基于硫酸根自由基的高级氧化技术对典型有机污染物降解的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氯苯胺诸如苯胺和对氯苯胺(PCA)是水中常见的污染物,广泛应用于许多行业,例如染料制造、杀虫剂、橡胶助剂、抗氧化剂、药物、农药和除草剂等行业。PCA和苯胺对动物和人类具有毒性和致癌性,基于它们的这些危险性质,需要处理被其污染的废水以避免其对环境的有害影响。
     基于产生硫酸根自由基(SO_4~-)的高级氧化技术是去除非生物降解的有机污染物的最有效方法之一。由于SO_4~-的强氧化性,其在治理废水方面受到了越来越多的关注,过硫酸盐活化技术由于其方法简单以及反应条件温和而成为了一项有效产生SO_4~-的技术。在本论文的研究中,利用零价铁(ZVI)活化过硫酸盐降解废水中的PCA和苯胺。零价铁(ZVI)能活化过硫酸盐产生硫酸根自由基,利用硫酸自由基的强氧化性可降解有机污染物。
     在零价铁(ZVI)活化过硫酸盐(S_2O_8~(2-))降解对氯苯胺(PCA)的实验研究中,讨论了不同pH、温度、ZVI用量等条件对PCA降解的影响。实验结果表明:随着ZVI含量的增加,ZVI可以活化过硫酸盐产生更多的强氧化性的活性基团(如:硫酸自由基),使PCA的降解效率也随之加快。与碱性条件相比,PCA在酸性条件下(pH2.0和4.0)的降解效率更高,在pH为4.0时,PCA在12分钟即可完全降解。PCA的矿化作用非常显著,TOC在30分钟内去除效率就达到了69%,且随着时间的增长而增加,在pH为4.0的条件下,TOC在3小时后的去除率达到了94%。反应温度从15℃增加到50℃可显著增强PCA的降解效率。苯胺、对氯硝基苯、对苯醌、1-(4氯苯)-3苯基脲和5-氯-2-(4氯苯二氮烯)苯酚被认为是过硫酸盐氧化PCA的主要中间产物。
     在实验室条件下,本文研究了零价铁(ZVI)活化过硫酸盐(S_2O_8~(2-))氧化降解水中的苯胺,讨论了不同pH、ZVI浓度、苯胺浓度、过硫酸盐浓度和反应温度等条件对苯胺降解效果的影响。结果表明:苯胺的降解效率随着温度的升高而增加;ZVI的最佳用量为0.4g/L,且有85%的苯胺得到降解;在pH为4.0时苯胺的降解效率最大,当pH大于或小于4.0时,苯胺的降解效率降低。在PS-ZVI系统中,苯胺降解的表观活化能是14.85kJmol~(-1)。在乙醇和叔丁醇等自由基捕获剂实验中,证明了苯胺降解过程中同时硫酸自由基和羟基自由基。通过GC-MS检测苯胺降解的中间产物有硝基苯、亚硝基苯和对苯醌,通过及基于这些中间物阐明了苯胺降解可能的反应途径。
Chloroanilines such as aniline and p-chloroaniline (PCA) are common water pollutantswhich are widely used in many industries such as dye manufacturing, pesticides, rubberchemicals, antioxidants, pharmaceuticals, pesticides and herbicides. PCA and aniline areconsidered to be toxic and carcinogenic to animals and human beings. These hazardousproperties of PCA and aniline require the treatment of contaminated wastewater to preventany deleterious effect to the environment.
     Advanced oxidation processes based on the generation of sulfate radicals (SO_4~-) is oneof the most effective ways to remove the nonbiodegradable organic pollutants. Due to its highoxidation ability, SO_4~-is getting more and more attention for the treatment of wastewater.Persulfate activation is a promised technique to produce SO_4~-due to the simplicity of methodand mildness of reaction conditions. In this study zero valent iron (ZVI) was used to activatepersulfate for the degradation of PCA and aniline in wastewater. Zero valent iron (ZVI) canactivate persulfate to generate sulfate free radicals which are a strongest oxidant to degradeorganic pollutants
     The degradation of p-chloroaniline (PCA) by persulfate (S_2O_8~(2-)) activated with zero-valent iron (ZVI) was investigated through batch experiments. Effects of pH, temperature anddosages of ZVI on PCA degradation were also examined. The degradation of PCA increasedwith higher dosage of ZVI due to increased activation of persulfate by zero-valent iron whichgenerates strong oxidizing species (sulfate radicals) in aqueous solution. The PCAdegradation was higher under acidic conditions (pH2.0and4.0) when compared to alkalineconditions. Complete degradation of PCA was obtained by ZVI-activated persulfate at pH4.0in12minutes. PCA mineralization was significant, where69%TOC removal efficiency wasachieved within30min. TOC removal efficiency increased with increasing time, so that94%TOC was removed after3h reaction time at pH4.0. An increase in reaction temperature from15to50℃significantly enhanced the PCA degradation. The aniline, N-(4-chlorophenyl)-p-phenylene di-imine,1-(4-chlorophenyl)-3-phenylurea and5-chloro-2-(4-chlorophenyl diazenyl) phenol were identified as the major intermediates of PCA oxidationby persulfate
     The oxidative degradation of aniline in aqueous solution by persulfate activated withzero valent iron was studied under laboratory conditions. Batch experiments were conductedto investigate the effects of different parameters such as pH, ZVI concentration, aniline concentration, persulfate concentration and reaction temperature on aniline degradation. Theresults showed that aniline degradation increased with increasing temperature. The optimumdosage of ZVI was0.4g/L, and85%aniline degradation was observed. Maximum anilinedegradation was observed at pH4.0, whereas at pH above or below4.0, aniline degradationefficiency was decreased. In persulfate-ZVI system, the apparent energy of activation foraniline degradation was14.85kJ mol~(-1). The existence of persulfate radicals and hydroxylradicals produced during the degradation of aniline were identified with scavenger ethanoland tert-butyl alcohol. The reaction intermediates nitrobenzene, nitroso-benzene and p-benzoquinone were detected by gas chromatography–mass spectrometry. Based on theseintermediates observed a probable pathway of aniline degradation has been proposed.
引文
[1] Sanchez I.; Stüber F.; Font J.; et al. Elimination of phenol and aromatic compoundsby zero valent iron and EDTA at low temperature and atmospheric pressure[J].Chemosphere,2007,68(2):338-344
    [2] Vass A. Over half the world will face water shortages by2032[J]. British MedicalJournal,2002,324(7349):1293-1293
    [3] WHO. Global Water Supply and Sanitation Assessment Report. WHO/UNICEF JointMonitoring Program for Water Supply and Sanitation, World Health Organization andUnited Nations Children Fund.2000.
    [4] WHO and UNICEF Joint Monitoring Programme. Water for Life: Making it happen.Geneva, Switzerland.2005.ATSDR, Toxicological Profile for Polycyclic Aromatic Hydrocarbons (PAHs).A.f.T.S.a.D. Registry, Editor.2004.Agency for Toxic Substances and Disease Registry (ATSDR), Agency for ToxicSubstances and Disease Registry ToxFAQs, Retrieved August,2005
    [5] Brunsbach F.R.; Reineke W. Degradation of Chloroanilines in soil slurry bySpecialized Organisms [J]. Applied Microbiology and Biotechnology,1993,40(2):402-407
    [6] Boon N.; Goris J.; De Vos P.; et al. Genetic diversity among3-chloroaniline-andaniline-degrading strains of the Comamonadaceae [J]. Applied and EnvironmentalMicrobiology,2001,67(3):1107–1115
    [7] Gosetti, F.; Bottaro M.; Gianotti V.; et al. Sun light degradation of4-chloroaniline inwaters and its effect on toxicity. A high performance liquid chromatography-diodearray-Tandem mass spectrometry study [J]. Environmental Pollution,2010,158(2):592–598
    [8] Choy W.K.; Chu W. Destruction of o-Chloroaniline in UV/TiO2reaction withPhotosensitizing Additives [J]. Industrial&Engineering Chemistry Research,2005,44(22):8184–8189
    [9] Brillas E.; Casado J. Aniline degradation by electro-Fenton and peroxi-coagulationprocesses using a flow reactor for wastewater treatment [J]. Chemosphere,2002,47(3):241-248
    [10] Zhu L.; Ma B; Zhang L; et al. The study of distribution and fate of nitrobenzene in awater/sediment microcosm [J]. Chemosphere,2007,69(10):1579-1585
    [11] Anotai J.; Masomboon N.; Chuang C.L.; et al. Persulfate oxidation for the anilinedegradation in aqueous systems [J]. Water Science and Technology,2011,63(7):1434-1440
    [12] Ahn Y.B.; Rhee S.K.; Fennell D.E.; et al. Reductive dehalogenation of brominatedphenolic compounds by microorganisms associated with the marine sponge Aplysinaaerophoba [J]. Applied and Environmental Microbiology,2003,69(7):4159-4166
    [13] Fennell D.E.; Carroll A.B.; Gossett J.M.; et al. Assessment of indigenous reductivedechlorinating potential at a TCE-contaminated site using microcosms, polymerasechain reaction analysis, and site data [J]. Environmental Science&Technology,2001,35(9):1830-1839
    [14] Fennell D.E.; Gossett J.M.; Zinder S.H. Comparison of butyric acid, ethanol, lacticacid, and propionic acid as hydrogen donors for the reductive dechlorination oftetrachloroethene [J]. Environmental Science&Technology,1997,31(3):918-926
    [15] Datta S.; Bhattacharya P.K.; Verma N. Removal of aniline from aqueous solution in amixed flow reactor using emulsion liquid membrane [J]. Journal of Membrane Science,2003,226(1-2):185-201
    [16] Danis T.G.; Albanis T.A.; Petrakis D.E.; et al. Removal of chlorinated phenols fromaqueous solutions by adsorption on alumina pillared clays and mesoporous aluminaaluminum phosphates [J]. Water Research,1998,32(2):295–302
    [17] Kearney P.C.; Kaufmann D.D. Herbicides: Chemistry, degradation and mode of action.Marcel Dekker, New York,1988
    [18] Latorre J.; Reineke W.; Knackmuss H.J. Microbial metabolism of chloroanilines:enhanced evolution by natural genetic exchange [J]. Archives of Microbiology,1984,14(2):159–165
    [19] OECD. OECD List of high production volume chemical. Organization for EconomicCo-operation and Development. Environment directorate. Paris,1997
    [20] Haggblom M.M. Microbial breakdown of halogenated aromatic pesticides and relatedcompounds [J]. FEMS Microbiology Reviews,1992,9(1):29–71
    [21] Federal Register. In Priority Pollutant List (promulgated by the US EnvironmentalProtection Agency under authority of the Clean Water Act of1977),1979,44:233
    [22] Booth G. Nitro Compounds, Aromatic. In: Ullmann's Encyclopedia of IndustrialChemistry, John Wiley&Sons: New York,2007.
