阴—非离子表面活性剂抗Ca~(2+)机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
阴-非离子表面活性剂相比于非离子表面活性剂和阴离子表面活性剂,具有耐盐性能好,kraff点低,浊点高以及环境友好的优点。研究发现,该类阴-非离子表面活性剂都有很高的抗Ca2+能力,认为分子中的EO基团会与Ca2+离子发生络合作用,从而减小了Ca2+离子对极性头基的影响,表面活性剂分子不容易沉淀,因此提高了其抗Ca2+离子能力。为了得到EO基团与Ca2+离子相互作用的大小、EO数量对这种相互作用力的影响、EO基团的数量与表面活性剂分子抗Ca2+能力的关系以及不同种类阴-非离子表面活性剂抗Ca2+离子的差异等,通过分子动力学模拟的方法从微观上深入分析,考察了烷基硫酸盐和烷基磺酸盐随EO数的增加,对表面活性剂聚集行为及其与Ca2+离子相互作用的影响,以期对阴-非离子表面活性剂的实际应用和分子设计提供理论指导。
     十二烷基硫酸钠(SDS)是一种常见的阴离子表面活性剂,广泛应用于各种领域。第二章就选取了SDS分子以及十二烷基苯硫酸钠(SDBS)作为对比,通过分子动力学模拟研究了引入一个EO基团后,表面活性剂分子在气/液界面聚集行为的差异。EO基团的引入会降低极性头所带电量,它们之间的经典排斥力降低,有利于表面活性剂形成更为紧密的聚集结构。而头基负电性的降低,使其与Na+离子的相互作用降低,SDBS的体系降低幅度高于SDS. EO基团的存在可以增强极性头基的水化能力,且SDBS的体系增强幅度高于SDS。SDS与SDBS体系之间这些差异可能与苯环所带来的空间位阻效应有关。
     EO基团的引入会提高SDS和SDBS的水化能力,降低头基与Na+离子的相互作用。第三章中就进一步探讨了EO基团的引入对SDS和SDBS抗钙性的影响。在SDS和SDBS体系中,大多数Ca2+离子则位于表面活性剂分子中804头基的第二水化层。而在SDES和SDBES体系,部分Ca2+离子会进入EO基团和804头基的第一水化层,Ca2+离子与表面活性剂的相互作用增强,而进一步的分析表明,Ca2+离子只与804头基中与EO基团相连的O原子发生强的相互作用,而与其它三个O原子的相互作用力没有明显的增强。引入的EO基团会结合Ca2+离子,限制其迁移能力,降低了Ca2+离子对804头基的影响,因而降低了表面活性剂被沉淀的几率,提高其抗钙性能。
     一个EO基团的引入就可以提高SDS的抗钙性能,为了得到EO数量对它们抗钙性能的影响,第四章模拟研究了SDS、SDES、SDE2S、SDE3S和SDE4S在界面聚集行为和抗钙性能的差异。EO数增加,会降低表面活性剂与Na+离子相互作用力,而能提高其与Ca2+离子的结合能力,尤其是当EO数大于2时,提高的幅度更大,继续增加EO基团,对其抗钙性能的提高不明显。
     烷基磺酸盐类表面活性剂活性剂也是一类用途广泛的阴离子表面活性剂,作为与烷基硫酸盐的对比,第五章模拟了EO基团的引入对十二烷基磺酸钠(SDSn)和十二烷基苯磺酸钠(SDBSn)表面活性剂分子在气/液界面上的聚集行为及其抗钙性能的影响。EO基团的增多都可以增强SDSn和SDBSn表面活性剂分子、头基S03及Oe原子的水化能力。SDSn分子中的S03基团与反离子Na+的相互作用随着EO数的增加逐渐减弱,SDBSn分子则是引入第一个EO基团时,它们之间的相互作用增强,而随着进一步增加EO基团其相互作用又逐渐减小。SDSn分子中引入3个EO基团时,Ca2+离子对S03基团影响最小,EO络合Ca2+离子的能力最大,此时表面活性剂分子的抗钙性能最强。而SDBSn分子中引入2个EO基团后,表面活性剂分子的抗钙性能就大大提高,继续增加EO基团对其抗钙性能的提高不明显。
     表面活性剂与聚合物混合体系的研究一直是大家感兴趣的课题。目前对阴-非离子表面活性剂与聚合物混合体系的研究较为缺乏。第六章我们选择的模拟体系为含有三个EO基团的十二烷基聚氧乙烯醚磺酸钠(SDE3Sn)和十二烷基聚氧乙烯醚硫酸钠(SDE3S)分别与聚丙稀酰胺(PAM)以及PEO-PPO嵌段聚醚的混合体系,考察在含有CaCl2时,混合体系组分间的相互作用及其抗钙能力,结果发现含有SDE3Sn的混合体系的抗Ca2+性能优于含SDE3S者。
Compared with non-ionic and anionic surfactant, there are many advantages of anionic-nonionic surfactants:a good resistance to salt, low Kraff point, high cloud point, and environmentally friendly. The anionic-nonionic surfactant has a high ability to resist Ca2+ions, EO group would combine Ca2+ions to form complexation, which reduces the effect of Ca2+ion on the polar groups, surfactant molecules precipitate hardly, thereby improving its ability to resist Ca2+ion. To get the interaction between EO group and Ca2+ion, EO number effects, the relationship of surfactant molecular anti-Ca2+capacity with number of EO units, and the differences of anti-Ca2+ions with different species anionic-nonionic surfactant, molecular dynamics simulation was used to study the aggregation behavior, interaction with Ca2+ion of alkyl sulfate and alkyl sulfonate with EO number of increased, With a view to the practical application of anionic-nonionic surfactant molecules and its molecular designed to provide theoretical guidance.
