海底及污染环境中微生物群落分子多样性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微生物在全球碳、氮、硫、磷和重金属等的物质循环中起着非常重要的作用,仅占海底总面积22%的大陆边缘是已知的最多产的生态系统之一。反硝化作用是造成海底氮收支不平衡的主要原因,反硝化细菌在氮的循环中起主要作用。同时,由于海底提供了一个良好的无氧环境,使得由硫酸盐还原菌参与的硫酸盐还原成为大陆边缘一个主要的厌氧性碳氧化途径。此外,生物治理可能是环境污染治理最有效的技术,但它与一系列的微生物活动和代谢过程有关。因此,研究海底及污染环境中微生物的群落结构与功能多样性是非常有意义的。
     传统的微生物群落结构研究方法是以培养性状为依据,但它不能提供微生物群落多样性准确的、足够多的信息,20世纪80年代末90年代初发展了以核酸(基因)为基础的分子生物学技术。在这一技术的应用中,目标基因的选择是非常重要的,16SRNA或rDNA是目前微生物多样性分析常用的基因,但它有异质性和识别力的限制以及不能直接反应微生物的代谢与生理特征的缺陷。近年来发展了以通过微生物代谢过程中编码关键酶的功能基因的分析来研究微生物群落遗传多样性的方法。这些方法包括基因指纹图谱法、分子杂交法、定量PCR分析法和基因测序与系统发育分析法,它们大大地减轻了对微生物培养的依赖性,并迅速地被广泛用于微生物群落结构分析。
     目前常用的各种分子生物学分析方法都有这样那样的缺点,没有一种合适的方法可以用来同时快速、适时、准确、灵敏地检测环境微生物群落的多样性。基因芯片是上世纪90年代中期发展起来的一门新的技术,目前它已广泛应用于基因表达测定、突变检测、基因多态性、基因组文库作图、临床诊断、新药筛选等领域,但它在在环境微生物研究中的应用尚处于起步阶段,目前已有功能基因芯片、系统发育寡核苷酸芯片和群落基因组芯片等3种基因芯片被用于环境微生物基因表达分析、比较基因组分析和混合微生物群落的分析。但它在环境核酸样品分析时,面临着诸如特异性、灵敏度和定量性等难题。
     在本研究中,我们以nirS、nirK和dsrAB作分子标记,应用PCR扩增、克隆文库构建与RFLP筛选以及基因测序与系统发育分析相结合的方法来分析海底和核污染地下水环境中反硝化细菌与硫酸盐还原细菌群落的组成结构与功能多样性。并进一步构建了一个完整地含有目前已知的生物降解功能基因探针的寡聚核苷酸基因芯片,对其检测特异性、灵敏度和定量性能以及适用性进行了系统研究。
     1.太平洋墨西哥海域大陆边缘海底亚硝酸盐还原酶基因的分子多样性
     为了了解太平洋墨西哥海域缺氧区大陆边缘海底反硝化细菌群落的组成与结构,应用PCR为基础的分子克隆方法,分析了4个海底样品中亚硝酸盐还原酶基因(nir)的分子多样性。在4个样品中共获得82个nirS基因的可操作分类单位(OTUs)和50个nirK基因
    
    的OTUs,从中选择44个肋召克隆和31个刀护尹火克隆进行基因测序分析,
    同源性为52一92%,nirK基因序列间的同源性为50一99%。
    ni尹、夕基因序列间的
    18一30%的OTUs重叠,在ni
    在nirs克隆文库中,各样品间有
    户火克隆文库中,有5一8%的OTU台重叠。基因测序分析显示,26%
    。J,‘,,。二,、。“。,,‘。n。,Ja。。a,,s气I刊拐1王刀‘U一,4u/o汗u尸seudomonas stutze对(同源性为
    80一99%)亲缘关系较近,但有3一30%的ni之K克隆与pse,,domonas sp.straln G-179(同源性为
    98一99%)、BradyrktzobiumjaPonicum(同源性为91%)、Blastobaeterdenit叹万cans(同源性为
    83%)手阴扮口/心‘ne,砂勿sox护dans(同源性为%%)亲缘关系很近,其余的克隆与目前基因文库
    中己有的nirs和川矛火基因序列的同源性低于80%。OTUs和生物地理化学性状的主成分分
    析表明,石肖酸盐的浓度和氧的含量影响反硝化细菌群落组成与结构,与有氧区相比,缺氧
    区样品间反硝化细菌群落更相似,相对靠近的和硝酸盐水平相似的样品间,反硝化细菌群
    落更相似。生物地理化学性状的主成分分析也说明,地理位置和生物地理化学性状,特别
    是硝酸盐和氧的水平是影响反硝化细菌群落的关键因素。
    2.两个不同大陆边缘海底生境中硫还原细菌的分子多样性
     本部分研究了东太平洋大陆边缘海底构成碳质量和数量天然梯度的大陆架和大陆坡
    横断面上硫酸盐还原细菌的自然多样性和分布。通过PCR从5个不同的样地扩增异化性
    亚硫酸盐还原酶基因(de喇B)并构建克隆文库,这5个样地位于不同的大陆边缘系统并具
    有不连续的深度,其中2个样地位于太平洋墨西哥沿岸,3个样地位于华盛顿州沿岸。从
    5个样地共获得1 762个克隆并进行RfLP和基因测序分析。大多数克隆的分布受样地和
    深度的限制,但也有一些克隆分布于2个大陆边缘系统内和系统间。聚类分析发现有175
    个独特的RFLP谱带型,尽管大多数的序列具高度的系统发育多样性并与许多已知的序列
    具有相似性,但也有好几个不同大陆边缘的DsrA序列与属于占一尸roteobacleria
    (D esu如bulbusP矛,尸ionieus和Desu如sarcina variabilis)和Baeillus/Closr对dium
    (D‘su如tomaculum putei)部的细菌聚类在一组。这一研究结果扩充了大陆边缘海底系统中
    硫酸盐还原细菌新的遗传多样性,这种多
Microorganisms play a key role in global cycle of carbon, nitrogen, sulfur, and heavy metal and so on. The continental margin occupies only 22%of the total ocean floor, but they are among the most productive ecosystems known. Oceanic nitrogen budget is unbalanced primarily due to denitrification which completed by denitrifying bacteria. Sulfate reduction is a dominant anaerobic carbon oxidation pathway along the margins which provide a very good anaerobic condition. Bioremediation using living organisms to degrade or transform pollutants remains potentially the most cost-effective cleanup technology for treating mixed wastes. The transformation of environmental contaminants is a complex process that is influenced by the nature and amount of the contaminant present, the structure and dynamics of the indigenous microbial community and so on.
    Traditional culture enrichment techniques for studying microbial communities have proven difficult and ultimately, provide an extremely limited view of microbial heterogeneity. The development and application of nucleic acid-based techniques largely eliminated the reliance on culture-dependent methods and consequently, greatly advanced the detection and characterization of microorganisms in natural habitatis.l6SrDNA or RNA was usually be used as a molecular maker for the phylogenetic analysis of microbial communities but it can not represent the functional activities. Recently, functional genes that code the key enzyme involved in a variety of metabolic pathway such denitrification, sulfate reduction and biodegradation were used to study the microbial communities.
    There are a lot of molecular methods such as PCR, fingerprinting, DNA/RNA hybridization and sequencing, have been used to assess microbial community structure and activities. But these techniques are labor-intensive and not adequate for real-time field application.Rapid, quantitative, and cost-effective tools that can be operated in real time and in field-scale heterogeneous environments are needed for measuring and evaluating bioremediation strategies and endpoints. Microarrays are a powerful genomic technology and are widely used to study various biological processes. It is only recently that microarray-based genomic technology has been extended to study microbial communities in the environment and bring some challenges such as specificity, sensitivity and quantification.
    In this study, a PCR-based cloning and sequencing approach was used to investigated the molecular diversity of nirS ,nirK in the xygen deficient continental margin and diversity of dsrAB in the continental margin systems of oxygen deficient and oxygen minimum zone and uranium contaminated aquifer. Further, we developed a comprehensive 50-mer oligonucleotide microarrays containing probes (1 670) from all of the known genes (2,402) involved in biodegradation and metal resistance to monitor biodegrading populations. The key results from these studies are summarized as bellow.
    1. Molecular Diversity of Denitrifying Genes in Continental Margin Sediments within the Oxygen-Deficient Zone off the Pacific Coast of Mexico.
    To understand the composition and structure of denitrifying communities in the
    