    [23] Vangnai A.S.; Petchkroh W. Biodegradation of4-chloroaniline by bacteria enrichedfrom soil [J]. FEMS Microbiology Letters,2007,268(2):209–216
    [24] Hongsawat P.; Vangnai A.S. Biodegradation pathways of chloroanilines byAcinetobacter baylyi strain GFJ2[J], Journal of Hazardous Materials,2011,186(2-3):1300–1307
    [25] Kahng H.Y.; Kukor J.J.; Oh K.H. Characterization of strain HY99, a novelmicroorganism capable of aerobic and anaerobic degradation of aniline [J]. FEMSMicrobiology Letters,2000,190(2):215–221
    [26] Radianingtyas H.; Robinson G.K.; Bull A.T. Characterization of a soil-derivedbacterial consortium degrading4-chloroaniline [J]. Microbiology,2003,149:3279–3287
    [27] Zeyer J.; Wasserfallen A.; Timmis K.N. Microbial mineralization of ring-substitutedanilines through an ortho-cleavage pathway [J]. Applied and EnvironmentalMicrobiology,1985,50(2):447–453.
    [28] Loidl M.; Hinteregger C.; Ditzelmuuller G.; et al. Degradation of aniline andmonochlorinated anilines by soil-born Pseudomonas acidovorans strains [J]. Archivesof Microbiology,1990,155:56–61
    [29] Surovtseva E.G.; Ivoilov V.S.; Vasileva G.K. et al. Degradation of chlorinated anilinesby certain representatives of the genera Aquaspirillum and Paracoccus [J].Microbiology,1996,65:553–559
    [30] Zhang L.L.; He D.; Chen J.M.; et al. Biodegradation of2-chloroaniline,3-chloroaniline, and4-chloroaniline by a novel strain Delftia tsuruhatensis H1[J].Journal of Hazardous Materials,2010,179(1-3):875–882
    [31] Tongarun R.; Luepromchai E.; Vangnai A.S. Natural attenuation, biostimulation, andbioaugmentation in4-chloroaniline-contaminated soil [J]. Current Microbiology,2008,56(2):182–188
    [32] Simmons K.E.; Minard R.D.; Bollag J.M. Oligomerization of4-chloroaniline byoxidoreductases [J]. Environmental Science and Technology,1987,21(10):999-1003
    [33] Simmons K.E.; Minard R.D.; Freyer A.J. et al. Structural and quantitative analyses of4-chloroaniline-derived oligomers [J]. International Journal of EnvironmentalAnalytical Chemistry,1986,26:209-227
    [34] Chang H.C.; Holland R.D.; Bumpus J.A.; et al. Inactivation of Coprinus cinereusperoxidase by4-chloroaniline during turnover: comparison with horseradishperoxidase and bovine lactoperoxidase [J]. Chemico-Biological Interactions,1999,123(3):197-217
    [35] Zhu L.; Xu X.; Luo W.; et al. Formation and microbial community analysis ofchloroanilines-degrading aerobic granules in the sequencing airlift bioreactor [J].Journal of Applied Microbiology,2008,104(1):152-160
    [36] Zhu L.; Xu X.; Luo W.; et al. A comparative study on the formation andcharacterization of aerobic4-chloroaniline-degrading granules in SBR and SABR [J].Applied Microbiology and Biotechnology,2008,79(5):867–874
    [37] Choy W.K.; Chu W. The use of oxyhalogen in the photocatalytic reaction to removeo-chloroaniline in TiO2dispersion. Chemosphere,2007,66(11):2106-2113
    [38] Choy W.K.; Chu W. Photo-oxidation of o-chloroaniline in the presence of TiO2andIO3-: a study of photo-intermediates and successive IO3-dose [J]. ChemicalEngineering Journal,2008,136(2-3):180-187
    [39] Chu W.; Choy W.K.; So T.Y. The effect of solution pH and peroxide in the TiO2-induced photocatalysis of chlorinated aniline [J]. Journal of Hazardous Materials,2007,141(1):86–91
    [40] Chu W.; Kwan C.Y.; Chan K.H.; et al. Comprehensive study of the wavelength effecton oxidation processes of2-chloroaniline [J]. Industrial and Engineering ChemistryResearch,2006,45(11):3769-3775
    [41] Coppo P.; Fagnoni M.; Albini A. Photochemical conversion of4-chloroaniline into4-alkylanilines [J]. Tetrahedron Letters,2001,42(25):4271-4273
    [42] Emtiazi G.; Satarii M.; Mazaherion F. The utilization of aniline, chlorinated aniline,and aniline blue as the only source of nitrogen by fungi in water [J]. Water Research,2001,35(5):1219-1224
    [43] Guizzardi B.; Mella M.; Fagnoni M.; et al. Generation and reactivity of the4-aminophenyl cation by photolysis of4-chloroaniline [J]. Journal of Organic Chemistry,2001,66(19):6353-6363
    [44] Augugliaro V.; Prevot A.B., Loddo V.; et al. Photodegradation kinetics of aniline,4-ethylaniline, and4-chloroaniline in aqueous suspension of polycrystalline titaniumdioxide [J]. Research on Chemical Intermediates,2000,26(5):413-426
    [45] Mailhot G.; Hykrdova L.; Jirkovsky J.; et al. Iron(III)-photoinduced degradation of4-chloroaniline in aqueous solution [J]. Applied Catalysis B: Environmental,2004,50(1),25-35
    [46] Othmen K.; Boule P.; Szczepanik B.; et al. Photochemistry of4-chloroaniline insolution. Formation and kinetic properties of a new carbene,4-iminocyclohexa-2,5-dienylidene [J]. The Journal of Physical Chemistry A,2000,104(42):9525-9534
    [47] Sanchez M.; Wolfger H.; Getoff N. Radiation-induced degradation of4-chloroanilinein aqueous solution [J]. Radiation Physics and Chemistry,2002,65:611-620
    [48] Hofmann J.; Freier U.; Wecks M.; et al. Degradation of halogenated organiccompounds in ground water by heterogeneous catalytic oxidation with hydrogenperoxide [J]. Topics in Catalysis,2005,33(1-4):243-247
    [49] Song S.; He Z.; Chen J. US/O3combination degradation of aniline in aqueous solution[J]. Ultrasonics Sonochemistry,2007,14(1):84-88
    [50] Li J.; Xie C. Study on aerobic co-metabolism biodegradation of aniline in wastewater.Chinese Journal of Environmental Engineering,2007,1(6):51–55
    [51] Zhang X.; Dong X.Q.; Zhang M.H. Catalytic supercritical water oxidation of aniline[J]. Chemical Industry and Engineering Progress,2007,26(3):413-416
    [52] Li J.; Jin Z. Effect of hypersaline aniline-containing pharmaceutical wastewater on thestructure of activated sludge-derived bacterial community [J]. Journal of HazardousMaterials,2009,172(1):432–438.