     Sodium dodecylsulfate (SDS) is a common type of anionic surfactants, widely used in various fields. In Chapter2, SDS and alkyl benzene sodium sulfate (SDBS); were compared by molecular dynamics simulations to investigate the differences of their interfacial aggregation behavior with EO group introduced. The EO group introduction will reduce the polarity of the charge, electrostatic repulsive force between them reduced, to form compact aggregates. Negative charge decreases of SO4group induce its interaction with Na+ions reduced. SDBS system reduces more than the SDS. EO groups exist to increase the hydration capacity of polar base and SDBS system increased more than SDS. These differences may be caused by steric effects of the benzene ring.
     Introduction of EO groups would increase the hydration capacity of SDS and SDBS, lower SO4group interactions with Na+ions. In Chapter3, the effect of EO group introduction is further explored on the anti-Ca2+capacity of SDS and SDBS. In SDS and SDBS systems, most Ca2+ions locate in the second hydration layer of surfactant molecules and SO4groups. In the SDES and SDBES system, part Ca2+ions would enter into their first hydration layer of SO4group and EO units, the interactions between Ca+ion with the surfactant enhanced, further analysis showed that the Ca2+ions only interact strongly with the O atom (SO4group connected with the EO groups), and its interaction with other three O atoms are rarely improved. The EO group would combine Ca+ions, limiting their migration, reduces effect of Ca2+ions on SO4group, thus avoiding the precipitation of surfactant, improving its anti-Ca2+capacity.
     Introduction of EO groups can increase the anti-Ca2+capacity of SDS, to get the effects of EO numbers on improving its anti-Ca2+capacity, in Chapter4, molecular dynamic simulations were used to compare the differences of the interfacial aggregation and their anti-Ca2+capacity of SDS, SDES, SDE2S, SDE3S and SDE4S. Increased number of EO, would lower surfactants interaction with Na+ions, and can improve the ability of its combination with Ca2+ions, especially when more than2EO units presence, there is a larger increase, while continues to increase the EO groups, its anti-Ca+capacity improvement is not evident.
     Alkyl sulfonate surfactants are also widely used in various fields, as compared with alkyl sulfates, in Chapter5, the interfacial aggregation behaviors and their anti-Ca2+capacity of SDSn and SDBSn were compared with EO groups increase. Introduction EO groups would enhance their hydration capacity of surfactant molecules, SO3and EO group. The interaction between SO3groups in SDSn molecules and Na+ions decreases with increasing EO. As for the SDBSn molecule, first EO group introduced will enhance the interaction between them, and as a further increase in EO group, their interaction decreases. SDSn molecule with3EO group introduced, Ca2+ion on SO3groups least affected, EO complexing capacity maximum of Ca2+ion, anti-Ca2+capacity of surfactant molecules is highest. As the SDBSn molecule with2EO groups introduced, anti-Ca2+capacity of surfactant molecules is greatly improved, continue to increase the EO groups, its anti-Ca2+capacity improvement is not evident.
