Bhattacharyya P, Banerjee M, Mondal A, Gettens R T T, Ghosh P K, et al. Galvanic deposition of nanocrystalline ZnO thin films from a ZnO-Zn(OH)2 mixed phase precursor on p-Si substrate [J]. Nanotechnology,2006,17(10):2665-2669.
    [87]Mondal A, Mukherjee N, Bhar S K. Galvanic deposition of hexagonal ZnO thin films on TCO glass substrate [J]. Materials Letters,2006,60(13-14):1748-1752.
    [88]Xu F, Sun L T, Dai M, Lu Y N. Fluorine-Ion-Mediated Electrodeposition of Rhombus-Like ZnFOH Nanorod Arrays:An Intermediate Route to Novel ZnO Nanoarchitectures [J]. Journal of Physical Chemistry C,2010,114(36):15377-15382.
    [89]Takahashi K, Limmer S J, Wang Y, Cao G Z. Synthesis and electrochemical properties of single-crystal V2O5 nanorod arrays by template-based electrodeposition [J]. Journal of Physical Chemistry B,2004,108(28):9795-9800.
    [90]Yan C L, Xue D F. Conversion of ZnO nanorod arrays into ZnO/ZnS nanocable and ZnS nanotube arrays via an in situ chemistry strategy [J]. Journal of Physical Chemistry B,2006,110(51):25850-25855.
    [91]Wang Z, Qian X F, Li Y, Yin J, Zhu Z K. Large-scale synthesis of tube-like ZnS and cable-like ZnS-ZnO arrays:Preparation through the sulfuration conversion from ZnO arrays via a simple chemical solution route [J]. Journal of Solid State Chemistry,2005,178(5):1589-1594.
    [92]Wahab R, Ansari S G, Kim Y S, Dhage M S, Seo H K, Song M W, et al. Effect of annealing on the conversion of ZnS to ZnO nanoparticles synthesized by the sol-gel method using zinc acetate and thiourea [J]. Metals and Materials International,2009,15(3):453-458.
    [93]Tang Y W, Luo L J, Chen Z G, Jiang Y, Li B H, Jia Z Y, et al. Electrodeposition of ZnO nanotube arrays on TCO glass substrates [J]. Electrochemistry Communications,2007.9(2):289-292.
    [94]Li L, Pan S S, Dou X C, Zhu Y G, Huang X H, Yang Y W. et al. Direct electrodeposition of ZnO nanotube arrays in anodic alumina membranes [J]. Journal of Physical Chemistry C,2007.111(20): 7288-7291.
    [95]Ren X, Jiang C H. Synthesis of ZnO Nanotube Arrays and Heterostructures of Cu-ZnO Coaxial Nanotubes by Electrodeposition-Oxidation Method [J]. Journal of Nanoscience and Nanotechnology, 2010,10(8):5093-5098.
    [96]Lu P, Xue D F. Selective Synthesis of Zno Arrays [J]. Surface Review and Letters, 2010,17(2):261-264.
    [97]Fu M, Zhou J. Mechanism of the Electrodeposition of ZnO Nanosheets below Room Temperature [J]. Journal of the Electrochemical Society,2010,157(8):D450-D453.
    [98]Pradhan D, Leung K T. Controlled growth of two-dimensional and one-dimensional ZnO nanostructures on indium tin oxide coated glass by direct electrodeposition [J]. Langmuir,2008,24 (17):9707-9716.
    [99]Choi K S, Steinmiller E M P. Electrochemical synthesis of lamellar structured ZnO films via electrochemical interfacial surfactant templating [J]. Electrochimica Acta,2008,53(23):6953-6960.
    [100]Fu M, Zhou J. Xiao Q F, Li B, Zong R L, Chen W. et al. ZnO nanosheets with ordered pore periodicity via colloidal crystal template assisted electrochemical deposition [J]. Advanced Materials. 2006,18(8):1001-1004.
    [101]Xu L F, Chen Q W, Xu D S. Hierarchical ZnO nanostructures obtained by electrodeposition [J]. Journal of Physical Chemistry C,2007,111(31):11560-11565.
    [102]Zhong K, Xia J, Li H H. Liang C L, Liu P, Tong Y X. Morphology Evolution of One-Dimensional-Based ZnO Nanostructures Synthesized via Electrochemical Corrosion [J]. Journal of Physical Chemistry C,2009,113(35):15514-15523.
    [103]Li G R, Lu X H, Wang Z L, Yu X L, Tong Y X. Controllable electrochemical synthesis of La3+ZnO hierarchical nanostructures and their optical and magnetic properties [J]. Electrochimica Acta, 2010,55(11):3687-3693.
    [104]Zhou X F, Chu D B, Han A J, Gu J S. Electrochemical dissolution of pure titanium and direct hydrolysis for preparation of nanocrystalline TiO2 [J]. Acta Physico-Chimica Sinica,2001,17(4):367-371.
    [105]Zhou X F, Chu D B, Lin C J. Anodic dissolution of spongy titanium in ethanol solution for preparation of nano-sized TiO2 powder [J]. Electrochimica Acta,2002,47(17):2769-2773.