    
    
    oxygen-deficient zone off the Pacific coast of Mexico, the molecular diversity of nir genes from sediments obtained at four stations was examined by using a PCR-based cloning approach. A total of 50 operational taxonomic units (OTUs) for nirK and 82 OTUs for nirS were obtained from all samples. Forty-four of the nirS clones and 31 of the nirK clones were sequenced; the levels of similarity of the nirS clones were 52 to 92%, and the levels of similarity of the nirS clones were 50 to 99%. The percentages of overlapping OTUs between stations were 18 to 30% for nirS and 5 to 8% for nirK. Sequence analysis revealed that 26% of the nirS clones were related to the nirS genes of Alcaligenes faecalis (80 to 94% similar) andPseudomonas stutzeri (80 to 99%), whereas 3 to 31% of the nirK clones were closely related to the nirK genes of Pseudomonas sp.
引文
1. Whitman, W.B., Prokaryotes, The unseen majority, Prec. Natl. Acad. Sci., 1998, 95: 6578~6583.
    2. Whittaker, R. H. 1975. Communities and ecosystems, 2nd ed. Macmillan Publishing Co., Inc., New York, N.Y.
    3. Kristensen, E., A. H. Devol, and H. E. Hartnett. 1999. Organic matter diagenesis in sediments on the continental shelf and slope of the eastern tropical and temperate North Pacific. Cont. ShelfRes. 19:1331-1351.
    4. Walsh, J. J. 1991. Importance of the continental margins in the marine biogeochemical cycling of carbon and nitrogen. Nature 350: 53-55.
    5. Canfield, D. E., B. B. Jφrgensen, H. Fossing, R. Glud, J. Gundersen, N. B. Ramsing, B. Thamdrup, J. W. Hansen, L. P. Nielsen, and P. O. J. Hall. 1993. Pathways of organic carbon oxidation in three continental margin sediments. Mar. Geol. 113:27-40.
    6. Hartnett, H. E., and A. H. Devol. 2003. The role of a strong oxygen deficient zone in the preservation and degradation of organic matter: a carbon budget for the continental margins of NW Mexico and Washington State. Geochim. Cosmochim. Acta 67:247-264.
    7. Thamdrup, B., and D. E. Canfield. 1996. Pathways of carbon oxidation in continental margin sediments off central Chile. Limnol. Oceanogr. 41:1629-1650.
    8. Christensen, J. P. 1989. Sulfate reduction and carbon oxidation rates in continental shelf sediments, an examination of off shelf carbon transport. Cont. Shelf Res. 9:223-246.
    9. Codispoti, L. A. 1995. Is the ocean losing nitrate? Nature 376:724.
    10. Codispoti, L. A., and J. P. Christensen. 1985. Nitrification, denitrification, and nitrous oxide cycling in the eastern tropical South Pacific. Mar. Chem. 16:277-300.
    11. Devol, A. H., and J. P. Christensen. 1993. Benthic fluxes and nitrogen cycling in sediments of the continental margin of the eastern North Pacific. J. Mar. Res. 51:345-372.
    12. Devol, A. H., L. A. Codispoti, and J. P. Christensen. 1997. Summer and winter denitrification rates in westem Arctic shelf sediments. Cont. Shelf Res. 17:1029-1050.
    13. Jφrgensen, B. B. 1982. Mineralization of organic matter in the sea bed—the role of sulfate reduction. Nature 296:643-645.
    14. Naqvi, S. W. A., D. A. Jayakumar, P. V. Narvekar, H. Naik, V. V. S. S. Sarma, W. D'Souza, S. Joseph, and M. D. George. 2000. Increased marine production of N2O due to intensifying anoxia on the Indian continental shelf. Nature 408:346-349.
    15. Canfield, D. E., and D. J. Des Marais. 1991. Aerobic sulfate reduction in microbial mats. Science 251:1471-1473.
    16. Hines, M. E., R. S. Evans, B. R. S. Genthner, S. G. Willis, S. Friedman, J. N. RooneyVarga, and R. Devereux. 1999. Molecular phylogenetic and biochemical studies of sulfate-reducing bacteria in the rhizosphere of Spartina altemiflora. Appl. Environ. Microbiol. 65:2209-2216.
    17. Conrad, R. 1996. Soil organisms as controllers of atmospheric trace gases (H2, CO2, CH4, OCS, N20, and NO). Microbiol. Rev. 60:609-640.
    18. Knowles, R. 1982. Denitrification. Microbiol. Rev. 46:43-70.
    19. Codispoti, L. A. 1989. Phosphorus vs nitrogen limitation of new and export production, p. 377-394. In W. H. Berger, V. S. Smetacek, and G. Wefer (ed.), Production of the oceans: present and past. Wiley and Sons, New York, N.Y.
    20. Devol, A. H. 1991. Direct measurements of nitrogen gas fluxes from continental sediments. Nature 349:319-321.
    
    
    21. 19. Kemp, W, M., P, Sampoo, J. Gazber, J. Tuttle, and W. R, Boyton. 1992. Seasonal depletion of oxygen from bottom waters of Chesapeake Bay: Roles of benthic and planctonic respiration and physical exchange processes. Mar. Ecol. Prog. Ser. 85: 137-152.
    22. Middleburg J. J., K. Soetaert, P. M. J. Herman, and C. H. R. Heip, 1996. Denitrification in marine sediments: A model study. Global Biogeochem Cycles, 10, 661-671.
    23. Ryagaard, S., N. Risgaard-Petersen, N. P. Sloth, K. Jensen, and L. P. Nielsen. 1994. Oxygen regulation of nitrification and denitrification in sediments. Limnol. Oceanogr. 39: 1643-1652.
    24. Brandes, J. A., A. H. Devol, T. Yoshinari, D. A. Jayakumar, and S. W. A. Naqvi, 1998. Isotopic composition of nitrate in the central Arabian Sea and eastern tropical North Pacific: a tracer for mixing and nitrogen cycles. Limnol. Oceanogr. 43:1680-1689.
    25. Zumft, W. G. 1992. The denitrifying prokaryotes, p. 554-582. In A. Balows, H. G. Trüper, M. Dworkin, W. Harder, and K.-H. Schleifer (ed.), The prokaryotes. SpringerVerlag, New York, N.Y.
    26. Tiedje, J. M. 1994. Denitrifiers. pp. 245-268. In Weaver, R. W., Angle, S., Bottomley, P., Bezdicek, D., Smith, S., Tabatabai, A. and Wollum, A. (eds) Methods of soil analysis, Part 2: Microbiological and biochemical properties. Soil Science of America, Inc., Madison, WI.
    27. Braker, G., A. Fesefeldt, and K. E Witzel. 1998. Development of PCR primer systems for amplification of nitrite reductase genes (nirK and nirS) to detect denitrifying bacteria in environmental samples. Appl. Environ. Microbiol. 64:3769-3775.
    28. Braker, G., J. Zhou, L. Wu, A. H. Devol, and J. M. Tiedje. 2000. Nitrite reductase genes (nirK and nitS) as functional markers to investigate diversity of denitrifying bacteria in Pacific Northwest marine sediment communities. Appl. Environ. Microbiol. 66:2096-2104,
    29. Scala, D. J., and L. J. Kerkho~ 2000. Horizontal heterogeneity of denitrifying bacterial communities in marine sediments by terminal restriction fragment length polymorphism analysis. Appl. Environ. Microbiol. 66:1980-1986.
    30. Gary M King, Radiotracer assays(S~(33)) of sulfate reduction tates n marine and freshwater sediments, In John H. Paul(ed), Methods in Microbiology, volume 30, Marine microbiology, Academic Press,2001.
    31. Singleton,R.,Jr. Sulfate-Reducing Bacteria: Contemporary Perspectives. Edited by J. M. Odon et. al. ,Jr, Springer Verlag, Inc., New York,1993.
    32. Jacq, V. A. and Forthuner, R. 1979. Biological control of rice nematodes using sulfatereducing bacteria.Revue Nematologie 2:41-50.
    33. Hector F.C. and Norris H.W. et. al. 2000.Phylogeny of sulfate-reducing bactria.FEMS microbiology Ecology 31(1): 1-9
    34. Leahy J.G.and Colwell R.R., 1990,Microbial degradation of hydrocartbons in the environment, Microbiol. Rev., 54:305-315
    35. Roane T. M. and Pepper I.L., 1999, Microbial responses to environmentally toxin cadmium, Microbiol. Ecol.,38(4);358-364.
    36. Stock J.B. and Stock A.M., 1990, Signal transduction in bacteria, Nature 344:395-400.
    37. Perez-Jimenez JR, Young LY, Kerkhof LJ, 2001, Molecular characterization of sulfat, reducing bacteria in anaerobic hydrocarbon-degrading consortia and pure cultures usi(?) the dissimilatory sulfite reductase (dsrAB) genes FEMS microbiology Ecology 35 ((?) 145-150.
    38. Sentchilo VS, Perebituk AN, Zehnder AJB, et al,2000,Molecular diversity of plasrr bearing genes that encode toluene and xylene metabolism in Pseudomonas str isolated from different contaminated sites in Belarus, Appl. Environ. Microl 66:2842-3775.
    