    [53] ATSDR, Medical Management Guidelines for Aniline.2007
    [54] Su C.C; Pagaling E.D.; Peralta G.L.; et al. Comparison of Aniline Degradation byFenton and Electro-Fenton Reactors Using Plate and Rod Electrodes [J].Environmental Progress&Sustainable Energy,2012,1–7. doi:10.1002/ep.11733
    [55] Zhaolian Y.; Xiao S.; Lu Z.; et al. Study on degradation mechanism of aniline solutionby potassium ferrate [J]. Environmental Pollution and Control,2009,31(4):1-4
    [56] An F.; Feng X.; Gao B. Adsorption property and mechanism of composite adsorbentPMAA/SiO2for aniline [J]. Journal of Hazardous Materials,2010,178(1-3):499-504
    [57] Devulapalli R.; Jones F. Separation of aniline from aqueous solutions using emulsionliquid membranes [J]. Journal of Hazardous Materials,1999,70(3):157-170
    [58] Gómez J.L.; León G.; Hidalgo A.M.; et al. Application of reverse osmosis to removeaniline from wastewater [J]. Desalination,2009,245(1):687-693
    [59] O'Neill F.J.; Bromley-Challenor K.C.A.; Greenwood R.J., et al. Bacterial growth onaniline: implications for the biotreatment of industrial wastewater [J]. Water Research,2000,34(18):4397-4409
    [60] Chengbin X.; Jun N.; Hai Y.; et al. Biodegradation of aniline by a newly isolateddelftia sp. XYJ6[J]. Chinese Journal of Chemical Engineering,2009,17(3):500-505
    [61] Shabbir H.; Gheewala; Annachhatre A.P. Biodegradation of aniline [J]. Water Scienceand Technology,1997,36(10):53-63
    [62] Wang L.; Barrington S.; Kim J.W. Biodegradation of pentyl amine and aniline frompetrochemical wastewater [J]. Journal of Environmental Management,2007,83(2):191–197
    [63] Konopka A.; Knight D.; Turco R.F. Characterization of a Pseudomonas sp. capable ofaniline degradation in the presence of secondary carbon sources [J]. AppliedEnvironmental Microbiology,1989,55(2):385-389
    [64] Parales R.E.; Ontl T.A; Gibson D.T. Cloning and sequence analysis of a catechol2,3-dioxygenase gene from the nitrobenzene-degrading strain Comamonas sp JS765[J].Journal of Industrial Microbiology Biotechnology,1997,19(5-6):385-391
    [65] Schukat B.; Janke D.; Krebs D.; et al. Cometabolic degradation of2-and3-chloroaniline because of glucose metabolism by Rhodococcus sp. AN117[J], CurrentMicrobiology,1983,9(2):81-86
    [66] Aoki K.; Ohtsuka K.; Shinke R.; et al. Rapid biodegradation of aniline by Frateuriaspecies ANA-18[J]. Agricultural Biology and Chemistry,1984,48:865-872
    [67] Glaze W.H.; Bader H. The role of hydroxyl radical reactions in ozonation processes inaqueous solutions [J]. Water Research,1983,17(12):743-747
    [68] Moraes J.E.; Quina F.H.; Nascimento C.A.; et al. Treatment of saline wastewatercontaminated with hydrocarbons by the photo-Fenton Process [J]. EnvironmentalScience&Technology,2004,38(4):1183-1187
    [69] Fan X.; Hao H.; Shen X.; et al. Removal and degradation pathway study ofsulfasalazine with Fenton-like reaction [J]. Journal of Hazardous Materials,2011,190(1-3):493-500
    [70] Hsueh C.L.; Huang Y.H.; Wang C.C.; et al. Degradation of azo dyes using low ironconcentration of Fenton and Fenton-like system [J]. Chemosphere,2005,58(10):1409-14
    [71] Yan J.; Tang H.; Lin Z.; et al. Efficient degradation of organic pollutants with ferroushydroxide colloids as heterogeneous Fenton-like activator of hydrogen peroxide [J].Chemosphere,87(2):111-117
    [72] Pignatello J.J. Dark and Photoassisted Fe3+-Catalyzed Degradation ofChlorophenoxy Herbicides by Hydrogen Peroxide [J]. Environmental Science&Technology,1992,26(5):944-951
    [73] Zepp R.G.; Faust B.C.; Hoigne J. Hydroxyl Radical Formation in Aqueous Reactions(pH3-8) of Iron(II) with Hydrogen Peroxide: The Photo-Fenton Reaction [J].Environmental Science&Technology,1992,26(2):313-319
    [74] Song Z.; Wang N.; Zhu L.; et al. Efficient oxidative degradation of triclosan by usingan enhanced Fenton-like process [J]. Chemical Engineering Journal,2012,198-199,379-387
    [75] Chen W.R.; Sharpless C.M.; Linden K.G.; et al. Treatment of volatile organicchemicals on the EPA Contaminant Candidate List using ozonation and the O3/H2O2advanced oxidation process [J]. Environmental Science&Technology,2006,40(8):2734-2739
    [76] Sauleda R.; Brillas E. Mineralization of aniline and4-chlorophenol in acidic solutionby ozonation catalyzed with Fe2+and UVA light [J]. Applied Catalysis B:Environmental,2001,29(2):135-145
    [77] Aziz, H.A. Effect of Ozone and Ozone/Fenton in the Advanced Oxidation Process onbiodegradable characteristics of semi-aerobic stabilized Leachate [J]. Clean-Soil,Air,Water,2013,41(2):148-152
    [78] Wang N.; Zhu L.; Wang M.; et al. Sono-enhanced degradation of dye pollutants withthe use of H2O2activated by Fe3O4magnetic nanoparticles as peroxidase mimetic [J].Ultrasonics Sonochemistry,2010,17(1),78-83
    [79] Yao J.J.; Gao N.Y.; Deng Y.; et al. Sonolytic degradation of parathion and theformation of byproducts [J]. Ultrasonics Sonochemistry,2010,17(5):802-809
    [80] Song S.; He Z.; Chen J. US/O3combination degradation of aniline in aqueous solution[J]. Ultrasonics Sonochemistry,2007,14(1),84-88
    [81] Xu L.J.; Chu W.; Graham N. Sonophotolytic degradation of dimethyl phthalatewithout catalyst: Analysis of the synergistic effect and modeling [J]. Water Research,2013,47(6):1996-2004
    [82] Sun J.H.; Sun S.P.; Fan M.H.; et al. A kinetic study on the degradation of p-nitroaniline by Fenton oxidation process [J]. Journal of Hazardous Materials,2007,148(1-2):172-177
    [83] Handa M.; Lee Y.; Shibusawa M.; et al. Removal of VOCs in waste gas by the photo-Fenton reaction: effects of dosage of Fenton reagents on degradation of toluene gas ina bubble column [J]. Journal of Chemical Technology&Biotechnology,2013,88(1):88-97
    [84] Siedlecka E.M.; Stepnowski P. Phenols degradation by Fenton Reaction in thepresence of chlorides and sulfates [J]. Polish Journal of Environmental Studies,2005,14(6):823-828
    [85] Vilve M.; Vilhunen S.; Veps l inen M.; et al. Degradation of1,2-dichloroethane fromwash water of ion-exchange resin using Fenton’s oxidation [J]. Environmental Scienceand Pollution Research International,2010,17(4):875–884
    [86] Duesterberg C.K.; Mylon S.E.; Waite T.D. pH Effects on Iron-Catalyzed Oxidationusing Fenton's Reagent [J]. Environmental Science&Technology,2008,42(22):8522-8527
    [87] Kashif N.; Ouyang F. Parameters effect on heterogeneous photocatalysed degradationof phenol in aqueous dispersion of TiO2[J]. Journal of Environmental Sciences,2009,21(4):527-533
    [88] Shahrezaei F.; Mansouri Y.; Zinatizadeh A.A.L.; et al. Photocatalytic degradation ofaniline using TiO2nanoparticles in a vertical circulating photocatalytic reactor [J].International Journal of Photoenergy,2012,1-8
    [89] Fenton H.J.H. Oxidation of tartaric acid in the presence of iron [J]. Journal of theChemical Society, Transactions,1894,65:899-910
    [90] Haber F.; Weiss J. The catalytic decomposition of hydrogen peroxide by iron salts [J],Proceedings of the Royal Society of London. Series A, Mathematical and PhysicalSciences,1934,147:332-351
    [91] Qi X.H.; Zhuang Y.Y.; Yuan Y.C.; et al. Decomposition of aniline in supercriticalwater [J]. Journal of Hazardous Materials,2002,90(1):51-62
    [92] Ghizlaine K.; Nihal O.; Mehmet O.; et al. Degradation of the herbicide imazapyr byFenton reactions [J], Environmental Chemistry Letters,2004,2(1):31-33
    [93] Burbano A.; Dionysiou D.; Suidan M.; et al. Chemical destruction of MTBE usingFenton's reagent: effect of ferrous iron/hydrogen peroxide ratio [J]. Water Science andTechnology,2003,47(9):165-171
    [94] Kwon B.G.; Lee D.S.; Kang N.; et al. Characteristics of p-chlorophenol oxidationby Fenton's Reagent [J]. Water Research,1999,33(9):2110-2118
    [95] Arnold S.M.; Hickey W.J.; Harris R.F. Degradation of Atrazine by Fenton’s Reagent:Condition optimization and product quantification [J]. Environmental Science andTechnology,1995,29(8):2083-2089