    [106]Zhou X F, Chu D B. Wang S W, Lin C J, Tian Z Q. New route to prepare nanocrystalline TiO2 and its reaction mechanism [J]. Materials Research Bulletin,2002,37(11):1851-1857.
    [107]Zhou X F, Han A J. Chu D B, Gu J S, Lin C J, Tian Z Q. Electrochemical synthesis of zinc complexes and preparation of nano-sized ZnO [J]. Acta Chimica Sinica,2002,60(11):2064-2068.
    [108]Mouet T, Devers T, Telia A, Messai Z, Harel V, Konstantinov K, et al. Growth and characterization of thin ZnO films deposited on glass substrates by electrodeposition technique [J]. Applied Surface Science, 2010.256(13):4114-4120.
    [109]Gao X D, Peng F, Li X M. Yu W D, Qiu J J. Growth of highly oriented ZnO films by the two-step electrodeposition technique [J]. Journal of Materials Science,2007,42(23):9638-9644.
    [110]Bohannan E W, Nicic I M, Kothari H A, Switzer J A. Enantiospecific electrodeposition of chiral CuO films on Cu(110) from aqueous Cu(Ⅱ) tartrate and amino acid complexes [J]. Electrochimica Acta, 2007,53(1):155-160.
    [111]Morales J, Sanchez L, Bijani S, Martinez L. Gabas M, Ramos-Barrado J R. Electrodeposition of Cu2O:An excellent method for obtaining films of controlled morphology and good performance in Li-ion batteries [J]. Electrochemical and Solid State Letters,2005,8(3):A159-A162.
    [112]Kleiman-Shwarsctein A, Hu Y S, Forman A J, Stucky G D, McFarland E W. Electrodeposition of alpha-Fe2O3 doped with Mo or Cr as photoanodes for photocatalytic water splitting [J]. Journal of Physical Chemistry C,2008,112(40):15900-15907.
    [113]El-Etre A Y, Reda S M. Characterization of nanocrystalline SnO2 thin film fabricated by electrodeposition method for dye-sensitized solar cell application [J]. Applied Surface Science, 2010,256(22):6601-6606.
    [114]Volk J, Nagata T, Erdelyi R, Barsony I, Toth A L, Lukacs I E, et al. Highly Uniform Epitaxial ZnO Nanorod Arrays for Nanopiezotronics [J]. Nanoscale Research Letters,2009,4(7):699-704.
    [115]Li J Y, Li H. Physical and Electrical Performance of Vapor-Solid Grown ZnO Straight Nanowires [J]. Nanoscale Research Letters,2009,4(2):165-168.
    [116]Kansal S K, Kaur N, Singh S. Photocatalytic Degradation of Two Commercial Reactive Dyes in Aqueous Phase Using Nanophotocatalysts [J]. Nanoscale Research Letters,2009,4(7):709-716.
    [117]Wu W Y, Ting J M, Huang P J. Electrospun ZnO Nanowires as Gas Sensors for Ethanol Detection [J]. Nanoscale Research Letters,2009,4(6):513-517.
    [118]Umar A. Growth of Comb-like ZnO Nanostructures for Dye-sensitized Solar Cells Applications [J]. Nanoscale Research Letters,2009,4(9):1004-1008.
    [119]Khranovskyy V, Ulyashin A, Lashkarev G,Svensson B G. Yakimova R. Morphology, electrical and optical properties of undoped ZnO layers deposited on silicon substrates by PEMOCVD [J]. Thin Solid Films,2008,516(7):1396-1400.
    [120]Lin H, Zhou S M, Teng H, Jia T T, Hou X R, Gu S L, et al. Polishing of (100) gamma-LiAlO2 wafer and its effect on the epitaxial growth of ZnO films by MOCVD [J]. Journal of Alloys and Compounds. 2009,479(1-2):L8-L10.
    [121]Wu X, Qu F Y, Zhang X, Cai W. Shen G Z. Fabrication of ZnO ring-like nanostructures at a moderate temperature via a thermal evaporation process [J]. Journal of Alloys and Compounds. 2009.486(1-2):L13-L16.
    [122]Yan C L. Xue D F, Zou L J. A solution-phase approach to the chemical synthesis of ZnO nanostructures via a low-temperature route [J]. Journal of Alloys and Compounds,2008,453(1-2):87-92.
    [123]Yan C L, Xue D F. Solution growth of nano-to microscopic ZnO on Zn [J]. Journal of Crystal Growth,2008,310(7-9):1836-1840.
    [124]Yan C L, Liu J, Liu F, Wu J S, Gao K, Xue D F. Tube Formation in Nanoscale Materials [J]. Nanoscale Research Letters,2008,3(12):473-480.
    [125]Yan C L, Xue D F. Electroless deposition of aligned ZnO taper-tubes in a strong acidic medium [J]. Electrochemistry Communications,2007,9(6):1247-1251.
    [126]Qian X, Liu H, Guo Y, Song Y, Li Y. Effect of aspect ratio on field emission properties of ZnO nanorod arrays [J]. Nanoscale Research Letters,2008,3(8):303-307.