     The mixtures of surfactant and polymer have always been a topic. While the researches on mixtures of anionic-nonionic surfactants and polymer are relatively lack. In Chapter6, the SDE3Sn and SDE3S are chosen to mix with polypropylene amide (PAM) and PPO-PEO polyether, respectively. When containing CaCl2, the interaction between the mixture system components and their ability to resist the Ca+were compared, the results found to contain SDE3Sn, Ca2+resistance of mixtue system with superior to contain SDE3S.
引文
[1]Burov, S. V.; Vanin, A. A.; Brodskaya, E. N., Principal role of the stepwise aggregation mechanism in ionic surfactant solutions near the critical micelle concentration. Molecular dynamics study. J. Phys. Chem.B 2009,113,10715-10720.
    [2]Chowdhary, J.; Ladanyi, B. M., Molecular dynamics simulation of aerosol-ot reverse micelles. J. Phys. Chem.B 2009,113,15029-15039.
    [3]Miller, C. A.; Abbott, N. L.; de Pablo, J. J., Surface activity of amphiphilic helical beta-peptides from molecular dynamics simulation. Langmuir 2009,25,2811-2823.
    [4]Poghosyan, A. H.; Arsenyan, L. H.; Gharabekyan, H. H.; Koetz, J.; Shahinyan, A. A., Molecular dynamics study of poly(diallyldimethylammonium chloride) (PDADMAC)/sodium dodecyl sulfate (SDS)/decanol/water systems. J. Phys. Chem. B 2009,113,1303-1310.
    [5]Rongliang, W.; Manli, D.; Bin, K.; Yilin, W.; Xiaozhen, Y., Molecular dynamics simulations of ammonium surfactant monolayers at the heptane/water interface. J. Phys. Chem. B 2009,113, 12680-6.
    [6]Samanta, S. K.; Bhattacharya, S.; Maiti, P. K., Coarse-grained molecular dynamics simulation of the aggregation properties of multiheaded cationic surfactants in water. J. Phys. Chem. B 2009, 113,13545-13550.
    [7]Yan, H.; Yuan, S. L.; Xu, G. Y.; Liu, C. B., Effect of Ca2+ and Mg2+ ions on surfactant solutions investigated by molecular dynamics simulation. Langmuir 2010,26,10448-10459.
    [8]Misselyn-Bauduin, A. M.; Thibaut, A.; Grandjean, J.; Broze, G.; Jerome, R., Mixed micelles of anionic-nonionic and anionic-zwitterionic surfactants analyzed by pulsed field gradient nmr. Langmuir 2000,16,4430-4435.
    [9]Goloub, T. P.; Pugh, R. J.; Zhmud, B. V, Micellar interactions in nonionic/ionic mixed surfactant systems. J. Colloid Interf. Sci,2000,229,72-81.
    [10]Griffiths, P. C.; Roe, J. A.; Jenkins, R. L.; Reeve, J.; Cheung, A. Y. F.; Hall, D. G.; Pitt, A. R.; Howe, A. M., Micellization of sodium dodecyl sulfate with a series of nonionic n-alkyl malono-bis-n-methylglucamides in the presence and absence of gelatin. Langmuir 2000,16, 9983-9990.
    [11]Forgacs, E.; Cserhati, T.; Deyl, Z.; Miksik, I.; Eckhardt, A., Mixtures of nonionic and anionic surfactants:Interactions with low-molecular-mass homopeptides. J. Chromatogr. A 2001,917, 287-295.
    [12]Pegiadou, S.; Eleftheriadis, I., Mixed micelles of sodium dodecylsulphate and ethoxylated nonylphenols with different ethoxylation number. Tenside Surfactants Deterg.2001,38,234-237.
    [13]Bales, B. L.; Ranganathan, R.; Griffiths, P. C., Characterization of mixed micelles of sds and a sugar-based nonionic surfactant as a variable reaction medium. J. Phys. Chem. B 2001,105, 7465-7473.