    [96] Zimbron J.A.; Reardon K.F. Fenton's oxidation of pentachlorophenol [J]. WaterResearch,2009,43(7):1831-1840
    [97] Xu, X.R.; Zhao, Z.Y.; Li, X.Y.; et al. Chemical oxidative degradation of methyl tert-butyl ether in aqueous solution by Fenton's reagent [J]. Chemosphere,2004,55(1):73-79
    [98] Benitez F.J.; Acero J.L.; Real F.J.; et al. The role of hydroxyl radicals for thedecomposition of p-hydroxy phenylacetic acid in aqueous solutions [J]. WaterResearch,2001,35(5):1338-1343
    [99] Bossmann S.H.; Oliveros E.; Gob S.; et al. New evidence against hydroxyl radicals asreactive intermediates in the thermal and photochemically enhanced Fenton reaction[J]. The Journal of Physical Chemistry A,1998,102(28):5512-5520
    [100] Laat J.D.; Gallard H. Catalytic decomposition of hydrogen peroxide by Fe (III) inhomogeneous aqueous solution: Mechanism and kinetic modeling [J]. EnvironmentalScience&Technology,1999,33(16):2726-2732
    [101] Rivas F.J.; Beltran F.J.; Frades J.; et al. Oxidation of p-hydroxybenzoic acid byFenton's reagent [J]. Water Research,2001,35(2):387-396
    [102] Rivas F.J.; Beltran F.J.; Gimeno O.; et al. Treatment of olive oil mill wastewater byFenton's reagent [J]. Journal of Agricultural and Food Chemistry,2001,49(4):1873-1880
    [103] US DOE. Fenton's Reagent, Innovative Technology Summary Report.1999
    [104] Fallmann H.; Krutzler T.; Bauer R.; et al. Applicability of the Photo-Fenton methodfor treating water containing pesticides [J]. Catalysis Today,1999,54(2):309-319
    [105] Safarzadeh-Amiri A.; Bolton J.R.; Cater S.R. Ferrioxalate-mediated solar degradationof organic contaminants in water [J]. Solar Energy,1996,56(5):439-443
    [106] Kassinos D.; Varnava N.; Michael C.; et al. Homogeneous oxidation of aqueoussolutions of atrazine and fenitrothion through dark and photo-Fenton reactions [J].Chemosphere,2009,74(6):866-872
    [107] Masomboon N.; Ratanatamskul C.; Lu M.C. Chemical oxidation of2,6-dimethylaniline in the fenton process [J]. Environmental Science&Technology,2009,43(22):8629-8634
    [108] Liu H.; Wang C., Li X.; et al. A novel electro-Fenton process for water treatment:Reaction-controlled pH adjustment and performance assessment [J]. EnvironmentalScience&Technology,2007,41(8):2937-2942
    [109] Sires I.; Garrido J.A.; Rodriguez R.M.; et al. Catalytic behavior of the Fe3+/Fe2+system in the electro-Fenton degradation of the antimicrobial chlorophene [J]. AppliedCatalysis B: Environmental,2007,72(3-4):382-394
    [110] Yuan S.; Tian M.; Cui Y.; et al. Treatment of nitrophenols by cathode reduction andelectro-Fenton methods [J]. Journal of Hazardous Materials,2006,137(1):573-580
    [111] Cao G.M.; Sheng M.; Niu W.F.; et al. Regeneration and reuse of iron catalyst forFenton-like reactions [J]. Journal of Hazardous Materials,2009,172(2-3),1446-1449
    [112] Hwang S.; Huling S.G.; Ko S. Fenton-like degradation of MTBE: Effects of ironcounter anion and radical scavengers [J]. Chemosphere,2010,78(5):563-568
    [113] Li N.; Wang P.; Zuo C.; et al. Microwave-Enhanced Fenton process for DMSO-containing wastewater [J]. Environmental Engineering Science,2010,27(3):271-280
    [114] Yang Y.; Wang P.; Shi S.; et al. Microwave enhanced Fenton-like process for thetreatment of high concentration pharmaceutical wastewater [J]. Journal of HazardousMaterials,2009,168(1):238-245
    [115] Feng J.; Hu X.; Yue P.L. Effect of initial solution pH on the degradation of Orange IIusing clay-based Fe nanocomposites as heterogeneous photo-Fenton catalyst [J].Water Research,2006,40(4):641-646
    [116] Perez-Estrada L.A.; Malato S.; Gernjak W.; et al. Photo-fenton degradation ofdiclofenac: Identification of main intermediates and degradation pathway [J].Environmental Science&Technology,2005,39(21):8300-8306
    [117] Li Y.J.; Wang F.; Zhou G.; et al. Aniline degradation by electrocatalytic oxidation [J].Chemosphere,2003,53(10):1229-1234
    [118] Tezuka M.; Iwasaki M. Plasma-induced degradation of aniline in aqueous solution [J].Thin Solid Films,2001,386:204-207
    [119] Jin-Zhang G.; Ke G.; Quan-Fang L.; et al. Plasma induced degradation of aniline inaqueous solution [J]. Plasma Science and Technology,2002,4(2):1243–1251
    [120] Anotai J.; Lu M.-C.; Chewpreecha P. Kinetics of aniline degradation by Fenton andelectro-Fenton processes [J]. Water research,2006,40(9):1841–1847
    [121] Anotai J.; Su C.C.; Tsai Y.C.; et al. Comparison of aniline oxidation by Electro-Fenton and Fluidized-Bed Fenton processes [J]. Journal of Environmental Engineering,2010,137(5):363-370
    [122] Chen W.S.; Liang J.S. Decomposition of nitrotoluenes from trinitrotoluenemanufacturing process by Electro-Fenton oxidation [J]. Chemosphere,2008,72(4):601-607
    [123] Brillas E.; Casado J. Aniline degradation by Electro-Fenton and peroxi-coagulationprocesses using a flow reactor for wastewater treatment [J]. Chemosphere,2002,47(3):241–248
    [124] Pimentel M.; Oturan N.; Dezotti M.; et al. Phenol degradation by advancedelectrochemical oxidation process electro-Fenton using a carbon felt cathode [J].Applied Catalysis B: Environmental,2008,83(1-2):140-149
    [125] Su C.C.; Pagaling E.D.; Peralta G.L. Comparison of Aniline degradation by Fentonand Electro-Fenton reactors using plate and rod electrodes [J]. Environmental Progress&Sustainable Energy,2012
    [126] Ozcan A.; Sahin Y.; Koparal A.S.; et al. A comparative study on the efficiency ofelectro-Fenton process in the removal of propham from water [J]. Applied Catalysis B:Environmental,2009,89(3-4):620-626
    [127] Li J.P.; Ai Z.H.; Zhang L.Z. Design of a neutral electro-Fenton system withFe@Fe2O3/ACF composite cathode for wastewater treatment [J]. Journal ofHazardous Materials,2009,164(1):18-25
    [128] Gogate P.R.; Pandit A.B. A review of imperative technologies for wastewatertreatment II: hybrid methods [J]. Advances in Environmental Research,2003,8(3-4):553-597
    [129] Chacon J.M.; Leal M.T.; Sanchez M; et al. Solar photocatalytic degradation of azo-dyes by photo-Fenton process [J]. Dyes and Pigments,2006,69(3):144-150
    [130] Garcia-Montano J.; Ruiz N.; Munoz I.; et al. Environmental assessment of differentphoto-Fenton approaches for commercial reactive dye removal[J]. Journal ofHazardous Materials,2006,138(2):218-225
    [131] Kwan C.Y.; Chu W.; Lam W.S. The role of oxalate in the kinetics of2,4-D oxidationover ferrous ion-supported catalysts [J]. Journal of Molecular Catalysis A: Chemical,2007,274(1-2):50-57
    [132] Sanchez L.; Peral J.; Domenech X. Aniline degradation by combined photocatalysisand ozonation [J]. Applied Catalysis B: Environmental,1998,19(1):59–65
    [133] Tang H.; Li J.; Bie Y.; et al. Photochemical removal of aniline in aqueous solutions:Switching from photocatalytic degradation to photo-enhanced polymerizationrecovery [J]. Journal of Hazardous Materials,2010,175(1-3):977-984
    [134] Kumar A.; Mathur N. Photocatalytic degradation of aniline at the interface of TiO2suspensions containing carbonate ions [J]. Journal of Colloid and Interface Science,2006,300(1):244-252
    [135] Watts R.J.; Teel A.L. Treatment of contaminated soils and groundwater using ISCO[J]. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management,2006,10(1):2-9
    [136] Neta P.; Huie R.E.; Ross A.B. Rate constants for reactions of inorganic radicals inaqueous solution [J]. Journal of Physical and Chemical Reference Data,1988,17:1027-1284
    [137] Buxton G.V.; Bydder M.; Salmon G.A. The reactivity of chlorine atoms in aqueoussolution Part II. The equilibrium SO4+Cl ClNsbd+SO42[J]. Physical ChemistryChemical Physics,1999,1:269-273
    [138] Goulden P.D.; Anthony D.H.J. Kinetics of uncatalyzed peroxydisulfate oxidation oforganic material in fresh water [J]. Analytical Chemistry,1978,50(7):953–958