    [127]Zhang Y, Zhu F, Zhang J X, Xia L L. Converting layered zinc acetate nanobelts to one-dimensional structured ZnO nanoparticle aggregates and their photocatalytic activity [J]. Nanoscale Research Letters, 2008,3(6):201-204.
    [128]Pauporte T, Jouanno E, Pelle F, Viana B, Aschehoug P. Key Growth Parameters for the Electrodeposition of ZnO Films with an Intense UV-Light Emission at Room Temperature [J]. Journal of Physical Chemistry C,2009,113(24):10422-10431.
    [129]Tena-Zaera R. Elias J. Levy-Clement C, Bekeny C, Voss T, Mora-Sero I, et al. Influence of the Potassium Chloride Concentration on the Physical Properties of Electrodeposited ZnO Nanowire Arrays [J]. Journal of Physical Chemistry C,2008,112(42):16318-16323.
    [130]Lin C F, Lin H, Li J B, Li X. Electrodeposition preparation of ZnO nanobelt array films and application to dye-sensitized solar cells [J]. Journal of Alloys and Compounds,2008,462(1-2):175-180.
    [131]Elias J, Tena-Zaera R, Levy-Clement C. Electrochemical deposition of ZnO nanowire arrays with tailored dimensions [J]. Journal of Electroanalytical Chemistry,2008,621(2):171-177.
    [132]Zhao X, Ren X, Sun C, Zhang X, Si Y, Yan C, et al. Morphology evolution at nano- to micro-scale [J]. Func Mater Lett,2008,1 (3):167-172.
    [133]Cao B Q, Teng X M, Heo S H, Li Y, Cho S O, Li G H, et al. Different ZnO nanostructures fabricated by a seed-layer assisted electrochemical route and their photoluminescence and field emission properties [J]. Journal of Physical Chemistry C,2007,111(6):2470-2476.
    [134]Pradhan D, Kumar M. Ando Y, Leung K T. One-dimensional and two-dimensional ZnO nanostructured materials on a plastic substrate and their field emission properties [J]. Journal of Physical Chemistry C,2008,112(18):7093-7096.
    [135]Choi K S, Lichtenegger H C, Stucky G D, McFarland E W. Electrochemical synthesis of nanostructured ZnO films utilizing self-assembly of surfactant molecules at solid-liquid interfaces [J]. Journal of the American Chemical Society,2002,124(42):12402-12403.
    [136]Tian Z R R, Voigt J A, Liu J, Mckenzie B, Mcdermott M J. Biommetic arrays of oriented helical ZnO nanorods and columns [J]. Journal of the American Chemical Society,2002,124(44):12954-12955.
    [137]Han X, Qin W J, Sun J, Yang J, Niu K Y, Wang H L, et al. Surfactant-assisted synthesis of ZnO-Au nanostructure with good dispersibility [J]. Journal of Alloys and Compounds,2009,477(1-2):661-664.
    [138]Li F, Hu L, Li Z, Huang X T. Influence of temperature on the morphology and luminescence ZnO micro and nanostructures prepared by CTAB-assisted hydrothermal method [J]. Journal of Alloys and Compounds,2008,465(1-2):L14-L19.
    [139]Usui H. The effect of surfactants on the morphology and optical properties of precipitated wurtzite ZnO [J]. Materials Letters,2009,63(17):1489-1492.
    [140]Elias J, Tena-Zaera R, Levy-Clement C. Effect of the chemical nature of the anions on the electrodeposition of ZnO nanowire arrays [J]. Journal of Physical Chemistry C,2008,112(15):5736-5741.
    [141]Yi R, Zhou H F, Zhang N, Qiu G Z, Liu X H. Effects of specific salts on the morphologies of ZnO microstructures [J]. Journal of Alloys and Compounds,2009,479(1-2):L50-L53.
    [142]Chiu C H, Lee C E, Chao C L, Cheng B S, Huang H W. Kuo H C, et al. Enhancement of light output intensity by integrating ZnO nanorod arrays on GaN-based LLO vertical LEDs [J]. Electrochemical and Solid State Letters,2008,11(4):H84-H87.
    [143]Guo H G, Zhou J Z, Lin Z G. ZnO nanorod light-emitting diodes fabricated by electrochemical approaches [J]. Electrochemistry Communications,2008,10(1):146-150.
    [144]El Belghiti H, Pauporte T, Lincot D. Mechanistic study of ZnO nanorod array electrodeposition [J]. Physica Status Solidi a-Applications and Materials Science,2008,205(10):2360-2364.
    [145]Peulon S, Lincot D. Mechanistic study of cathodic electrodeposition of zinc oxide and zinc hydroxychloride films from oxygenated aqueous zinc chloride solutions [J]. Journal of the Electrochemical Society,1998,145(3):864-874.
    [146]Cao B Q, Cai W P, Zeng H B, Duan G T. Morphology evolution and photoluminescence properties of ZnO films electrochemically deposited on conductive glass substrates [J]. Journal of Applied Physics, 2006,99(7):073516.