    [14]Zhou, W. J.; Zhu, L. Z., Solubilization of pyrene by anionic-nonionic mixed surfactants. J. Hazard. Mater.2004,109,213-220.
    [15]Chen, Z. X.; Deng, S. P.; Li, X. K., Micellization and synergistic interaction of binary surfactant mixtures based on sodium nonylphenol polyoxyethylene ether sulfate. J. Colloid Interf. Sci,2008,318,389-396.
    [16]Zhou, Q.; Rosen, M. J., Molecular interactions of surfactants in mixed monolayers at the air/aqueous solution interface and in mixed micelles in aqueous media:The regular solution approach. Langmuir 2003,19,4555-4562.
    [17]Feitosa, E.; Brown, W., Mixed micelles of the anionic surfactant sodium dodecyl sulfate and the nonionic pentaethylene glycol mono-n-dodecyl ether in solution. Langmuir 1998,14, 4460-4465.
    [18]Garamus, V. M., Formation of mixed micelles in salt-free aqueous solutions of sodium dodecyl sulfate and c12e6. Langmuir 2003,19,7214-7218.
    [19]Penfold, J.; Tucker, I.; Thomas, R. K.; Staples, E.; Schuermann, R., Structure of mixed anionic/nonionic surfactant micelles:Experimental observations relating to the role of headgroup electrostatic and steric effects and the effects of added electrolyte. J. Phys. Chem. B 2005,109, 10760-10770.
    [20]Deb, N.; Shannigrahi, M.; Bagchi, S., Use of fluorescence probes for studying kamlet-taft solvatochromic parameters of micellar system formed by binary mixture of sodium dodecyl sulfate and triton-x 100. J. Phys. Chem. B 2008,112,2868-2873.
    [21]Glenn, K.; van Bommel, A.; Bhattacharya, S. C.; Palepu, R. M., Self aggregation of binary mixtures of sodium dodecyl sulfate and polyoxyethylene alkyl ethers in aqueous solution. Colloid Polym. Sci.2005,283,845-853.
    [22]Kinzel, S.; Gradzielski, M., Control of phase behavior and properties of vesicle gels by admixing ionic surfactants to the nonionic surfactant brij 30. Langmuir 2008,24,10123-10132.
    [23]Ghosh, S.; Burman, A. D.; De, G. C.; Das, A. R., Interfacial and self-aggregation of binary mixtures of anionic and nonionic amphiphiles in aqueous medium. J. Phys. Chem. B 2011,115, 11098-11112.
    [24]Goloub, T. P.; Pugh, R. J., The role of the surfactant head group in the emulsification process: Binary (nonionic-ionic) surfactant mixtures. J. Colloid Interf. Sci,2005,291,256-262.
    [25]Joshi, T.; Mata, J.; Bahadur, P., Micellization and interaction of anionic and nonionic mixed surfactant systems in water. Colloids Surf. A,2005,260,209-215.
    [26]Matsubara, H.; Muroi, S.; Kameda, M.; Ikeda, N.; Ohta, A.; Aratono, M., Interaction between ionic and nonionic surfactants in the adsorbed film and micelle.3. Sodium dodecyl sulfate and tetraethylene glycol monooctyl ether. Langmuir 2001,17,7752-7757.
    [27]Matsubara, H.; Ohta, A.; Kameda, M.; Ikeda, N.; Aratono, M., Interaction between ionic and nonionic surfactants in the adsorbed film and micelle. Dodecylammonium chloride and tetraethylene glycol monooctyl ether. Langmuir 2000,16,7589-7596.
    [28]Dubin, P. L.; Gruber, J.; Xia, H.; Zhang, H., The effect of cations on the interaction between dodecylsulfate micelles and poly(ethyleneoxide). J. Colloid Interf. Sci.1992,148,35-41.
    [29]Xia, J. D., P. L.; Kim, Y., Complex formation between poly(oxyethylene) and sodium dodecyl sulfate micelles:Light scattering, electrophoresis, and dialysis equilibrium studies. J. Phys. Chem.1992,96,6805-6811.
    [30]Ghosh, S.; Moulik, S. P., Interfacial and micellization behaviors of binary and ternary mixtures of amphiphiles (tween-20, brij-35, and sodium dodecyl sulfate) in aqueous medium. J. Colloid Interf. Sci,1998,208,357-366.