    [139] Peyton G.R. The free-radical chemistry of persulfate-based total organic carbonanalyzers [J]. Marine Chemistry,1993,41(1-3):91-103
    [140] Brillas E.; Sires I.; Oturan M.A. Electro-Fenton process and related electrochemicaltechnologies based on Fenton's reaction chemistry [J]. Chemical Reviews,2009,109(12):6570-6631
    [141] Latimer, Oxidation Potentials, Prentice-Hall, Inc., Englewood Cliffs, NJ.,1952
    [142] Eberson L. Electron Transfer Reactions in Organic Chemistry. Spring–Verlag, Berlin,1987
    [143] Anipsitakis G.P.; Dionysiou D.D. Radical generation by the interaction of transitionmetals with common oxidants [J]. Environmental Science&Technology,2004,38(13):3705-3712
    [144] Rastogi A.; Al-Abed S.R.; Dionysiou D.D. Sulfate radical-based ferrous-peroxymonosulfate oxidative system for PCBs degradation in aqueous and sedimentsystems [J]. Applied Catalysis B: Environmental,2009,85(3-4):171-179
    [145] Norman R.O.C. Tilden Lecture. Applications of e.s.r. spectroscopy to kinetics andmechanism in organic chemistry [J]. Chemical Society Reviews,1979,8(1):1-27
    [146] Minisci F.; Citterio A.; Giordano C. Electron-transfer processes: peroxydisulfate, auseful and versatile reagent in organic chemistry [J]. Accounts of Chemical Research,1983,16(1):27-32
    [147] Kolthoff I.M.; Miller I.K. The chemistry of persulfate: I. The kinetics and mechanismof the decomposition of the persulfate ion in aqueous medium [J]. Journal ofAmerican Chemical Society,1951,73(7):3055–3059
    [148] House D.A. Kinetics and mechanism of oxidations by peroxydisulfate [J]. ChemicalReviews,1962,62(3):185–200
    [149] Berlin A.A. Kinetics of radical-chain decomposition of persulfate in aqueous solutionsof organic compounds [J]. Kinetic Catalysis,1986,27:34–39
    [150] Huang K.; Couttenye R.; Hoag G. Kinetics of heat-assisted persulfate oxidation ofmethyl tert-butyl ether (MTBE)[J]. Chemosphere,2002,49(4):413–420
    [151] Salari D.; Daneshvar N.; Niaei A.; et al. The photooxidative destruction of C.I. BasicYellow2using UV/S2O82-process in an annular photoreactor [J]. Journal ofEnvironmental Science and Health, Part A: Toxic/Hazardous Substances andEnvironmental Engineering,2009,166:61-66
    [152] Yang S.Y.; Yang X.; Shao X.T. Activated carbon catalyzed persulfate oxidation ofAzo dye acid orange7at ambient temperature [J]. Journal of Hazardous Materials,2011,186(1):659-666
    [153] Lee Y.; Lo S.; Kuo J.; et al. Decomposition of perfluorooctanoic acid bymicrowaveactivated persulfate: Effects of temperature, pH, and chloride ions [J].Frontiers of Environmental Science&Engineering,2011,6(1),17–25
    [154] Liang C.; Bruell C.J.; Marley M.C.; et al. Persulfate oxidation for in situ remediationof TCE. I. Activated by ferrous ion with and without a persulfate-thiosulfate redoxcouple [J]. Chemosphere,2004a,55(9):1213-1223
    [155] Xu X.; Li S.; Hao Q.; et al. Activation of Persulfate and Its Environmental Application[J]. International Journal of Environment and Bioenergy,2012,1(1):60-81
    [156] Huang K.C.; Zhao Z.; Hoag G.E.; et al. Degradation of volatile organic compoundswith thermally activated persulfate oxidation [J]. Chemosphere,2005,61(4):551-560
    [157] Liang C.; Bruell C.J.; Marley M. C.; et al. Persulfate oxidation for in situ remediationof TCE. II. Activated by chelated ferrous ion [J]. Chemosphere2004b55(9):1225-1233
    [158] Liang C.J.; Huang C.F.; Mohanty N.; et al. Hydroxypropyl-β-cyclodextrin-mediatediron-activated persulfate oxidation of trichloroethylene and tetrachloroethylene [J].Industrial&Engineering Chemistry Research,2007,46(20):6466-6479
    [159] Anipsitakis G.P.; Dionysiou D.D. Transition metal/UV-based advanced oxidationtechnologies for water decontamination [J]. Applied Catalysis B: Environmental,2004,54(3):155-163
    [160] Zhang Y.Q.; Du X.Z.; Huang W.L. Temperature effect on the kinetics of persulfateoxidation of p-chloroaniline [J]. Chinese Chemical Letters,2011,22:358-361
    [161] Rastogi A.; Al-Abed S.R.; Dionysiou D.D. Effect of inorganic, synthetic and naturallyoccurring chelating agents on Fe(II) mediated advanced oxidation of chlorophenols [J].Water Research,2009,43(3):684-694
    [162] Xie X.; Zhang Y.Q.; Huang W.L; et al. Degradation kinetics and mechanism of anilineby heat-assisted persulfate oxidation [J]. Journal of Environmental Sciences,2012,24(5):821-826
    [163] Hussain I.; Zhang Y.; Huang S.; et al. Degradation of p-chloroaniline by persulfateactivated with zero-valent iron [J]. Chemical Engineering Journal,2012,203(1):269-276
    [164] Yan J.C.; Lei M.; Zhu L.H.; et al. Degradation of sulfamonomethoxine with Fe3O4magnetic nanoparticles as heterogeneous activator of persulfate [J]. Journal ofHazardous Materials,2011,186(2-3):1398-1404
    [165] Furman O.; Teel A.L.; Watts R.J. Mechanism of base activation of persulfate [J].Environmental Science&Technology,2010,44(16):6423–6428
    [166] Romero A.; Santos A.; Vicente F.; et al. Diuron abatement using activated persulphate:Effect of pH, Fe(II) and oxidant dosage [J]. Chemical Engineering Journal,2010,162:257–265
    [167] Saien J.; Ojaghloo Z.; Soleymani A.R.; et al. Homogeneous and heterogeneous AOPsfor rapid degradation of Triton X-100in aqueous media via UV light, nano titaniahydrogen peroxide and potassium persulfate [J]. Chemical Engineering Journal,2011,167(1):172-182
    [168] Watts R.J.;Teel A.L.;Chemistry of modified Fenton’s reagent (catalyzed H2O2propagation-CHP) for in situ soil and groundwater remediation [J]. Journal ofEnvironmental Engineering,2005,131:612–622
    [169] Rivas F.J. Polycyclic aromatic hydrocarbons sorbed on soils: a short review ofchemical oxidation based treatments [J]. Journal of Hazardous Materials,2006,138(2):234–251
    [170] Waldemer, R.H.; Tratnyek P.G. Kinetics of contaminant degradation by permanganate[J]. Environmental Science and Technology,40(3):1055–1061
    [171] Liang C.J.; Bruell C.J.; Marley M.C.; et al. Thermally activated persulfate oxidation ofTrichloroethylene (TCE) and1,1,1-Trichloroethane (TCA) in aqueous systems andsoil slurries [J]. Soil and Sediment Contamination,2003,12(2):207-228
    [172] Navarro R.M.F.; Ho S.W.L.; Díaz N.B.; et al. Kinetics of the degradation of1,4-dioxane using persulfate [J]. Journal of the Mexican Chemical Society,2007,51(2):67–71
    [173] Waldemer R.H.; Tratnyek P.G.; Johnson R.L.; et al. Oxidation of chlorinated ethenesby heat-activated persulfate: Kinetics and products [J]. Environmental Science&Technology,2007,41(3):1010-1015
    [174] Bougie S.; Dube J.S. Oxidation of dichlorobenzene isomers with the help of thermallyactivated sodium persulfate [J]. Journal of Environmental Engineering Science,2007,6:397-407
    [175] Costanza J.; Otano G.; Callaghan J.; et al. PCE oxidation by sodium persulfate in thepresence of solids [J]. Environmental Science&Technology,2010,44(24):9445-9450
    [176] Gu X.; Lu S.; Li L.; et al. Oxidation of1,1,1-Trichloroethane stimulated bythermally activated Persulfate [J]. Industrial&Engineering Chemistry Research,2011,50(19):11029–11036
    [177] Deng Y.; Ezyske C.M. Sulfate radical-advanced oxidation process (SR-AOP) forsimultaneous removal of refractory organic contaminants and ammonia in landfillleachate [J]. Water Research,2011,45(18):6189–94
    [178] Ghauch A.; Tuqan A.M.; Kibbi N. Ibuprofen removal by heated persulfate in aqueoussolution: A kinetics study [J]. Chemical Engineering Journal,2012,197:483–492
    [179] Ghauch A.; Tuqan A.M.; Kibbi N.; et al. Methylene blue discoloration by heatedpersulfate in aqueous solution. Chemical Engineering Journal,2012,213(1):259–271
    [180] Ghauch A.; Tuqan A.M. Oxidation of bisoprolol in heated persulfate/H2O systems:Kinetics and products [J]. Chemical Engineering Journal,2012,183:162–171
    [181] Tan C.; Gao N.; Deng Y.; et al. Heat-activated persulfate oxidation of diuron in water.Chemical Engineering Journal,2012,203:294–300