    [147]Jayasree R S, Pillai V P M, Nayar V U, Odnevall I, Keresztury G. Raman and infrared spectral analysis of corrosion products on zinc NaZn4Cl(OH)6SO4-6H20 and Zn4Cl2(OH)4SO4·5H2O [J]. Materials Chemistry and Physics,2006,99(2-3):474-478.
    [148]Yan X X, Xu D L, Xue D F. SO42- ions direct the one-dimensional growth of 5Mg(OH)2·MgSO4·2H2O [J]. Acta Materialia,2007,55(17):5747-5757.
    [149]Huang M H. Mao S, Feick H, Yan H Q, Wu Y Y. Kind H. et al. Room-temperature ultraviolet nanowire nanolasers [J]. Science.2001,292(5523):1897-1899.
    [150]Wang X D, Summers C J. Wang Z L. Large-scale hexagonal-patterned growth of aligned ZnO nanorods for nano-optoelectronics and nanosensor arrays [J]. Nano Letters,2004,4(3):423-426.
    [151]Wan Q, Li Q H, Chen Y J, Wang T H. He X L, Li J P, et al. Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors [J]. Applied Physics Letters,2004,84(18):3654-3656.
    [152]Law M, Greene L E, Johnson J C, Saykally R, Yang P D. Nanowire dye-sensitized solar cells [J]. Nature Materials,2005,4(6):455-459.
    [153]Jeong M C, Oh B Y, Lee W, Myoung J M. Comparative study on the growth characteristics of ZnO nanowires and thin films by metalorganic chemical vapor deposition (MOCVD) [J]. Journal of Crystal Growth,2004,268(1-2):149-154.
    [154]Wang Y Z, Wang H L, Liu S L, Liu H X, Zhou S M, Hang Y, et al. MOCVD growth and properties of ZnO thin films on LiNbO3 substrates [J]. Journal of Crystal Growth,2005,277(1-4):378-381.
    [155]Zhang P F, Wei H Y, Cong G W, Hu W G, Fan H B, Wu J J, et al. Effects of disk rotation rate on the growth of ZnO films by low-pressure metal-organic chemical vapor deposition [J]. Thin Solid Films, 2008,516(6):925-928.
    [156]Yan C L, Xue D F. Morphosynthesis of hierarchical hydrozincite with tunable surface architectures and hollow zinc oxide [J]. Journal of Physical Chemistry B,2006.110(23):11076-11080.
    [157]Yan C L, Xue D F. Mild solution-based fabrication of high-quality device-dependent ZnO nanoarrays and ZnS nanotube arrays [J]. Physica Scripta,2007/T129:288-292.
    [158]Cai L E, Zhang J Y, Zhang B P, Li S Q, Wang D X, Shang J Z, et al. Blue-green optically pumped GaN-based vertical cavity surface emitting laser [J]. Electronics Letters,2008,44(16):972-974.
    [159]Wang M, Hahn S H, Kim E J, Kim J S, Kim S, Park C, et al. Chemical solution deposition of ZnO thin films with controlled crystallite orientation and intense ultraviolet emission [J]. Thin Solid Films, 2008,516(23):8599-8603.
    [160]Pradhan D, Leung K T. Vertical growth of two-dimensional zinc oxide nanostructures on ITO-coated glass:Effects of deposition temperature and deposition time [J]. Journal of Physical Chemistry C, 2008,112(5):1357-1364.
    [161]Wang L, Liu G, Zou L, Xue D. Phase evolution from rod-like ZnO to plate-like zinc hydroxysulfate during electrochemical deposition [J]. Journal of Alloys and Compounds,2010,493(1-2):471-475.
    [162]Liu Y L, Liu Y C, Liu Y X, Shen D Z, Lu Y M, Zhang J Y, et al. Structural and optical properties of nanocrystalline ZnO films grown by cathodic electrodeposition on Si substrates [J]. Physica B-Condensed Matter,2002,322(1-2):31-36.
    [163]Wong M H, Berenov A, Qi X, Kappers M J, Barber Z H, Illy B, et al. Electrochemical growth of ZnO nano-rods on polycrystalline Zn foil [J]. Nanotechnology,2003,14(9):968-973.
    [164]Goux A, Pauporte T, Chivot J, Lincot D. Temperature effects on ZnO electrodeposition [J]. Electrochimica Acta,2005,50(11):2239-2248.
    [165]Illy B, Shollock B A, MacManus-Driscoll J L, Ryan M P. Electrochemical growth of ZnO nanoplates [J]. Nanotechnology,2005,16(2):320-324.
    [166]Mukherjee N, Ahmed S F, Chattopadhyay K K, Mondal A. Role of solute and solvent on the deposition of ZnO thin films [J]. Electrochimica Acta,2009,54(16):4015-4024.
    [167]El Sherbini E E F, Abd El Rehim S S. Pitting corrosion of zinc in Na2SO4 solutions and the effect of some inorganic inhibitors [J]. Corrosion Science,2000,42(5):785-798.
    [168]Sziraki L, Cziraki A, Gerocs I, Vertesy Z, Kiss L. A kinetic model of the spontaneous passivation and corrosion of zinc in near neutral Na2SO4 solutions [J]. Electrochimica Acta,1998,43(1-2):175-186.