    
    39. Selvaratnam S., Schoedel BA, Mefarland BL et al, Amplification of reverse transcriptase PCR for monintoring gene expression of the catabolic dmpN gene in a phenol-degrading sequencing batch reactor, Appl. Environ. Microbiol. 61:3981-3985.
    40. Erb RW and Wagner DI, 1993, Detection of polychlorinated biophenyl degradation genes in polluted sediments by direct DNA extraction and Polymerase Chain Reaction, Appl. Environ. Microbiol. 59:4065-4073.
    41. Amann R. I., Ludwig Schleifer K.H., 1995, Phylogenetic identification and in situ detection of individual microbial cells without cultivation, Microbiol. Rev., 59:143-169.
    42. Dunbar J., White S., Fomey L.J. et al, 1997, Genetic diversity through the looking glass: effect of enrichment bias, Appl. Environ. Microbiol. 63:1326-1331.
    43. R. Amann , 2000, Who is out there? Microbial aspects of biodiversity. Syst Appl Microbiol 23:1-8.
    44. Pace, N. R. 1997. A molecular view of microbial diversity and the biosphere. Science 276: 734-740.
    45. Hugenholtz, P., B. M. Goebel, and N. R. Pace. 1998. Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J. Bacteriol. 180:4765-4774.
    46. Klappenbach, J.A., P.R. Saxman, J.R. Cole and T.M. Schmidt , 2001, rmdb: The ribosomal RNA operon copy number database. Nucleic Acids Res 29:181-184.
    47. Shimizu,T., S. Ohshima, K. Ohtani, K. Hoshino, K. Honjo and H. Hayashi ,2001 Sequence heterogeneity of the ten rRNA operons in Clostridium perfringens. Syst Appl Microbiol 24:149-156.
    48. McCaig, A.E., L.A. Glover and J.I. Prosser , 2001, Numerical analysis of grassland bacterial community structure under different land management regimens by using 16S ribosomal DNA sequence data and denaturing gradient gel electrophoresis banding pattems. Appl Environ Microbiol 67:4554-4559.
    49. Cocolin, L., M. Manzano, C. Cantoni and G. Comi , 2001, Denaturing gradient gel electrophoresis analysis of the 16S rRNA gene V1 region to monitor dynamic changes in the bacterial population during fermentation of Italian sausages. Appl Environ Microbiol 67:5113-5121.
    50. Schmalenberger, A., F. Schwieger and C.C. Tebbe, 2001, Effect of primers hybridizing to different evolutionarily conserved regions of the small-subunit rRNA gene in PCRbased microbial community analyses and genetic profiling. Appl Environ Microbiol 67:557-3563
    51. Petri, R. and J.F. Irnhoff, 2001, Genetic analysis of sea-ice bacterial communities of the Western Baltic Sea using an improved double gradient method. Polar Biol 24:252-257.
    52. Qi, Y.A., G. Patra, X.D. Liang, L.E. Williams, S. Rose, R.J. Redkar and V.G. DelVecchio, 2001, Utilization of the rpoB gene as a specific chromosomal marker for real-time PCR detection of Bacillus anthracis. Appl Environ Microbiol 67:3720-3727.
    53. Meusnier, I., J.L. Olsen, W.T. Stare, C. Destombe and M. Valero, 2001, Phylogenetic analyses of Caulerpa taxifolia (Chlorophyta) and of its associated bacterial microflora provide clues to the origin of the Mediterranean introduction. Mol Ecol 10:931-946.
    54. Zhou, J., B. Xia, D.S. Treves, L.-Y. Wu, T.L. Marsh, R.V. O'Neill, A.V. Palumbo and J.M. Tiedje, 2002, Spatial and resource factors influencing high microbial diversity in soil. Appl Environ Microbiol 68:326-334.
    55. Dahllof, I., H. Baillie and S. Kjelleberg , 2000, rpoB-based microbial community analysis avoids limitations inherent in 16S rRNA gene intraspecies heterogeneity. Appl Environ Microbiol 66:3376-3380.
    56. Michael W.and Andrew J.R. et al.1998.Phylogeny of Dissimilatory sulfite reductases supports an early origin of sulfate respiration.J of Bacteriology. 180(11):2975-2982.
    