    [182] Lee Y.-C.; Lo S.-L.; Kuo J.; et al. Persulfate oxidation of perfluorooctanoic acid underthe temperatures of20–40°C [J]. Chemical Engineering Journal,2012,198-199:27–32
    [183] Liu C.S.; Higgins C.P.; Wang F. Effect of temperature on oxidative transformation ofperfluorooctanoic acid (PFOA) by persulfate activation in water [J]. Separation andPurification Technology,2012,91:46–51
    [184] Huang Y.-F.; Huang Y.-H. Identification of produced powerful radicals involved inthe mineralization of bisphenol A using a novel UV-Na2S2O8/H2O2-Fe(II,III) two-stage oxidation process [J]. Journal of Hazardous Materials,2009,162(2-3):1211-1216
    [185] Olmez-Hanci T.; Imren C.; Kabdash I.; et al. Application of the UV-C photo-assistedperoxymonosulfate oxidation for the mineralization of dimethyl phthalate in aqueoussolutions [J]. Photochemical Photobiological Science,2011,10:408–413
    [186] Gao Y.; Gao N.; Deng Y.; et al. Ultraviolet (UV) light-activated persulfate oxidationof sulfamethazine in water [J]. Chemical Engineering Journal,2012,195-196:248–253
    [187] Lau T.K.; Chu W.; Graham N.J.D. The aqueous degradation of butylatedhydroxyanisole by UV/S2O82-: Study of reaction mechanisms via dimerization andmineralization [J]. Environmental Science&Technology,2007,41(2):613–619
    [188] Lin Y.-T.; Liang C.; Chen J.-H. Feasibility study of ultraviolet activated persulfateoxidation of phenol [J]. Chemosphere,2011,82(8):1168–1172
    [189] Criquet J.; Leitner N.K.V. Degradation of acetic acid with sulfate radical generated bypersulfate ions photolysis [J]. Chemosphere,2009,77(2):194–200
    [190] Shih Y.-J.; Li Y.-C.; Huang Y.-H. Application of UV/persulfate oxidation process formineralization of2,2,3,3-tetrafluoro-1-propanol. Journal of the Taiwan Institute ofChemical Engineers,2013,44(2):287–290
    [191] Yang S.; Wang P.; Yang X.; et al. Degradation efficiencies of azo dye Acid Orange7by the interaction of heat, UV and anions with common oxidants: persulfate,peroxymonosulfate and hydrogen peroxide. Journal of Hazardous Materials,2010,179(1-3):552–558
    [192] Lin C.-C.; Lee L.-T.; Hsu L.-J. Performance of UV/S2O82process in degradingpolyvinyl alcohol in aqueous solutions. Journal of Photochemistry and PhotobiologyA: Chemistry,2013,252:1–7
    [193] Tsitonaki A.; Mosbaek H.; Bjerg P.L. Activated persulfate as a first step in a treatmenttrain [J]. In: Proceedings of the Fifth International Conference on Remediation ofChlorinated and Recalcitrant Compounds, Monterey, CA. Columbus, Ohio: BattellePress,2006
    [194] Anotai J.; Bunmahotama W.; Lu M.-C. Oxidation of aniline with sulfate radicals inthe presence of citric acid [J]. Environmental Engineering Science,2011,28(3):207–215
    [195] Thompson S.; Riggenbach J.; Brown R.A.; et al.Catalyzed persulfate remediation ofchlorinated and recalcitrant compounds in soil [J]. In: Proceedings of the FifthInternational Conference on Remediation of Chlorinated and Recalcitrant Compounds,Monterey, CA. Columbus, Ohio: Battelle,2006
    [196] Liang C. J.; Lee I.L.; Hsu I.Y.; et al. Persulfate oxidation of trichloroethylene withand without iron activation in porous media [J]. Chemosphere,2008a,70(3):426-35
    [197] Killian P.F.; Bruell C.J.; Liang C.; et al. Iron (II) Activated persulfate oxidation ofMGP contaminated soil [J]. Soil and Sediment Contamination,2007,16(6):523–537
    [198] Cao J.; Zhang W.-X.; Brown D.G.; et al. Oxidation of lindane with Fe(ii)-activatedsodium persulfate [J]. Environmental Engineering Science,2008,25(2):221-228
    [199] Chen K.F.; Kao C.M.; Wu L.C.; et al. Methyl tert-butyl ether (MTBE) degradation byferrous ion-activated persulfate oxidation: Feasibility and kinetics [J]. WaterEnvironment Research,2009,81(7):687-94
    [200] Liang C. J.; Huang C.F.; Chen Y.J. Potential for activated persulfate degradation ofBTEX contamination [J]. Water Research,2008,42(15):4091-4100
    [201] Shen-Xin Li.; Dong W.; Nai.-Ki M.; et al. Degradation of diphenylamine by persulfate:Performance optimization, kinetics and mechanism [J]. Journal of hazardous materials,2009,164(1):26–31
    [202] Xu X.-R.; Li X.-Z. Degradation of azo dye Orange G in aqueous solutions bypersulfate with ferrous ion [J]. Separation and Purification Technology,2010,72(1):105–111
    [203] Vicente F.; Santos A.; Romero A.; et al. Kinetic study of diuron oxidation andmineralization by persulphate: Effects of temperature, oxidant concentration and irondosage method [J]. Chemical Engineering Journal,2011,170(1):127–135
    [204] Tan C.; Gao N.; Chu W.; et al. Degradation of diuron by persulfate activated withferrous ion [J]. Separation and Purification Technology,2012,95:44–48
    [205] Kusic H.; Peternel I.; Koprivanac N.; et al. Iron-activated persulfate oxidation of anazo dye in model wastewater: Influence of iron activator type on process optimization[J]. Journal of Environmental Engineering,2011,137(6):454-463
    [206] Campbell T.J.; Burris D.R.; Roberts A.L.; et al. Trichloroethylene andtetrachloroethylene reduction in a metallic iron–water-vapor batch system [J].Environmental Toxicology and Chemistry,1997,16(4):625–630
    [207] Bigg T.; Judd S.J. Kinetics of reductive degradation of azo dye by zero-valent iron [J].Process Safety and Environmental Protection,2001,79(5):297–303
    [208] Chen G.; Hoag G.E.; Chedda P.; et al. The mechanism and applicability of in situoxidation of trichloroethylene with Fenton's reagent [J]. Journal of HazardousMaterials,2001,87(1-3):171-186
    [209] Dong J.; Zhao Y.; Zhao R.; et al. Effects of pH and particle size on kinetics ofnitrobenzene reduction by zero-valent iron [J]. Journal of Environmental Sciences,2010,22(11):1741–1747
    [210] Liu C.C.; Tseng D.H.; Wang C.Y. Effects of ferrous ions on the reductivedechlorination of trichloroethylene by zero-valent iron [J]. Journal of HazardousMaterials,2006,136(3):706-713
    [211] Lavine B.K.; Auslander G.; Ritter J. Polarographic studies of zero valent iron as areductant for remediation of nitroaromatics in the environment [J]. MicrochemicalJournal,2001,70(2):69–83
    [212] Sharma S. Slurry test evaluation for in-situ remediation of TCE contaminated aquifer.Master’s Thesis: Worcester Polytechnic Institute,2006
    [213] Padmanabhan A.R. Novel simulataneous reduction/oxidation process for destroyingorganic solvents. Master’s Thesis: Worcester Polytechnic Institute,2008
    [214] Liang C.J.; Lai M.-C. Trichloroethylene degradation by zero valent iron activatedpersulfate oxidation [J]. Environmental Engineering Science,2008,25(7):1071-1078
    [215] Oh S.-Y.; Kim H.-W.; Park J.-M. Oxidation of polyvinyl alcohol by persulfateactivated with heat, Fe2+, and zero-valent iron [J]. Journal of Hazardous Materials,2009,168(1):346–51
    [216] Oh, S.-Y.; Kang S.-G.; Chiu P.C. Degradation of2,4-dinitrotoluene by persulfateactivated with zero-valent iron [J]. Science of the Total Environment,2010,408(16):3464–3468
    [217] Liang C.; Guo Y.-Y. Mass transfer and chemical oxidation of naphthalene particleswith zerovalent iron activated persulfate [J]. Environmental Science&Technology,2010,44(21):8203–8208
    [218] Zhao J.; Zhang Y.; Quan X.; et al. Enhanced oxidation of4-chlorophenol using sulfateradicals generated from zero-valent iron and peroxydisulfate at ambient temperature[J]. Separation and Purification Technology,2010,71(3):302–307
    [219] Le C.; Wu J.H.; Li P.; et al. Decolorization of anthraquinone dye Reactive Blue19bythe combination of persulfate and zero-valent iron [J]. Water Science&Technology,2011,64(3):754-759
    [220] Lee Y.-C.; Lo S.-L.; Chiueh P.-T.; et al. Microwave-hydrothermal decomposition ofperfluorooctanoic acid in water by iron-activated persulfate oxidation [J]. WaterResearch,2010,44(3):886–892