    [169]Amin M A. Passivity and passivity breakdown of a zinc electrode in aerated neutral sodium nitrate solutions [J]. Electrochimica Acta,2005,50(6):1265-1274.
    [170]Amin M A, Hassan H H, El Rehim S S A. On the role of NO2- ions in passivity breakdown of Zn in deaerated neutral sodium nitrite solutions and the effect of some inorganic inhibitors potentiodynamic polarization, cyclic voltammetry, SEM and EDX studies [J]. Electrochimica Acta,2008,53(5):2600-2609.
    [171]Hassan H H. Perchlorate and oxygen reduction during Zn corrosion in a neutral medium [J]. Electrochimica Acta,2006,51 (26):5966-5972.
    [172]El Aal E E A, El Wanees S A. Galvanostatic study of the breakdown of Zn passivity by sulphate anions [J]. Corrosion Science,2009,51 (8):1780-1788.
    [173]Zhong J, Chen H, Saraf G, Lu Y, Choi C K, Song J J, et al. Integrated ZnO nanotips on GaN light emitting diodes for enhanced emission efficiency [J]. Applied Physics Letters,2007,90(20):203515-203515.
    [174]Cong G W, Wei H Y, Zhang P F, Peng W Q, Wu J J, Liu X L, et al. One-step growth of ZnO from film to vertically well-aligned nanorods and the morphology-dependent Raman scattering [J]. Applied Physics Letters,2005,87(23):231903.
    [175]Rousset J, Saucedo E, Lincot D. Extrinsic Doping of Electrodeposited Zinc Oxide Films by Chlorine for Transparent Conductive Oxide Applications [J]. Chemistry of Materials,2009,21(3):534-540.
    [176]Ligier V, Wery M, Hihn J Y, Faucheu J, Tachez M. Formation of the main atmospheric zinc end products:NaZn4Cl(OH)6SO4·6H2O, Zn4SO4(OH)6·nH2O and Zn4Cl2(OH)(4)SO4·5H2O in [Cl-] [SO42-] [HCO3-] [H2O2] electrolytes [J]. Corrosion Science,1999,41 (6):1139-1164.
    [177]Cachet C, Wiart R. Reaction mechanism for zinc dissolution in chloride electrolytes [J]. Journal of Electroanalytical Chemistry,1981,129(1-2):103-114.
    [178]Cachet C, Wiart R. The kinetics of zinc dissolution in chloride electrolytes:impedance measurements and electrode morphology [J]. Journal of Electroanalytical Chemistry,1980,111(3-4):235-246.
    [179]El Aal E E A. Passivity and passivity breakdown of zinc anode in sulphate solutions [J]. Anti-Corrosion Methods and Materials,1999,46(5):349-357.
    [180]Gerischer H, Sorg N. Chemical dissolution of Zinc oxide crystals in aqueous electrolytes---an analysis of the kinetics [J]. Electrochimica Acta,1992,37(5):827-835.
    [181]Cachet C, Ganne F, Maurin G, Petitjean J, Vivier V, Wiart R. EIS investigation of zinc dissolution in aerated sulfate medium. Part Ⅰ:bulk zinc [J]. Electrochimica Acta,2001,47(3):509-518.
    [182]Hassan H H, Amin M A, Gubbala S, Sunkara M K. Participation of the dissolved O2 in the passive layer formation on Zn surface in neutral media [J]. Electrochimica Acta,2007,52(24):6929-6937.
    [183]Vanheusden K, Warren W L, Seager C H, Tallant D R, Voigt J A, Gnade B E. Mechanisms behind green photoluminescence in ZnO phosphor powders [J]. Journal of Applied Physics,1996,79(10): 7983-7990.
    [184]Li Y, Meng G W, Zhang L D, Phillipp F. Ordered semiconductor ZnO nanowire arrays and their photoluminescence properties [J]. Applied Physics Letters,2000,76(15):2011-2013.
    [185]Monticone S, Tufeu R, Kanaev A V. Complex nature of the UV and visible fluorescence of Colloidal ZnO nanoparticles [J]. Journal of Physical Chemistry B,1998,102(16):2854-2862.
    [186]Lee G H, Yamamoto Y, Kourogi M, Ohtsu M. Blue shift in room temperature photoluminescence from photo-chemical vapor deposited ZnO films [J]. Thin Solid Films,2001,386(1):117-120.
    [187]Wang Q T, Wang G Z, Jie J S, Han X H, Xu B, Hou J G. Annealing effect on optical properties of ZnO films fabricated by cathodic electrodeposition [J]. Thin Solid Films,2005,492(1-2):61-65.
    [188]Pauporte T, Lincot D. Electrodeposition of semiconductors for optoelectronic devices:results on zinc oxide [J]. Electrochimica Acta,2000,45(20):3345-3353.
    [189]Hsu N E, Hung W K, Chen Y F. Origin of defect emission identified by polarized luminescence from aligned ZnO nanorods [J]. Journal of Applied Physics,2004,96(8):4671-4673.
    [190]Vanheusden K, Seager C H, Warren W L. Tallant D R, Voigt J A. Correlation between photoluminescence and oxygen vacancies in ZnO phosphors [J]. Applied Physics Letters,1996,68(3): 403-405.