    
    57. Dror M. and Jodi L. F.et al 1999.Diversity of sulfate-reducing bacteria in oxic and anixix regions of a microbial mat characterized by comparative analysis of Dissimilatory Sulfite Recuctase genes. Appl Eviron.Microbiol 65(10):4666-4671.
    58. Cottrell MT and Cary SC.1999.Diversity of dissimilatory bisulfite reductase genes of bacteria associated with the deep-sea hydrothermal vent polychaete annelied Alvinella pompejana. Appl Eviron.Microbiol 65(3): 1127-1132.
    59. Thomsen TR and Finster K.et al 2001.Biogeochemical and molecular dignatures of anaerobic methane oxidation in a marine sediment. Appl Eviron.Microbiol 67(4): 1646-1656.
    60. Daly K. and Sharp RJ et al 2000.Development of oligonucleotide probes and PCR primers for detecting phylogentic subgroups of sulfate-reducing bacteria.Microbiology 146:1693-1705.
    61. Roxann R.and Dezene P.W. at al.1995.Conservation of the genes for dissimilatory sulfite reductase from Desulfovibrio vulgaris and Archaeoglobus fulgidus allows their detection by PCR. Appl Eviron.Microbiol 61:290-296.
    62. Stach J.E.M., Bathe S., Clapp J.P. and Bums R.G. , 2001, PCR-SSCP comparison of 16S rDNA sequence diversity in soil DNA obtained using different isolation and purification methods. FEMS Microbiol Ecol 36:139-151.
    63. Liu Wen Tso, Marsh T., Cheng H., et al, 1997, Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA, Appl Eviron.Microbiol 63:4516-4522.
    64. Sekiguchi H., Tomioka N., T. N and Uchiyama H. , 2001, A single band does not always represent single bacterial strains in denaturing gradient gel electrophoresis analysis. Biotechnol Lett 23:1205-1208.
    65. Fjellbirkeland A., Torsvik V. and Ovreas L. , 2001, Methanotrophic diversity in an agricultural soil as evaluated by denaturing gradient gel electrophoresis profiles of pmoA, mxaF and 16S rDNA sequences. Antonie Van Leeuwenhoek 79:209-217.
    66. Gonzalez J.M. and Moran M.A., 1997, Numerical dominance of the class proteobacteria in coastal sea water, Appl Eviron.Microbiol 63:4237-4242.
    67. Sykes P.J., Neoh S.H., et al,1992, Quantification of targets for PCR by use of limiting dilution, Bio Techniques 13:444-449.
    68. Siebert, P. D., and J. W. Larrick. 1992. Competitive PCR. Nature 359: 557-558.
    69. Gilliland, G., S. Perrin, K. Blanchard, and H. F. Bunn. I990. Analysis of cytokine mRNA and DNA: detection and quantitation by competitive polymerase chain reaction. Proc. Natl. Acad. Sci. USA 87:2725-2729.
    70. Lee, S.-Y., J. Bollinger, D. Bezdicek, and A. Ogram. 1996. Estimation of the abundance of an uncultured soil bacterial strain by a competitive quantitative PCR method. Appl. Environ. Microbiol. 62: 3787-3793.
    71. Leser, T. D., M. Boye, and N. B. Hendriksen. 1995. Survival and activity of Pseudomonas sp. strain B13 (FR1) in a marine microcosm determined by quantitative PCR and an rRNA-targeting probe and its effect on the indigenous bacterioplankton. Appl. Environ. Microbiol., 61: 1201-1207.
    72. Criddle, C., J. Tiedje. J. -Z. Zhou, et al. 1997. The Schoolcraft field bioaugmentation experiment: evaluation of in-situ bioaugrnentation to remediate an aquifer contaminated with carbon tetrachloride. Technical report No. 4. for the state of Michigan Department of Environmental Quality.
    73. Qiu, X.-Y., L.-Y. Wu, H. Huang, P. E. McDonel, A. V. Palumbo, J. M. Tiedje, and J.-Z. Zhou. 2000. An improved 16S rRNA-based cloning approach for reducing PCRgenerated artifacts. Abstract submitted to The 100th General Meeting of the American Society for Microbiology, Los Angeles, CA.
    
    
    74. Becker K., D. Pan and C.B.Whitely, 1999,Real-time quantitative polymerase chain reaction to assess gene transfer. Hum. Gene Ther, 10: 2559-2566.
    75. Higgis, J.A., etal., 1998, 5' nuclease PCR assay to detect Yersinia pesits. J Clin Microbiol, 36: 2284-2288.
    76. Bieche I., P.Oondy, etal., 1999, Real-time reverse transcription-PCR assay for future nagement of ERBB2-based clinical apolications. Clin.Chem, 45:1148-1156.
    77. Wang X. X. Li, etal.,2000, Application of real-time polymerase chain reaction to quantitate induced expression of interleukin-1 beta mRNA in ischemic brain tolerance. Neurosci.Res, 59(2): 238-46.
    78. SchenaM., Shalon D., David R. W. and Brown P. O., 1995, Quantitative monitoring of gene expression pattems with a complementary DNA microarray. Science, 270:467-470
    79. Shalon D, Smith S J, Brown P O. A, 1996, DNA microarray system for analyzing complex DNA samples using two-color fluorescent probe hybridization. Genome Res. 6: 639~645.
    80. Meltzer P S., 2001, Spotting the target: microarrays for disease gene discovery. Curr Opin Genet Dev. 11: 258~263.
    81. Murphy D. 2002, Gene expression studies using microarrays: principles, problems, and prospects. Adv Physiol Educ. 26 (4): 256~270.
    82. Beliaev A S, Thompson D K, Fields M, et al. Microarray transcription. Profiling of a Shewanella oneidensis etrA mutant. J. Bacteriol. 2002, 184:4612~4616.
    83. Miguel A R, Alfonso M T, Rogelio M R, et al, 2003, Fingerprinting of prokaryotic 16S rRNA genes using oligodeoxyribonucl eotide microarrays and virtual hybridization. Nucl. Acids. Res. 31(2): 779~789.
    84. Shoemaker D D, Linsley P S. 2002, Recent developments in DNA microarrays. Curr Opin Microbiol. 5: 334~337.
    85. Noguchi S, Tsukahara T, Fujita M, et al. 2003,cDNA microarray analysis of individual Duchenne muscular dystrophy patients. Hum Mol Genet. 12: 595~600.
    86. Clarke P A, Poele R, Wooster R, et al. 2001,Gene expression microarray analysis in cancer biology, pharmacology, and drug development: progress and potential. Biochem Pharmacol. 62 (10): 1311~1336.
    87. Khodursky A B, Peter B J, Cozzarelli N R, et al. 2000,DNA microarray analysis of gene expression in response to physiological and genetic changes that affect tryptophan metabolism in Escherichia coli, Proc Natl Acad Sci USA, 97:12170~12175.
    88. Wei Y, Lee J M, Richmond C, et al. 2001,High-density microarray-mediated gene expression profiling of Escherichia coli. J Bacteriol, 183: 545~556.
    89. Ye R W, Tao W, Bedzyk L, et al. 2000, Global gene expression profiles of Bacillus subtilis grown under anaerobic conditions, J Bacteriol, 182: 4458~4465.
    90. Zhou, J, Thompson D K. 2002, Challenges in applying microarrays to environmental studies. Curr Opin Biotechnol. 13: 204~207.
    91. Zhou J, Thompson D. 2002, Microarrays: applications in environmental microbiology. In Encyclopedia of Environmental Microbiology, vol 4. Edited by Bitton G. New Youk: John Wiley & Sons, 1968~1979.
    92. Wu L, Thompson D K, Li G, et al. 2001,Development and evalution of functional gene arrays for detection of selected genes in the environmental studies in microbiology. Appl Environ Microbiol, 67: 5780~5790.
    93. Zhou J Z. 2003, Microarrays for bacterial detection and microbial community analysis. Curr Opin Microbiol, 6: 288~294.
    