    [221] Loos R.; Hanke G.; Eisenreich S.J. Multi-component analysis of polar water pollutantsusing sequential solid-phase extraction followed by LC-ESI-MS [J], Journal ofEnvironmental Monitoring,2003,5(3):384–394
    [222] Norberg J.; Zander A.; J nsson J.A. Fully automated on-line supported liquidmembrane-liquid chromatographic determination of aniline derivates in environmentalwaters [J], Chromatographia,1997,46:483–488
    [223] Bolto B.; Dixon D.; Eldridge R.; et al. Removal of THM precursors by coagulation orion exchange [J]. Water Research,2002,36(20):5066-5073
    [224] Maymo-Gatell X.; Nijenhuis I.; Zinder S.H. Reductive dchlorination of cis-1,2-dchlorothene and vinyl cloride by “Dehalococcoides ethenogenes”[J]. EnvironmentalScience&Technology,2001,35(3):516-521
    [225] Shimizu A.; Tokumura M.; Nakajima K.; et al. Phenol removal using zero-valent ironpowder in the presence of dissolved oxygen: Roles of decomposition by the Fentonreaction and adsorption/precipitation [J]. Journal of Hazardous Materials,2012,201–202:60–67
    [226] Dong J.; Zhao Y.; Zhao R.; et al. Effects of pH and particle size on kinetics ofnitrobenzene reduction by zero-valent iron [J]. Journal of Environmental Science,2010,22(11):1741–1747
    [227] Choi J.H.; Choi S.J.; Kim Y.H. Liquid-liquid extraction methods to determinereductive dechlorination of2,4,6-trichlorophenol by zero-valent metals and zero-valent bimetals [J]. Separation Science and Technology,2008,43(14):3624-3636
    [228] Noubactep C.; Schoner A.; Woafo P. Metallic iron filters for universal access to safedrinking water [J]. Clean-Soil Air Water,2009,37(12):930–937
    [229] Noubactep C.; Temgoua E.; Rahman M.A. Designing iron-amended biosand filters fordecentralized safe drinking water provision [J], Clean–Soil Air Water,2012,40(8):798–807
    [230] Bartzas G.; Komnitsas K. Solid phase studies and Geochemical Modelling of low-costpermeable reactive barriers [J]. Journal of Hazardous Materials,2010,183(1-3):301–308
    [231] Zhou Q.; Lin H. Influence of surfactants on degradation of1-(2-chlorobenzoyl)-3-(4-chlorophenyl) urea by nanoscale zerovalent iron [J]. Clean–Soil, Air, Water,2013,41(2):128–133
    [232] Pan F.; Luo Y.; Fan J.J.; et al. Degradation of disperse blue E-4R in aqueous solutionby zero-valent iron/ozone [J]. Clean–Soil, Air, Water,2012,40(4):422–427
    [233] Bautitz I.R.; Velosa A.C.; Nogueira R.F. Zero valent iron mediated degradation of thepharmaceutical diazepam [J]. Chemosphere,2012,88(6):688–692
    [234] Agrawal A.; Tratnyek P.G. Reduction of nitro aromatic compounds by zero-valentiron metal [J], Environmental Science&Technology,1995,30(1):153-160
    [235] Gyliene O.; Vengris T.; Stoncius A.; et al. Decontamination of solutions containingEDTA using metallic iron [J]. Journal of Hazardous Materials,2008,159(2-3):446-151
    [236] Lina Y.-T.; Weng C.-H.; Chen F.-Y. Effective removal of AB24dye by nano/micro-size zero-valent iron [J]. Separation and Purification Technology,2008,64(1):26–30
    [237] Gunawardana B.; Singhal N.; Swedlund P. Dechlorination of pentachlorophenol byzero valent iron and bimetals: Effect of surface characteristics and bimetal preparationprocedure [J], Proceedings of the Annual International Conference on Soils,Sediments, Water and Energy,2012,17, Art.8
    [238] Wang S.M.; Tseng S.K. Reductive dechlorination of trichloroethylene by combiningautotrophic hydrogen-bacteria and zero-valent iron particles [J]. BioresourceTechnology,2009,100(1):111–117
    [239] Noubactep C. Relevant reducing agents in remediation Fe0/H2O Systems [J], Clean-Soil, Air, Water,2013
    [240] Noubactep C.; Care S.; Btatkeu K.B.D.; et al. Enhancing the sustainability ofhousehold Fe0/sand filters by using bimetallics and MnO2[J]. Clean–Soil Air Water,2012,40(1):100–109
    [241] Wang X.S.; Tang Y.J.; Chen L.F.; et al. Removal of Cr(VI) by Zero-valent, Iron-encapsulated Alginate Beads [J]. Clean-Soil, Air, Water,2010,38(3):263–267
    [242] Cao M.; Wang L.; Wang L.; et al. Remediation of DDTs contaminated soil in a novelFenton-like system with zero-valent iron [J]. Chemosphere2013,90(8):2303–2308
    [243] Kumpiene J.; Ore S.; Renella G.; et al. Assessment of zerovalent iron for stabilizationof chromium, copper, and arsenic in soil [J]. Environmental Pollution,2006,144(1):62–69
    [244] Gillham R.W.; O’Hannesin S.F. Enhanced degradation of halogenated aliphatics byzero-valent iron [J], Ground Water,1994,32(6):958–967
    [245] Suk O.J.; Jeen S.W.; Gillham R.W.; et al. Effects of initial iron corrosion rate on long-term performance of iron permeable reactive barriers: column experiments andnumerical simulation [J]. Journal of Contaminant Hydrology,2009,103:145–156
    [236] Huang Y.H.; Zhang T.C. Nitrite reduction and formation of iron corrosion products inzero-valent iron systems [J], Chemosphere,2006,64:937–943
    [247] Doong R.A.; Lai Y.L. Effect of metal ions and humic acid on the dechlorination oftetrachloroethylene by zerovalent iron [J], Chemosphere,2006,64(3):371–378
    [238] Arnold W.A.; Roberts A.L. Pathways and kinetics chlorinated ethylene andchlorinated acetylene reaction with Fe(0) particles [J], Environmental Science&Technology,2000,34(9):1794–1805
    [249] Shrivastava S.; Rao S.N. Pickling waste as an inexpensive iron source for fentonoxidation of synthetic dye bath waste [J]. Clean-Soil, Air, Water,2011,39(11):996–1000
    [250] Satapanajaru T.; Anurakpongsatorn P.; Pengthamkeerati P.; et al. Remediation ofatrazine-contaminated soil and water by nano zerovalent iron [J], Water Air SoilPollution,2008,192:349–359
    [251] Chatterjee S.; Lim S.-R.; Woo S.H. Removal of reactive black5by zero-valent ironmodified with various surfactants [J]. Chemical Engineering Journal,2010,160(1):27–32
    [252] Dong J.; Zhao Y.; Zhao R.; et al. Effects of pH and particle size on kinetics ofnitrobenzene reduction by zero-valent iron [J]. Journal of Environmental Science,2010,22(11):1741–1747
    [253] Dombek T.; Dolan E.; Schultz J.; et al. Rapid reductive dechlorination of atrazine byzero-valent iron under acidic conditions [J], Environmental Pollution,2001,111(1):21–27
    [254] Lien H.L.; Elliott D.W.; Sun Y.P.; et al. Recent progress in zero-valent ironnanoparticles for groundwater remediation [J]. International Journal of EnvironmentalEngineering and Management,2006,16(6):371-380
    [255] Shih Y.H.; Chen Y.C.; Chen M.Y.; et al. Dechlorination of hexachlorobenzene byusing nanoscale Fe and nanoscale Pd/Fe bimetallic particles [J], Colloids and SurfacesA: Physicochemical and Engineering Aspects,2009,332(2-3):84-89
    [256] Shih Y.H.; Tso C.P.; Tung L.Y. Rapid degradation of methyl orange with nanoscalezerovalent iron particles [J]. International Journal of Environmental Engineering andManagement,2010,20:137-143
    [257] Boon N.; Gelder L.D.; Lievens H.; et al. Bioaugmenting bioreactors for the continuousremoval of3-chloroaniline by a slow release approach [J]. Environmental Science&Technology,2002,36(21):4698-4704
    [258] Liang C.; Wang Z.-S.; Bruell C.J. Influence of pH in persulfate oxidation of TCE atambient temperatures [J]. Chemosphere,2007,66(1):106-113
    [259] Neta P.; Madhavan V.; Zemel H.; et al. Rate constants and mechanism of reaction ofsulfate radical anion with aromatic compounds [J]. Journal of American ChemicalSociety,1977,99(1):163-164
    [260] Vicentea F.; Santosa A.; Romero A.; et al. Kinetic study of diuron oxidation andmineralization by persulphate: Effects of temperature, oxidant concentration and irondosage method [J]. Chemical Engineeing Journal,170(1):127-135
    [261] Zhang Y.Q.; Huang W.L.; Fennell D.E. In situ chemical oxidation of aniline bypersulfate with iron(II) activation at ambient temperature [J]. Chinese ChemicalLetters,2010,21(8):911-913
    [262] APHA, AWWA, WEF, Standard Methods for the Examination of Water andWastewater, APHA,Washington, DC,1998.