    [31]Vora, S.; George, A.; Desai, H.; Bahadur, P., Mixed micelles of some anionic-anionic, cationic-cationic, and ionic-nonionic surfactants in aqueous media. J. Surfactants Deterg.1999,2, 213-221.
    [32]Moya, S. E.; Schulz, P. C., The aggregation of the sodium dodecyl sulfate n-octanol water system at low concentration. Colloid. Polym. Sci.1999,277,735-742.
    [33]Kralchevsky, P. A.; Danov, K. D.; Kolev, V. L.; Broze, G; Mehreteab, A., Effect of nonionic admixtures on the adsorption of ionic surfactants at fluid interfaces.1. Sodium dodecyl sulfate and dodecanol. Langmuir 2003,19,5004-5018.
    [34]Bakshi, M. S.; Singh, J.; Kaur, J., Estimation of degree of counterion binding and thermodynamic parameters of ionic surfactants from cloud point measurements by using triblock polymer as probe. J. Colloid Interf. Sci,2005,287,704-711.
    [35]Luo, G X.; Ping, W. H., The correlation of the degree of composition of ionic-nonionic counterion binding with the mixed micelles. J. Dispersion Sci. Technol.2007,28,912-915.
    [36]Goldsipe, A.; Blankschtein, D., Molecular-thermodynamic theory of micellization of multicomponent surfactant mixtures:1. Conventional (ph-insensitive) surfactants. Langmuir 2007, 23,5942-5952.
    [37]Khimani, M.; Vora, S., Effect of inorganic additives on a conventional anionic-nonionic mixed surfactants system in aqueous solution. J. Surfactants Deterg.2011,14,545-554.
    [38]Griffiths, P. C.; Paul, A.; Stilbs, P.; Pettersson, E., Electrophoretic nuclear magnetic resonance (ENMR)-a new tool for studying counterion binding in mixed surfactant systems. Langmuir 2003,19,8605-8607.
    [39]Jin-hui, H.; Guang-ming, Z.; Yao-yao, F.; Yun-huan, Q.; Xue, L., Removal of cadmium ions using micellar-enhanced ultrafiltration with mixed anionic-nonionic surfactants. J. Membr. Sci. 2009,326,303-309309.
    [40]Penfold, J.; Thomas, R. K.; Dong, C. C.; Tucker, I.; Metcalfe, K.; Golding, S.; Grillo, I., Equilibrium surface adsorption behavior in complex anionic/nonionic surfactant mixtures. Langmuir 2007,23,10140-10149.
    [41]Penfold, J.; Staples, E.; Tucker, I.; Thomas, R. K., Surface and solution behavior of the mixed dialkyl chain cationic and nonionic surfactants. Langmuir 2004,20,1269-1283.
    [42]Petkov, J. T.; Tucker, I. M.; Penfold, J.; Thomas, R. K.; Petsev, D. N.; Dong, C. C.; Golding, S.; Grillo, I., The impact of multivalent counterions, Al3+, on the surface adsorption and self-assembly of the anionic surfactant alkyloxyethylene sulfate and anionic/nonionic surfactant mixtures. Langmuir 2010,26,16699-16709.
    [43]Fainerman, V. B.; Aksenenko, E. V.; Lylyk, S. V.; Petkov, J. T.; Yorke, J.; Miller, R., Adsorption layer characteristics of mixed sodium dodecyl sulfate/CnEOm solutions 1. Dynamic and equilibrium surface tension. Langmuir 2010,26,284-292.
    [44]Fainerman, V. B.; Zholob, S. A.; Petkov, J. T.; Miller, R., C14EO8 adsorption characteristics studied by drop and bubble profile tensiometry. Colloids Surf. A,2008,323,56-62.
    [45]Miller, R.; Fainerman, V. B.; Mohwald, H., Adsorption behavior of oxyethylated surfactants at the air/water interface. J. Colloid Interf. Sci,2002,247,193-199.
    [46]Tzocheva, S. S.; Kralchevsky, P. A.; Danov, K. D.; Georgieva, G. S.; Post, A. J.; Ananthapadmanabhan, K. P., Solubility limits and phase diagrams for fatty acids in anionic (SLES) and zwitterionic (CAPB) micellar surfactant solutions. J. Colloid Interf. Sci,2012,369,274-286.