    
    94. Zhou, J, Palumbo A V, Tiedje J M., 1997, Sensitive detection of a novel class of toluene-degrading denitrifiers, Azoarcus tolulyticus, with small-subunit Rrna primers and probes. Appl Environ Microbiol., 63: 2384~2390.
    95. Cho J C, James M T. 2002, Quantitative detection of microbial genes by using DNA microarrays. Appl Environ Microbiol,, 68(3): 1425~1430.
    96. Maidak B L, Olsen G J, Larsen N, et al. 1997, The RDP(Ribosomal Database Project). Nucleic Acids Res., 25:109~111.
    97. Small J, Call D R, Brockman F J, et al. 2001,Direct detection of 16S rRNA in soil extracts by using oligonucleotide microarrays. Appl Environ Microbiol., 67: 4708~4716.
    98. Bavykin S G, Akowski J P, Zakhariev V M, et al., 2001, Portable system for microbial sample preparation and oligonucleotide microarray analysis. Appl Environ Microbiol, 67: 922~928.
    99. Urakawa H, Noble P A, EI Fantroussi S, et al., 2002, Single-base-pair discrimination of terminal mismatches by using oligonucleotide microarrays and neural network analyses. Appl Environ microbiol. 68: 235~244.
    100. Wu, L., D K. Thompson, X Liu, C. E. Bagwell, M. Fields, J. M. Tiedje, and J. Zhou, Microarray-based whole-genome hybridization reveals species-/strain-specific differentiation and relatedness, 102th American Society for Microbiology General Meeting, Salt Lake City, UT, U.S.A
    101. Fawcett P, Eichenberger P, Losick R, Youngman P, 2000,The transcriptional profile of early to middle sporulation in Bacillus subtilis. Proc Natl Acad Sci USA, 97:8063-8068.
    102. Lee J-ML, Zhang S, Saha S, et al,2001, RNA expression analysis using an antisense Bacillus subtilis genome array. J Bacteriol, 183:7371-7380.
    103. DeLisa MP, Wu C-F, Wang L, Valdes JJ, Bentley WE, 2001, DNA microarray-based identification of genes controlled by autoinducer 2-stimulated quorum sensing in Escherichia coli.,J Bacteriol, 183:5239-5247.
    104. Whiteley M, Bangera MG, Bumgamer RE, et al, 2001, Gene expression in Pseudomonas aeruginosa biofilms. Nature, 413:860-864
    105. Zhang W, Needham D L, Coffin M, et al. 2003, Microarray analyses of the metabolic responses of Saccharomyces cerevisiae to organic solvent dimethyl sulfoxide. Microbiol Biotechnol, 30(1): 57~69.
    106. Selinger D W, Cheung K J, Mei R, et al., 2000, RNA expression analysis using a 30base pair resolution Escherichia coli genome array. Nat Biotechnol, 18:1262~1268.
    107. Dennis P, Edwards E A, Liss S N, et al, 2003, Monitoring gene expression in mixed microbial communities by using DNA microarrays. Appl Environ Microbiol, 69(2):769~778.
    108. Schut GJ, Zhou JZ, Adams MWW, 2001, DNA microarray analysis of the hyperthermophilic archaeon Pyrococcus furiosus evidence for a new type of sulfurreducing enzyme complex, J Bacteriol, 183:7027-7036.
    109. Dziejman M, Balon E, Boyd D, Fraser et al, 2002, Comparative genomic analysis of Vibrio cholerae: genes that correlate with cholera endemic and pandemic disease. Proc Natl Acad Sci USA, 99:1556-1561.
    110. Glaser P, Frangeul L, Buchrieser C, Rusniok C, et al, 2001, Comparative genomics of Listeria species. Science, 294: 849-852.
    111. Murray AE, Lies D, Li G, Nealson K, Zhou JZ, Tiedje JM, 2001, DNA/DNA hybridisation to microarrays reveals gene-specific differences between closely related microbial genomes, Proc Natl Acad Sci USA, 98:9853-9858.
    
    
    112. Cho J-C, Tiedje JM, 2001, Bacterial species determination from DNA-DNA hybridization by using genome fragments and DNA microarrays, Appl Environ Microbiol, 67:3677-3682.
    113. Guschin D Y, Mobarry B K, Proudnikov D, et al. 1997, Oligonucleotide microchips as genosensors for determinative and environmental studies in microbiology, Appl Environ Microbiol, 63: 239702402.
    114. Rudi K, Skulberg OM, Skulberg R, Jakobsen KS, 2000,Application of sequence-specific labeled 16S rRNA gene oligonucleotide probes for genetic profiling of cyanobacterial abundance and diversity by array hybridization, Appl Environ Microbiol, 66:4004-4011.
    115. Loy A, Lehner A, Lee N, Adamczyk J, Meier H, E, et al, 2002,Oligonucleotide microarray for 16S rRNA genebased detection of all recognized lineages of sulfatereducing prokaryotes in the environment. Appl Environ Microbiol, 68:5064-5081.
    116. Valinsky L, Vedova GD, Scupham AJ, et al, 2002, Analysis of bacterial commtmity composition by oligonucleotide fingerprinting of rRNA genes. Appl Environ Microbiol, 68:3243-3250.
    117. Christensen, J. P., J. W. Murray, A. H. Devol, and L. A. Codispoti, 1987, Denitrification in continental shelf sediments has major impact on the oceanic nitrogen budget. Global Biogeochem. Cycles 1:97-116.
    118. Bemer, R. A, 1989, Biogeochemical cycles of carbon and sulfur and their effect on atmospheric oxygen over Phanerozoic time. Palaeogeogr, Palaeoclimatol. Palaeoecol, 73:97-122.
    119. Hedges, J. I., and R. G. Keil, 1995, Sedimentary organic matter preservation: an assessment and speculative synthesis, Mar. Chem.49:81-115.
    120. Capone, D, 2001, Marine nitrogen fixation: what's the fuss? Curr. Opin. Microbiol, 4:341-348.
    121. Gruber, N., and J. L. Sarmiento. 1997. Global pattems of marine nitrogen fixation and denitrification. Global Biogeochem. Cycles 11:235-266.
    122. Codispoti, L. A. J. W. Brandes, J. P. Christensen, A. H. Devol, S. W. A. Naqvi, H. W. Paerl, and T. Yoshinari, 2001, The oceanic fixed nitrogen and nitrous oxide budgets: moving targets as we enter the anthropocene? Sci. Mar. 65(Suppl. 2):85-105.
    123. Altabet, M. A., R. Francois, D. W. Murray, and W. L. Prell, 1995, Climate-related variations in denitrification in the Arabian Sea from sediment 15N/14N ratios. Nature 373:506-509.
    124. Ganeshram, R. S., T. F. Pedersen, S. E. Calvert, and J. W. Murray, 1995, Large changes n oceanic nutrient inventories from glacial to interglacial periods. Nature 376:755-758.
    125. Longhurst, A., S. Sathyendranath, T. Platt, and C. Caverhill, 1995, An estimate of global primary production in the ocean from satellite radiometer data. J. Plankton Res. 17:1245-1271.
    126. 3. Bender, M. L., W. Martin, J. Hess, F. Sayles, L. Ball, and C. Lambert. 1987. A whole core squeezer for interracial pore water sampling. Limnol. Oceanogr. 32:1214-1225.
    127. Strickland, J. D. H., and T. R. Parsons, 1972, A practical handbook of seawater analysis. Fisheries Research Board of Canada, Ottawa, Ontario.
    128. Anderson, L, 1979, Simultaneous spectrophotometric determination of nitrate and nitrite by flow injection analysis, Anal. Chim. Acta 110:123-128.
    129. Stookey, L. L., 1970, Ferrozine—a new spectrophotometric reagent for iron, Anal. Chem, 42:779-781.
    130. Hedges, J. I., and J. H. Stem, 1984, Carbon and nitrogen determinations of carbonatecontaining solids, Limnol. Oceanogr, 29:657-663.
    131. Berg, P., N. Risgaard-Petersen, and S. Rysgaard, 1998, Interpretation of measured concentration profiles in the sediment porewater, Limnol. Oceanogr, 43:1500-1510.
    