    [191]Noei H, Qiu H S, Wang Y M, Loffler E, Woll C, Muhler M. The identification of hydroxyl groups on ZnO nanoparticles by infrared spectroscopy [J]. Physical Chemistry Chemical Physics,2008,10(47): 7092-7097.
    [192]Van de Walle C G. Hydrogen as a shallow center in semiconductors and oxides [J]. Physica Status Solidi B-Basic Research,2003,235(1):89-95.
    [193]Hofmann D M, Hofstaetter A, Leiter F, Zhou H J, Henecker F, Meyer B K, et al. Hydrogen:A relevant shallow donor in zinc oxide [J]. Physical Review Letters,2002,88(4):045504.
    [194]Xie R G, Sekiguchi T, Ishigaki T, Ohashi N, Li D S, Yang D R, et al. Enhancement and patterning of ultraviolet emission in ZnO with an electron beam [J]. Applied Physics Letters,2006,88(13):134103.
    [195]Lin C C, Chen H P, Liao H C, Chen S Y. Enhanced luminescent and electrical properties of hydrogen-plasma ZnO nanorods grown on wafer-scale flexible substrates [J]. Applied Physics Letters, 2005,86(18):183103.
    [196]Tam K H, Cheung C K, Leung Y H, Djurisic A B, Ling C C, Beling C D, et al. Defects in ZnO nanorods prepared by a hydrothermal method [J]. Journal of Physical Chemistry B,2006,110(42): 20865-20871.
    [197]Janotti A, Van de Walle C G. Native point defects in ZnO [J]. Physical Review B, 2007,76(16):165202.
    [198]Fang Z B, Wang Y Y, Peng X P, Liu X Q, Zhen C M. Structural and optical properties of ZnO films grown on the AAO templates [J]. Materials Letters,2003,57(26-27):4187-4190.
    [199]Fang Z B, Wang Y Y, Xu D Y, Tan Y S, Liu X Q. Blue luminescent center in ZnO films deposited on silicon substrates [J]. Optical Materials,2004,26(3):239-242.
    [200]Zhong H M, Wang J B, Pan M, Wang S W, Li Z F, Xu W L, et al. Preparation and photoluminescence of ZnO nanorods [J]. Materials Chemistry and Physics,2006,97(2-3):390-393.
    [201]Lin B X, Fu Z X, Jia Y B. Green luminescent center in undoped zinc oxide films deposited on silicon substrates [J]. Applied Physics Letters,2001,79(7):943-945.
    [202]Kao P C, Chu S Y, Li B J, Chang J W, Huang H H, Fang Y C, et al. Low temperature solution-synthesis and photoluminescence properties of ZnO nanowires [J]. Journal of Alloys and Compounds,2009,467(1-2):342-346.
    [203]Xie R G, Li D S, Yang D R, Sekiguchi T, Jiang M H. Thermal-desorption induced enhancement and patterning of ultraviolet emission in chemically grown ZnO [J]. Nanotechnology,2006,17(11):2789-2793.
    [204]Lupan O. Pauporte T, Chow L, Viana B, Pelle F, Ono L K, et al. Effects of annealing on properties of ZnO thin films prepared by electrochemical deposition in chloride medium [J]. Applied Surface Science, 2010,256(6):1895-1907.
    [205]Gruzintsev A N, Yakimov E E. Annealing effect on the luminescent properties and native defects of ZnO [J]. Inorganic Materials,2005,41(7):725-729.
    [206]Zuo J M, Kim M, O'Keeffe M, Spence J C H. Direct observation of d-orbital holes and Cu-Cu bonding in Cu2O [J]. Nature,1999,401(6748):49-52.
    [207]Mittiga A, Salza E, Sarto F, Tucci M, Vasanthi R. Heterojunction solar cell with 2% efficiency based on a Cu2O substrate [J]. Applied Physics Letters,2006,88(16):163502-163502.
    [208]Park J C, Kim J, Kwon H, Song H. Gram-Scale Synthesis of Cu2O Nanocubes and Subsequent Oxidation to CuO Hollow Nanostructures for Lithium-Ion Battery Anode Materials [J]. Advanced Materials,2009,21 (7):803-807.
    [209]Reitz J B, Solomon E I. Propylene oxidation on copper oxide surfaces:Electronic and geometric contributions to reactivity and selectivity [J]. Journal of the American Chemical Society, 1998,120(44):11467-11478.
    [210]Zhu H T, Wang J X, Xu G Y. Fast Synthesis of Cu2O Hollow Microspheres and Their Application in DNA Biosensor of Hepatitis B Virus [J]. Crystal Growth & Design,2009,9(1):633-638.
    [211]Jeong S, Aydil E S. Heteroepitaxial growth of Cu2O thin film on ZnO by metal organic chemical vapor deposition [J]. Journal of Crystal Growth,2009,311 (17):4188-4192.
    [212]Xu J S, Xue D F. Five branching growth patterns in the cubic crystal system:A direct observation of cuprous oxide microcrystals [J]. Acta Materialia,2007,55(7):2397-2406.