    [263] Kolthoff I.M.; Stenger V.A. Volumetric analysis, Titration Methods: Acid–Base,Precipitation, and Complex Reactions, vol. II, second revised ed., IntersciencePublishers Inc., New York,1947
    [264] Grcic I.; Papic S.; Zizek K.; et al. Zero-valent iron (ZVI) Fenton oxidation of reactivedye wastewater under UV-C and solar irradiation [J]. Chemical Engineering Journal,2012,195-196:77-90
    [265] Liang S.H.; Kao C.M.; Kuo Y.C.; et al. Application of persulfate-releasing barrier toremediate MTBE and benzene contaminated groundwater[J]. Journal of HazardousMaterials,2011,185(2-3):1162-1168
    [266] Bremner D.H.; Burgess A.E.; Houllemare D.; et al. Phenol degradation using hydroxylradicals generated from zero-valent iron and hydrogen peroxide [J]. Applied CatalysisB: Environmental,2006,63(1-2):15-19
    [267] Bergendahl J.A.; Thies T.P. Fenton's oxidation of MTBE with zero-valent iron [J].Water Research,2004,38:327-334
    [268] Buxton G.V.; Greenstock C.L.; Helman W.P.; et al. Critical review of rate constantsfor reaction of hydrated electrons, hydrogen atoms and hydroxyl radicals (˙OH/˙Oˉ) inaqueous solution [J]. Journal of Physical and Chemical Reference Data,1988,17:513-531
    [269] Eibenberger H.; Steenken S.; O'Neill P.; et al. Pulse radiolysis and electron spinresonance studies concerning the reaction of SO4.cntdot.-with alcohols and ethers inaqueous solution [J]. The Journal of Physical Chemistry,1978,82(6):749-750
    [270] Liang H.-Y.; Zhang Y.-Q.; Huang S.-B.; et al. Oxidative degradation of p-chloroaniline by Copper oxidate activated persulfate [J]. Chemical EngineeringJournal,2013,218:384-391
    [271] Hori H.; Yamamoto A.; Hayakawa, E.; et al. Efficient decomposition ofenvironmentally persistent perfluorocarboxylic acids by use of persulfate as aphotochemical oxidant [J]. Environmental Science&Technology,2005,39(7):2383-2388
    [272] Wang Y.R.; Chu W. Degradation of2,4,5-trichlorophenoxyacetic acid by a novelElectro-Fe(II)/Oxone process using iron sheet as the sacrificial anode [J]. WaterResearch,2011,45(13):3883-3889
    [273] Yen C.-H.; Chen K.-F.; Kao C.-M.; et al. Application of persulfate to remediatepetroleum hydrocarbon-contaminated soil: Feasibility and comparison with commonoxidants [J]. Journal of Hazardous Materials,2011,186(2-3):2097-2102
    [274] Kádár M.; Takáts Z.; Karancsi T.; et al. The role of halogen substituents in theelectrooxidation of4-halogenoanilines in neutral acetonitrile [J]. Electroanalysis,1999,11(10-11):809-813
    [275] Kádár M.; Nagy Z.; Karancsi T.; et al. The electrochemical oxidation of4-chloroaniline,2,4-dichloroaniline and2,4,6-trichloroaniline in acetonitrile solution[J]. Electrochimica Acta,2001,46(9):1297-1306
    [276] Chen X.Y.; Xue Z.Y.; Wu D.; et al. Advanced oxidation technology based on sulfateradical and application in water treatment [J].Water Treatment,2009,35(5):16-20
    [277] Sutthivaiyakit, P., Achatz, S., Lintelmann, J., Aungpradit, T., Chanwirat, R.,Chumanee,S., Kettrup, A.,2005. LC-MS/MS method for the confirmatory determination ofaromatic amines and its application in textile analysis [J]. Analytical BioanalyticalChemistry,381(1):268-276
    [278] Pizon A.F.; Schwartz A.R.; Shum L.M.; et al. Toxicology laboratory analysis andhuman exposure to p-chloroaniline [J]. Clinical Toxicology,2009,47(2):132-136
    [279] Zhang T.; Ren H.-F.; Liu Y.; et al. A novel degradation pathway of chloroaniline inDiaphorobacter sp. PCA039entails initial hydroxylation [J]. World Journal ofMicrobiology and Biotechnology,2010,26:665-673
    [280] Kanel S.R.; Greneche J.M.; Choi H. Arsenic(V) removal from groundwater usingnano scale zero-valent iron as a colloidal reactive barrier material [J]. EnvironmentalScience&Technology,2006,40(6):20452050
    [281] Joo S.H.; Feitz A.J.; Sedlak D.L. Oxidative degradation of the carbothioate herbicide,molinate, using nanoscale zero-valent iron [J]. Environmental Science&Technology,2004,38(7):2242-2247
    [282] Noradoun C.; Engelmann M.D.; Mclaughlin M.; et al. Destruction of chlorinatedphenols by dioxygen activation under aqueous room temperature and pressureconditions [J]. Industrial&Engineering Chemistry Research,2003,42(21):5024-5030
    [283] Xu Y.; Zhang W.-X. Subcolloidal Fe/Ag particles for reductive dehalogenation ofchlorinated benzenes [J]. Industrial&Engineering Chemistry Research,2000,39(7):2238-2244
    [284] Wang C.-B.; Zhang W.-X. Synthesizing nanoscale iron particles for rapid andcomplete dechlorination of TCE and PCBs [J]. Environmental Science&Technology,1997,31(7):2154-2156
    [285] Moura F.C.; Araujo M.H.; Costa R.C.; et al. Efficient use of Fe metal as an electrontransfer agent in a heterogeneous Fenton system based on Fe0/Fe3O4composites [J].Chemosphere2005,60(8):1118-1123
    [286] Moura F.C.C.; Oliveira G.C.; Araujo M.H.; et al. Highly reactive species formed byinterface reaction between Fe0-iron xides particles: An efficient electron transfersystem for environmental applications [J]. Applied Catalysis A: General,2006,307(2-3):195-204
    [287] Li K.; Stefan M.I.; Crittenden J.C. Trichloroethene degradation by UV/H2O2advancedoxidation process: product study and kinetic modeling [J]. Environmental Science&Technology,2007,41(5):1696-1703
    [288] Fang G.-D.; Dionysiou D.D.; Wang Y.; et al. Sulfate radical-based degradation ofpolychlorinated biphenyls: Effects of chloride ion and reaction kinetics [J]. Journal ofHazardous Materials,2012,227-228:394-401
    [289] Nie Y.; Hu C.; Qu J.; et al. Photoassisted degradation of azodyes over FeOxH2x-3/Fe0in the presence of H2O2at neutral pH values [J]. Environmental Science&Technology,2007,41(13):4715-4719
    [290] Chun H.; Yizhong W.; Hongxiao T. Preparation and characterization of surface bond-conjugated TiO2/SiO2and photocatalysis for azo dyes [J]. Applied Catalysis B:Environmental,2001,30(3-4):277-285
    [291] Keiser J.T.; Brown C.W.; Heidersbach R.H. The electrochemical reduction of rustfilms on weathering steel surfaces [J]. Journal of Electrochemical Society,1982,129(12):2686-2689
    [292] Ruan H.D.; Frost R.L.; Kloprogge J.T.; et al. Infrared spectroscopy of goethitedehydroxylation: III.FTIR microscopy of in situ study of the thermal transformation ofgoethite to hematite [J]. Spectrochimica Acta Part A: Molecular and BiomolecularSpectroscopy,2002,58:967-981
    [293] Gyliene O.; Vengris T.; Stoncius A.; et al. Decontamination of solutions containingEDTA using metallic iron [J]. Journal of Hazardous Materials,2008,159(2-3):446-451
    [294] Noradoun C.E.; Cheng I.F. EDTA degradation induced by oxygen activation in azerovalent iron/air/water system [J], Environmental Science&Technology,2005,39(18):7158-7163
    [295] Liang C.; Liang C.-P.; Chen C.-C. pH dependence of persulfate activation byEDTA/Fe(III) for degradation of trichloroethylene [J]. Journal of ContaminantHydrology,2009,106(3-4):173-182
    [296] Anipsitakis G.P.; Dionysiou D.D.; Gonzalez M.A. Cobalt-mediated activation ofperoxymonosulfate and sulfate radical attack on phenolic compounds. implications ofchloride ions [J]. Environmental Science&Technology,2006,40(3):1000-1007
    [297] Khan M.F.; Wu X.; Kaphalia B.S.; et al. Nitrotyrosine formation in splenic toxicity ofaniline [J]. Toxicology,2003,194(1-2):95-102
    [298] Wang L.; Zhang C.; Wu F.; et al. Photodegradation of aniline in aqueous suspensionsof microalgae [J]. Journal of Photochemistry Photobiology B: Biology,87(1):49-57
    [299] Anotai J.; Su C.-C.; Tsai Y.-C. Effect of hydrogen peroxide on aniline oxidation byelectro-Fenton and fluidized-bed Fenton processes [J]. Journal of Hazardous Materials,2010,183(1-3):888-893
    [300] Fu N.; Tu X.Y.; Pan Y. The treatment of high-concentration aniline wastewater viaHydrothermal catalytic degradation of high concentration aniline wastewater [J].Environmental Chemistry,2008,27:578-582
    [301] Venkatapathy R.; Bessingpas D.G.; Canonica S. Kinetics models for trichloroethylenetransformation by zero-valent iron [J]. Applied Catalysis B: Environmental,2002,37(2):139-159.
    [302] Kohn T.; Livi K.J.T.; Roberts A.L.; et al. Longevity of granular iron in groundwatertreatment processes: Corrosion product development [J]. Environmental Science&Technology,2005,39(8):2867-2879
    [303] Huang Y.H.; Zhang T.C. Reduction of nitrobenzene and formation of corrosioncoatings in zerovalent iron systems [J]. Water Research,2006,40(16):3075-3082
    [304] Devi L.G.; Kumar S.G.; Reddy K.M.; et al. Photo degradation of methyl orange anazo dye by advanced Fenton process using zero valent metallic iron: influence ofvarious reaction parameters and its degradation mechanism [J]. Journal of HazardousMaterials,2009,164(2-3):459-467
    [305] Gupta S.S.; Gupta Y.K. Hydrogen ion dependence of the oxidation of iron(II) withperoxydisulfate in acid perchlorate solutions [J]. Inorganic Chemistry,1981,20(2):454-457
    [306] Liu C.S.; Shih K.; Sun C.X.; et al. Oxidative degradation of propachlor by ferrous andcopper ion activated persulfate [J]. Science of the Total Environment,2012,416:507-512
    [307] Huang Y.-H.; Su C.-C.; Yang Y.-P.; et al. Comparison of catalytic degradation ofaniline by immobilized iron oxide catalysts [J]. Environmental Engineering Science,2011,28(12):891-896
    [308] Huang Y.-F.; Huang Y.-H. Identification of produced powerful radicals involved inthe mineralization of bisphenol A using a novel UV-Na2S2O8/H2O2-Fe(II,III) two-stage oxidation process [J]. Journal of Hazardous Materials,2009,162(2-3):1211-1216

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700