    
    132. Hurt, R. A., X. Qui, L. Wu, Y. Roh, A. V. Palumbo, J. M. Tiedje, and J. Zhou, 2001, Simultaneous recovery of RNA and DNA from soils and sediments, Appl. Environ. Microbiol, 67:4495-4503.
    133. Zhou, J., M. A. Bruns, and J. M. Tiedje, 1996, DNA recovery from soils of diverse composition, Appl. Environ. Microbiol, 62:316-322.
    134. Zhou, J., M. R. Fries, J. C. Chee-Sanford., and J. M. Tiedje, 1995, Phylogenetic analyses of a new group of denitrifiers capable of anaerobic growth on toluene and description of Azoarcus toluliticus sp. Nov., Int. J. Sys. Bacteriol. 45:500-506.
    135. Strunk, O., and W. Ludwig, 1996, ARB. Technical University of Munich, Munich, Germany.
    136. 140. Hallin, S., and P.-E. Lindgren. 1999. PCR detection of genes encoding nitrite reductases in denitrifying bacteria. Appl. Environ. Microbiol. 65:1652-1657.
    137. Smith, S. W., R. Overbeek, C. R. Woese, W. Gilbert, and P. M. Gillevet, 1994, The genetic data environment: an expandable GUI for multiple sequence-analysis. Comp UT, Applic. Biosci.,10:671-675.
    138. Maidak, B. L., J. R. Cole, T. G. Lilbum, C. T. Parker, Jr., P. R. Saxman, J. M. Stredwick, G. M. Garrity, B. Li, G. J. Olsen, S. Pramanik, T. M. Schmidt, and J. M. Tiedje, 2000, The RDP (Pdbosomal Database Project) continues. Nucleic Acids Res., 28:173-174.
    139. Brandes, J. A., and A. H. Devol, 1995, Simultaneous nitrate and oxygen respiration in coastal sediments: evidence for discrete diagenesis, J. Mar. Res., 53:771-797.
    140. Braker, G., H. A. Ayala-del Rio, A. H. Devol, A. Fesefeldt, and J. M. Tiedje, 2001, Community structure of denitrifiers, Bacteria, and Archaea along redox gradients in Pacific Northwest marine sediments by terminal restriction fragment length polymorphism analysis of amplified nitrite reductase (nirS) and 16S rRNA genes, Appl. Environ. Microbiol., 67:1893-1901.
    141. Scala, D. J., and L. J. Kerkhof, 1998, Nitrous oxide reductase (nosZ) gene-specific PCR primers for detection of denitrifiers and three nosZ genes from marine sediments, FEMS Microbiol. Lett., 162:61-68.
    142. Bomeman, J., 1999, Culture-independent identification of microorganisms that respond to specified stimuli, Appl. Environ. Microbiol., 65:3398-3400.
    143. Covert, J. S., and M. A. Moran, 2001, Molecular characterization of bacterial communities that use high- and low-molecular weight fractions of dissolved organic carbon, Aquat. Microb. Ecol., 25:127-139.
    144. Degens, B. P. ,1998, Microbial functional diversity can be influenced by the addition of simple organic substrates to soil, Soil Biol. Biochem., 30:1981-1988.
    145. Degens, B. P., L. A. Schipper, G. P. Sparling, and M. Vojvodic-Vukovic, 2000, Decreases in organic C reserves in soils can reduce the catabolic diversity of soil microbial communities, Soil Biol. Biochem., 32:189-196.
    146. Kristensen, E., S. I. Ahmed, and A. H. Devol, 1995, Aerobic and anaerobic decomposition of organic matter in marine sediments: which is faster? Limnol. Oceanogr., 40:1430-1437.
    147. Bagwell, C. E., and C. R. Lovell, 2000, Persistence of selected Spartina altemiflora rhizoplane diazotrophs exposed to natural and manipulated environmental variability, Appl. Environ. Microbiol., 66:4625-4633.
    148. Christian, R. R., K. Bancroft, and W. J. Wiebe, 1978, Resistance of the microbial community within salt marsh soils to selected perturbations, Ecology, 59:1200-1210.
    149. Hanson, R. B., 1977, Nitrogen fixation (acetylene reduction) in a salt marsh amended with sewage sludge and organic carbon and nitrogen compounds, Appl. Environ. Microbiol., 33:846-852.
    
    
    150. Hedges, J. I., F. S. Hu, A. H. Devol, H. E. Hartnett, E. Tsamakis, and R. G. Keil, 1999, Sedimentary organic matter preservation: a test for selective degradation under oxic conditions, Am. J. Sci., 299:529-555.
    151. Skoog, A., and R. Benner, 1997, Aldoses in various size fractions of marine organic matter: implications for carbon cycling, Limnol. Oceanogr., 42:1803-1813.
    152. Wakeham, S. G., C. Lee, J. I. Hedges, P. J. Hernes, and M. L. Peterson, 1997, Molecular indicators of diagenetic status in marine organic matter. Geochim. Cosmochim. Acta, 61:5363-5369.
    153. Hedges, J. I., J. A. Baldock, Y. Crelinas, C. Lee, M. Peterson, and S. G. Wakeham, 2001, Evidence for non-selective preservation of organic matter in sinking marine particles, Nature, 409:801-804.
    154. Devol, A. H., J. J. Anderson, K. M. Kuivila, and J. W. Murray, 1984, A model for coupling sulfate reduction and methane oxidation in sediments of Saanich Inlet. Geochim, Cosmochim Acta, 48:993-1004.
    155. Chang, Y.-J., A. D. Peacock, P. E. Long, J. R. Stephen, J. P. McKinley, S. J. Macnaughton, A. K. M. Anwar Hussain, A. M. Saxton, and D. C. White, 2001, Diversity and characterization of sulfate-reducing bacteria in groundwater at a uranium mill railings site, Appl. Environ. Microbiol., 67:3149-3160.
    156. Klein, M., M. Friedrich, A. J. Roger, P. Hugenholtz, S. Fishbain, H. Abicht, L. L. Blackall, D. A. Stahl, and M. Wagner, 2001, Multiple lateral transfers of dissimilatory sulfite reductase genes between major lineages of sulfate-reducing prokaryotes, J. Bacteriol., 183:6028-6035.
    157. Wagner, M., A. J. Roger, J. L. Flax, G. A. Brusseau, and D. A. Stahl, 1998, Phylogeny of dissimilatory sulfite reductases supports an early origin of sulfate respiration, J. Bacteriol., 180:2975-2982.
    158. Premuzic, E. T., C. M. Benkovitz, J. S. Gaffney, and J. J. Walsh, 1982, The nature and distribution of organic matter in the surface sediments of world oceans and seas, Org. Geochem., 4:63-77.
    159. Hartnett, H. E. 1998, Ph.D. thesis. Organic carbon input, preservation and degradation in continental margin sediments: an assessment of the role of a strong oxygen minimum zone, University of Washington, Seattle.
    160. Diling, W., and H. Cypionka, 1990, Aerobic respiration in sulphate-reducing bacteria, FEMS Microbiol. Lett., 71:123-128.
    161. Jφrgensen, B. B., and F. Bak, 1991, Pathways and microbiology of thiosulfate transformations and sulfate reduction in a marine sediment (Kattegat, Denmark), Appl. Environ. Microbiol., 57:847-856.
    162. Marschall, C., P. Frenzel, and H. Cypionka, 1993, Influence of oxygen on sulfate reduction and growth of sulfate-reducing bacteria, Arch. Microbiol., 159:168-173.
    163. Minz, D., J. L. Flax, S. J. Green, G. Muyzer, Y. Cohen, M. Wagner, B. E. Rittmann, and D. A. Stahl 1999, Diversity of sulfate-reducing bacteria in oxic and anoxic regions of a microbial mat characterized by comparative analysis of dissimilatory sulfite reductase genes, Appl. Environ. Microbiol., 65:4666-4671.
    164. Minz, D., S. Fishbain, S. J. Green, G. Muyzer, Y. Cohen, B. E. Rittmann, and D. A. Stahl, 1999, Unexpected population distribution in a microbial mat community: sulfatereducing bacteria localized to the highly oxic chemocline in contrast to a eukaryotic preference for anoxia, Appl. Environ. Microbiol., 65:4659-4665.
    165. Tebo, B. M., and A. Y. Obraztsova, 1998, Sulfate-reducing bacterium grows with Cr(Ⅵ), U(Ⅵ), Mn(Ⅳ), and Fe(Ⅲ) as electron acceptors, FEMS Microbiol. Lett., 162:193-198.
    