    [213]Zhao X, Bao Z Y, Sun C T, Xue D F. Polymorphology formation of Cu2O:A microscopic understanding of single crystal growth from both thermodynamic and kinetic models [J]. Journal of Crystal Growth,2009,311(3):711-715.
    [214]Zhang L, Li H, Ni Y H, Li J, Liao K M, Zhao G C. Porous cuprous oxide microcubes for non-enzymatic amperometric hydrogen peroxide and glucose sensing [J]. Electrochemistry Communications,2009,11 (4):812-815.
    [215]Kuo C H, Huang M H. Fabrication of truncated rhombic dodecahedral Cu2O nanocages and nanoframes by particle aggregation and acidic etching [J]. Journal of the American Chemical Society, 2008,130(38):12815-12820.
    [216]Siegfried M J, Choi K S. Electrochemical crystallization of cuprous oxide with systematic shape evolution [J]. Advanced Materials,2004,16(19):1743-1746.
    [217]Siegfried M J, Choi K S. Directing the architecture of cuprous oxide crystals during electrochemical growth [J]. Angewandte Chemie-International Edition,2005,44(21):3218-3223.
    [218]Siegfried M J. Choi K S. Elucidating the effect of additives on the growth and stability of Cu2O surfaces via shape transformation of pre-grown crystals [J]. Journal of the American Chemical Society, 2006.128(32):10356-10357.
    [219]Siegfried M J. Choi K S. Elucidation of an overpotential-limited branching phenomenon observed during the electrocrystallization of cuprous oxide [J]. Angewandte Chemie-International Edition. 2008,47(2):368-372.
    [220]Switzer J A, Hung C J, Huang L Y, Switzer E R, Golden T D, Bohannan E W. Electrochemical self assembly of copper cuprous oxide layered nanostructures. [J]. Abstracts of Papers of the American Chemical Society,1998,215:U423-U423.
    [221]Liu R, Kulp E A, Oba F, Bohannan E W, Ernst F, Switzer J A. Epitaxial electrodeposition of high-aspect-ratio Cu2O(110) nanostructures on InP(111) [J]. Chemistry of Materials,2005,17(4):725-729.
    [222]Oba F, Ernst F, Yu Y S, Liu R, Kothari M, Switzer J A. Epitaxial growth of cuprous oxide electrodeposited onto semiconductor and metal substrates [J]. Journal of the American Ceramic Society, 2005,88(2):253-270.
    [223]Inguanta R, Piazza S, Sunseri C. Novel procedure for the template synthesis of metal nanostructures [J]. Electrochemistry Communications,2008,10(4):506-509.
    [224]Inguanta R, Piazza S, Sunseri C. Synthesis of self-standing Pd nanowires via galvanic displacement deposition [J]. Electrochemistry Communications,2009,11(7):1385-1388.
    [225]Shinagawa T, Murase K, Izaki M. Sustainable Electrodeposition of ZnO by a Galvanic Contact Method [J]. Electrochemical and Solid State Letters,2009,12(9):D72-D75.
    [226]Mccandless B E, Mondal A, Birkmire R W. Galvanic Deposition of Cadmium-Sulfide Thin-Films [J]. Solar Energy Materials and Solar Cells,1995,36(4):369-379.
    [227]Arai K, Hagiwara S. Takayama S, Murase K. Hirato T, Awakura Y. Galvanic contact deposition of CdTe from ammoniacal basic electrolytes at elevated temperatures using an autoclave-type electrolysis vessel [J]. Electrochemistry Communications,2006,8(4):605-609.
    [228]Wu C Y, Cui C H, Li B, Bi J, Gao D J, Lai X. Analysis of galvanic cell deposition process in preparation of BaMoO4 films [J]. Journal of Materials Science,2009,44(8):2027-2030.
    [229]Ali J A, Ambrose J R. The Relationship between Copper Component Dissolution Kinetics and the Corrosion Behavior of Monel-400 Alloy in Deaerated Nacl Solutions [J]. Corrosion Science, 1992,33(7):1147-1159.
    [230]Ismail K M, El-Egamy S S, Abdelfatah M. Effects of Zn and Pb as alloying elements on the electrochemical behaviour of brass in borate solutions [J]. Journal of Applied Electrochemistry, 2001,31(6):663-670.
    [231]Ricejackson L M, Horanyi G, Wieckowski A. Radiotracer Study of Adsorption of HSO4- and SO42-Ions on a Smooth Copper Electrode in Acid and Neutral Media [J]. Electrochimica Acta,1991,36(5-6): 753-757.
    [232]Ismail K M, Fathi A M, Badawy W A. Effect of nickel content on the corrosion and passivation of copper-nickel alloys in sodium sulfate solutions [J]. Corrosion,2004,60(9):795-803.
    [233]Ismail K M, Elsherif R M, Badawy W A. Effect of Zn and Pb contents on the electrochemical behavior of brass alloys in chloride-free neutral sulfate solutions [J]. Electrochimica Acta,2004,49(28): 5151-5160.
    [234]Han X F, Han K H, Tao M. n-Type Cu2O by Electrochemical Doping with Cl [J]. Electrochemical and Solid State Letters,2009,12(4):H89-H91.
    [235]Stickney J L, Ehlers C B, Gregory B W. Adsorption of Gaseous and Aqueous Hcl on the Low-Index Planes of Copper [J]. Langmuir,1988,4(6):1368-1373.
    [236]Chen K J, Hung F Y, Chang S J, Young S J. Optoelectronic characteristics of UV photodetector based on ZnO nanowire thin films [J]. Journal of Alloys and Compounds,2009,479(1-2):674-677.
    [237]Ahn H J, Shim H S, Kim W B, Sung Y E, Seong T Y. Co-sputtering growth and electro-oxidation properties of Pt-CuO nanocomposites for direct methanol thin film fuel cells [J]. Journal of Alloys and Compounds,2009,471(1-2):L39-L42.
    [238]Zhou G J, Lu M K, Xiu Z L, Wang S F, Zhang H P, Zhou Y Y, et al. Controlled synthesis of high-quality PbS star-shaped dendrites, multipods, truncated nanocubes, and nanocubes and their shape evolution process [J]. Journal of Physical Chemistry B,2006,110(13):6543-6548.
    [239]He K, Xu C Y, Zhen L, Shao W Z. Fractal growth of single-crystal alpha-Fe2O3:From dendritic micro-pines to hexagonal micro-snowflakes [J]. Materials Letters,2008,62(4-5):739-742.
    [240]Lim W P, Low H Y, Chin W S. From winter snowflakes to spring blossoms:Manipulating the growth of copper sulfide dendrites [J]. Crystal Growth & Design,2007,7(12):2429-2435.
    [241]Gur I, Fromer N A, Chen C P, Kanaras A G, Alivisatos A P. Hybrid solar cells with prescribed nanoscale morphologies based on hyperbranched semiconductor nanocrystals [J]. Nano Letters, 2007,7(2):409-414.
    [242]Zhao P T, Chen G, Hu Y, He X L, Wu K, Cheng Y, et al. Preparation of dentritic PbS nanostructures by ultrasonic method [J]. Journal of Crystal Growth,2007,303(2):632-637.
    [243]Wang L, Yamauchi Y. Facile Synthesis of Three-Dimensional Dendritic Platinum Nanoelectrocatalyst [J]. Chemistry of Materials,2009,21 (15):3562-3569. [244] Xu J S, Xue D F, Zhu Y C. Room temperature synthesis of curved ammonium copper molybdate nanoflake and its hierarchical architecture [J]. Journal of Physical Chemistry B,2006,110(35): 17400-17405.
    [245]Xu J S, Xue D F. Fabrication of upended taper-shaped cuprous thiocyanate arrays on a copper surface at room temperature [J]. Journal of Physical Chemistry B,2006,110(23):11232-11236.
    [246]Tong Y H, Cheng J, Liu Y L, Siu G G. Enhanced photocatalytic performance of ZnO hierarchical nanostructures synthesized via a two-temperature aqueous solution route [J]. Scripta Materialia, 2009,60(12):1093-1096.
    [247]Yao W T, Yu S H, Liu S J, Chen J P, Liu X M, Li F Q. Architectural control syntheses of CdS and CdSe nanoflowers, branched nanowires, and nanotrees via a solvothermal approach in a mixed solution and their photocatalytic property [J]. Journal of Physical Chemistry B,2006,110(24):11704-11710.
    [248]Lopez C M, Choi K S. Electrochemical synthesis of dendritic zinc films composed of systematically varying motif crystals [J]. Langmuir,2006,22(25):10625-10629.
    [249]Lu X H, Wang D, Li G R, Su C Y, Kuang D B, Tong Y X. Controllable Electrochemical Synthesis of Hierarchical ZnO Nanostructures on FTO Glass [J]. Journal of Physical Chemistry C.2009,113(31): 13574-13582.
    [250]Yu J S, Fujita T, Inoue A, Sakurai T, Chen M W. Electrochemical synthesis of palladium nanostructures with controllable morphology [J]. Nanotechnology,2010,21(8):085601-085607.
    [251]Song Y J, Yang Y, Medforth C J. Pereira E, Singh A K, Xu H F, et al. Controlled synthesis of 2-D and 3-D dendritic platinum nanostructures [J]. Journal of the American Chemical Society. 2004,126(2):635-645.
    [252]Wen X G, Xie Y T, Mak W C, Cheung K Y, Li X Y, Renneberg R, et al. Dendritic nanostructures of silver:Facile synthesis, structural characterizations, and sensing applications [J]. Langmuir, 2006,22(10):4836-4842.
    [253]Yan C L, Xue D F. A modified electroless deposition route to dendritic Cu metal nanostructures [J]. Crystal Growth & Design,2008,8(6):1849-1854.
    [254]Xu J W, Yu K, Zhu Z Q. Synthesis and field emission properties of Cu dendritic nanostructures [J]. Physica E-Low-Dimensional Systems & Nanostructures,2010,42(5):1451-1455.
    [255]王恩哥.薄膜生长中的表面动力学(Ⅰ)[J].物理学进展,2003,23(1):1-61.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700