    
    166. Widdel, F. ,1992, The genus Desulfotomaculum, p. 1792-1799. In A. Balows, H. G. Trüper, M. Dworkin, W. Hardin, and K.-H. Schleifer (ed.), The procaryotes, 2nd ed. Springer Verlag, New York, N.Y.
    167. Stubner, S., and K. Meuser, 2000, Detection of Desulfotomaculum in an Italian rice paddy soil by 16S ribosomal nucleic acid analysis, FEMS Microbiol. Ecol., 34: 73-80.
    168. Li, J., K. J. Purdy, S. Takii, and H. Hayashi, 1999, Seasonal changes in ribosomal RNA of sulfate-reducing bacteria and sulfate reducing activity in a freshwater lake sediment, FEMS Microbiol. Ecol,. 28:31-39.
    169. Rooney-Varga, J. N., R. Devereux, R. S. Evans, and M. E. Hines, 1997, Seasonal changes in the relative abundance of uncultivated sulfate-reducing bacteria in a salt marsh sediment and in the rhizosphere of Spartina altemiflora, Appl. Environ. Microbiol., 63:3895-3901.
    170. Widdel, F., and F. Bak., 1992, Gram-negative mesophilic sulfate-reducing bacteria, p. 3352-3378. In A. Balows, H. G. Trüper, M. Dworkin, W. Harder, and K.-H. Schleifer (ed.), The prokaryotes, 2nd ed. Springer Verlag, New York, N.Y.
    171. Cottrell, M. T., and S. G. Cary, 1999, Diversity of dissimilatory bisulfite reductase genes of bacteria associated with the deep-sea hydrothermal vent polychaete annelid Alvinella pompejana, Appl. Environ. Microbiol., 65:1127-1132.
    172. Scala, D. J., and L. J. Kerkhof, 1999, Diversity of nitrous oxide reductase (nosZ) genes in continental shelf sediments, Appl. Environ. Microbiol., 65:1681-1687.
    173. Riley, R. and J. Zachara, 1992, Chemical contaminants on DOE lands and selection of contaminant mixtures for subsurface science research. DOE/ER-0547; U.S. Department of Energy, U.S. Govemment Printing Office: Washington, DC.
    174. Wolbarst, A. B., P. F. Blom, R. N. Chan, J. Cherry, M. D. Doehnert, D. Fauver, H. B. Hull, J. A. MacKinney, J. Mauro, A. C. B. Richardson, and L. Zaragoza, 1999, Sites in the United States contaminated with radioactivity, Health Physics, 77:247-260.
    175. Abdelouas, A., W. Lutze, W. Gong, E. H. Nut-tall, B. A. Strietelmeier, and B. J. Travis, 2000, Biological reduction of uranium in groundwater and subsurface soil, Sci. Total Environ., 250:21-35.
    176. Lovely, D. R., E. E. Roden, E. J. P. Phillips, and J. C. Woodward, 1993, Enzymatic iron and uranium reduction by sulfate-reducing bacteria, Marine Geology, 113:41-53.
    177. Lovely, D. R. 1993a. Anaerobes into heavy metal: Dissimilatory metal reduction in anoxic environments. TREE 8:213-217.
    178. Lloyd, J. R., and D. R. Lovely, 2001, Microbial detoxification of metals and radionuclides, Curr. Opin. Biotechnol., 12:248-253
    179. Nealson, K. H., A. Belz, and B. McKee, 2002, Breathing metals as a way of life: geobiology in action, Antonie van Leeuwenhoek, 81:215-222.
    180. Lovely, D. R., 1995, Bioremediation of organic and metal contaminants with dissimilatory metal reduction, J. Ind. Microbiol., 14:85-93.
    181. Abdelouas, A., Y. Lu, W. Lutze, and H. E. Nuttall, 1998, Reduction of U(Ⅵ) by indigenous bacteria in contaminated ground water, J. Cont. Hydrol., 35:217-233.
    182. Finneran, K. T., M. E. Housewright, and D. R. Lovely, 2002, Multiple influences of nitrate on uranium solubility during bioremediation of uranium-contamined subsurface sediments, Environ. Microbiol., 4:510-516.
    183. Holmes, D. E., K. T. Finneran, R. A. O'Neil, and D. R. Lovely, 2002, Enrichment of members of the family Geobacteraceae associated with stimulation of dissimilatory metal reduction in uranium-contaminated aquifer sediments, Appl. Environ. Microbiol., 69:2300-2306.
    184. Snoeyenbos-West, O. L., K. P. Nevin, R. T. Anderson, and D. R. Lovely, 2000, Enrichment of Geobacter species in response to stimulation of Fe(Ⅲ) reduction in sandy aquifer sediments, Microb. Ecol., 39:153-167.
    
    
    185. Lovely, D. R., 2002, Analysis of the genetic potential and gene expression of microbial communities involved in the in situ bioremediation of uranium and harvesting electrical energy from organic matter, OMICS: J. Int. Biol., 6:331-339.
    186. Coates, J. D., R. T. Anderson, and D. R. Lovely, 1996, Oxidation of polycyclic aromatic hydrocarbons under sulfate-reducing conditions, Appl. Environ. Microbiol., 62:1099-1101.
    187. Spear, J. R., L. A. Figueroa, and B. D. Honeyman, 2000, Modeling reduction of uranium U(Ⅵ) under variable sulfate concentrations by sulfate-reducing bacteria, Appl. Environ. Microbiol,. 66:3711-3721.
    188. Lovely, D. R., E. P. Phillips, Y. A. Gorby, and E. R. Landa, 1991, Microbial reduction of uranium, Nature, 350:413-416.
    189. Payne, R. B., D. M. Gentry, B. J. Rapp-Giles, L. Casalot, and J. D. Wall,2002, Uranium reduction by Desulfovibrio desulfuricans strain G20 and a cytochrome c3 mutant, Appl. Environ. Microbiol., 68:3129-3132.
    190. Aubert, C., E. Lojou, P. Bianco, M. Rousset, M-C. Durand, M. Bruschi, and A. Dolla, 1998, The Desulfuromonas acetoxidans triheme cytochrome c7 produced in Desulfovibrio desulfuricans retains its metal reductase activity, Appl. Environ. Microbiol., 64:1308-1312.
    191. Lovely, D. R., and E. J. P. Phillips, 1992, Bioremediation of uranium contamination with enzymatic uranium reduction, Environ. Sci. Technol., 26:2228-2234.
    192. Ganesh, R., K. G. Robinson, G. D. Reed, and G. S. Sayler, 1997, Reduction of hexavalent uranium from organic complexes by sulfate- and iron-reducing bacteria, Appl. Environ. Microbiol., 63:4385-4391.
    193. Suzuki, Y., S. D. Kelly, K. M. Kemner, and J. F. Banfield. 2003, Microbial populations stimulated for hexavalent uranium reduction in uranium mine sediments, Appl. Environ. Microbiol., 69:1337-1346.
    194. Dhillon, A., A. Teske, J. Dillon, D. A. Stahl, and M. L. Sogin, 2003, Molecular characterization of sulfate-reducing bacteria in the Guaymas Basin, Appl. Environ. Microbiol., 69:2765-2772.
    195. Liu, X., C. E. Bagwell, L. Wu, A. H. Devol, and J. Zhou, 2003, Molecular diversity of sulfate-reducing bacteria from two different continental margin habitats, Appl. Environ. Microbiol. ,69:6073-6081.
    196. Suzuki, M. T., and S. J. Giovannoni, 1996, Bias caused by template annealing in the amplification of mixtures of 16S rRNA genes by PCR, Appl. Environ. Microbiol., 62:625-630.
    197. Gu, B., D. B. Watson, L. Wu, D. H. Phillips, D. C. White, and J. Zhou, 2002, Microbiological characteristics in a zero-valent iron reactive barrier, Environ. Monit. Assess., 77:293-309.
    198. Gu, B., T. J. Phillips, L. Liang, M. J. Dickey, Y. Roh, B. L. Kinsall, A. V. Palumbo, and G. K. Jacobs, 1999, Biogeochemical dynamics in zero-valent iron columns: Implications for permeable reactive barriers. Environ, Sci. Technol., 33:2170-2177.
    199. Phillips, D. H., B. Gu, D. B. Watson, Y. Roh, L. Liang, and S. Y. Lee, 2000, Performance evaluation of a zero-valent iron reactive barrier: mineralogical characteristics, Environ. Sci. Technol., 34:4169-4176.
    200. Gandhi, S., B-T. Oh, J. L. Schnoor, and P. J. J. Alvarez, 2002, Degradation of TCE, Cr(Ⅵ), sulfate, and nitrate mixtures by granular iron in flow-through columns under different microbial conditions, War. Res., 36:1973-1982.
    201. Devereux, R, M. Delaney, F. Widdel, and D. A. Stabl, 1989, Natural relationships among sulfate-reducing eubacteria, J. Bacteriol., 171:6689-6695.
    202. Devereux, R., and D. A. Stabl, 1993, Phylogeny of sulfate-reducing bacteria and a perspective for analyzing their natural communities, p. 131-159. In J. M. Odom and R.
    
    Singleton Jr. (ed.), The sulfate-reducing bacteria: contemporary perspectives. SpringerVerlag Inc., New York.
    203. Hansen, T. A., 1993, Carbon metabolism of sulfate-reducing bacteria, p. 21-40. In J. M. Odom and R. Singleton Jr. (ed.), The sulfate-reducing bacteria: contemporary perspectives. Springer-Veflag Inc., New York.
    204. Widdel, F. and F. Bak, 1992, Gram-negative mesophilic sulfate-reducing bacteria, p.3352-3378. In A. Balows, H. G. Truper, M. Dworkin, W. Harder, and K. -H. Schleifer (ed.), The prokaryotes, 2nd ed. Springer-Verlag, New York, N.Y.
    205. Ganesh, R., K. G. Robinson, L. Chu, D. Kucsmas, and G. D. Reed, 1999, Reductive precipitation of uranium by Desulfovibrio desulfuricans: evaluation of cocontaminant effects and selective removal, War. Res., 33:3447-3458.
    206. Gibson, D.T. and G.S.Sayler, 1992, Scientific foundation of bioremediation: Current status and future needs, American Academy of Microbiology, Washington,D.C.
    207. Atlas,R.M., 1981, Microbial degradation of petroleum hydrocarbons: An environmental perspective, Microbiol. Rev., 7:285-292.
    208. Thompson DK, Beliaev AS, Giometti CS, Tollaksen SL, Khare T, Lies DP, Nealson KH, Lim H, Yates Ⅲ, J, Brandt CC, Tiedje JM, Zhou, J,2002, Transcriptional and Proteomic Analysis of a Ferric Uptake Regulator (Fur) Mutant of Shewanella oneidensis: Possible Involvement of Fur in Energy Metabolism, Transcriptional Regulation, and Oxidative Stress. Appl Environ Microbiol 68:881-892.
    209. Eaton, R. W., 1994, Organization and evolution of naphthalene catabolic pathways: sequence of the DNA encoding 2-hydroxychromene-2-carboxylate isomerase and transo-hydroxybenzylidenepyruvate hydratase-aldolase from the NAH7 plasmid, J Bacteriol, 176:7757-7762.
    210. Eaton,R.W. and Chapman,P.J., 1992, Bacterial metabolism of naphthalene: construction and use of recombinant bacteria to study ring cleavage of 1,2-dihydroxynaphthalene and subsequent reactions, J. Bacteriol., 174, 7542-7554
    211. Grimm, A. C., and C. S. Harwood, 1999, NahY, a catabolic plasmid-encoded receptor required for chemotaxis of Pseudomonas putida to the aromatic hydrocarbon naphthalene, J Bacteriol, 181:3310-3316
    212. Harayama, S., M. R. M, A. Wasserfallen, and A. Bairoch, 1987, Evolutionary relationships between catabolic pathways for aromatics: conservation of gene order and nucleotide sequences of catechol oxidation genes of pWWO and NAH7 plasmids, Mol Gen Genet, 210:241-247.
    213. Harayama, S., and M. Rekik, 1989, Bacterial aromatic ring-cleavage enzymes are classified into two different gene families, J Biol Chem, 264:15328-15333.
    214. Van Beilen,J.B., Eggink,G., Enequist,H., Bos,R. and Witholt,B, 1992, DNA sequence determination and functional characterization of the OCT-plasmid-encoded alkJKL genes of Pseudomonas oleovorans, Mol. Microbiol., 6 (21), 3121-3136.
    215. Breese, K., M. Boll, J. Alt-Morbe, H. Schagger, and G. Fuchs, 1998, Genes coding for the benzoyl-CoA pathway of anaerobic aromatic metabolism in the bacterium Thauera aromatica, Eur J Biochem, 256:148-154.
    216. Breinig, S., E. Schiltz, and G. Fuchs, 2000, Genes involved in anaerobic metabolism of phenol in the bacterium Thauera aromatica, J Bacteriol, 182:5849-5863
    217. Laempe D, J. M., Breese K, Schagger H, Fuchs G, 2001, Anaerobic metabolism of 3hydroxybenzoate by the denitrifying bacterium Thauera aromatica, J Bacteriol., 183:968-979.
    218. Egland, P. G., D. A. Pelletier, M. Dispensa, J. Gibson, and C. S. Harwood, 1997, A cluster of bacterial genes for anaerobic benzene ring biodegradation, Proc Natl Acad Sci.
    219. Gibson, J., M. Dispensa, and C. S. Harwood, 1997, 4-hydroxybenzoyl coenzyme A reductase (dehydroxylating) is required for anaerobic degradation of 4-hydroxybenzoate
    
    by Rhodopseudomonas palustris and shares features with molybdenum-containing hydroxylases, J Bacteriol., 179:634-642.
    220. Kirchman, D., J. Sigda, R. Kapuseinski and R.Mitchell, 1982, Statistical analysis of the direct count method for enumerating bacteria, Appl. Environ. Microbiol., 44:376-382.
    221. Xu, D., G. Li, L. Wu, J. Zhou, and Y. Xu. 2001. PRIMEGENS: A Computer Program for Robust and Efficient Design of CJene-Specific Probes for Microarray Analysis. Bioinformatics. 18:1432-1437.
    222. Verdnik, D., S. Handran, and S. Pickett, 2002, Key considerations for accurate microarray scanning and image analysis. In: DNA image analysis: Nuts and bolts. G. Kamberova (ed.) DNA Press LLC. Salem, MA. pp 83-98.
    223. Schell, M. A., 1986, Homology between nucleotide sequences of promoter regions of nah and sal operons of NAH7 plasmid of Pseu.domonas putida, Proc Natl Acad Sci., 83:369-373.
    224. Leuthner B, L. C., Schulz H, Horth P, Haehnel W, Schiltz E, Schagger H, Heider J., 1998, Biochemical and genetic characterization of benzylsuccinate synthase from Thauera aromatica: a new glycyl radical enzyme catalysing the first step in anaerobic toluene metabolism, Mol Microbiol, 1998:615-628.
    225. Relogio, A., C. Schwager, A. Richter, W. Ansorge, and J. Valcarcel, 2002, Optimization of oligonucleotide-based DNA microarrays, Nucleic Acid Res. 30:e51.
    226. Taroncher-Oldenburg G, Gfiner EM, Francis CA, Ward BB, 2003, Oligonucleotide microarray for the study of functional gene diversity in the nitrogen cycle in the environment, Appl. Environ. Microbiol., 69:1159-1171.
    227. Bartosiewicz M, Trounstine M, Barker D, Johnston R, Buckpitt A, 2000, Development of a toxicological gene array and quantitative assessment of this technology, Arch. Biochem. Biophys., 376 (1): 66-73.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700