    [47]Ahmad, A.; Yeong, S. K.; Ismail, R.; Ooi, T. L.; Ahmad, S., Synergistic effect between sodium lauryl sulphate and sodium lauryl ether sulphate with alkyl polyglycoside. J. Oil Palm. Res.2007,19,332-337.
    [48]Cirin, D. M.; Posa, M. M.; Krstonosic, V. S., Interactions between selected bile salts and triton x-100 or sodium lauryl ether sulfate. Chem. Cent. J.2011, J,8.
    [49]Khleifat, K. M., Biodegradation of sodium lauryl ether sulfate (SLES) by two different bacterial consortia. Curr. Microbiol.2006,53,444-448.
    [50]Van Haute, N.; Dooms-Goossens, A., Shampoo dermatitis due to cocobetaine and sodium lauryl ether sulphate. Contact dermatitis 1983,9,169.
    [51]Hoeman, K. W.; Culbertson, C. T., A novel, environmentally friendly sodium lauryl ether sulfate-, cocamidopropyl betaine-, cocamide monoethanolamine-containing buffer for mekc on microfluidic devices. Electrophoresis 2008,29,4900-4905.
    [52]Vollhardt, D.; Czichocki, G.; Rudert, R., Effect of the molecular structure on the adsorption of alkyl ether sulphates and alkane ether sulphonates at the air-water interface. Colloids Surf A,1998, 142,315-322.
    [53]Rouse, J. D.; Sabatini, D. A.; Deeds, N. E.; Brown, R. E.; Harwell, J. H., Micellar solubilization of unsaturated hydrocarbon concentrations as evaluated by semiequilibrium dialysis. Environ. Sci. Technol.1995,29,2484-9.
    [54]Aoudia, M.; Al-Maamari, T.; Al-Salmi, F., Intramolecular and intermolecular ion-dipole interactions in sodium lauryl ether sulfates (SLES) self-aggregation and mixed micellization with triton x-100. Colloids Surf. A,2009,335,55-61.
    [55]Aoudia, M.; Al-Haddabi, B.; Al-Harthi, Z.; Al-Rubkhi, A., Sodium lauryl ether sulfate micellization and water solubility enhancement towards naphthalene and pyrene:Effect of the degree of ethoxylation. J. Surfactants Deterg.2010,13,103-111.
    [56]Parekh, P.; Varade, D.; Parikh, J.; Bahadur, P., Anionic-cationic mixed surfactant systems: Micellar interaction of sodium dodecyl trioxyethylene sulfate with cationic gemini surfactants. Colloids Surf. A,2011,385,111-120.
    [57]Czichocki, G M., A.V.; Fainerman, V. B.; Miller, R., Adsorption behavior of oxyethylated anionic surfactants part 1. Adsorption equilibrium. Colloids Surf. A,1997,122,189-198.
    [58]El-Hamouz, A., Effect of surfactant concentration and operating temperature on the drop size distribution of silicon oil water dispersion. J. Dispersion Sci. Technol.2007,28,797-804.
    [59]Cocera, M.; Lopez, O.; Estelrich, J.; Parra, J. L.; de la Maza, A., Adsorption of sodium lauryl ether sulfate on liposomes by means of a fluorescent probe:Effect of the ethylene oxide groups. Langmuir 2002,18,8250-8254.
    [60]Cocera, M.; Lopez, O.; Estelrich, J.; Parra, J. L.; de la Maza, A., Use of a fluorescence spectroscopy technique to study the adsorption of sodium dodecylsulfonate on liposomes. Chem. Phys. Lipids 2001,109,29-36.
    [61]Alargova, R. G; Petkov, J. T.; Petsev, D. N., Micellization and interfacial properties of alkyloxyethylene sulfate surfactants in the presence of multivalent counterions. J. Colloid Interf. Sci,2003,261,1-11.
    [62]牟建海,李干佐,肖洪地,廖广志,刘奕,黄丽,李伯勤,阴离子表面活性剂虫状胶束的形成.群学通报2001,46,723-726.
    [63]Sharma, S. C.; Shrestha, R. G.; Shrestha, L. K.; Aramaki, K., Rheological behavior of viscoelastic wormlike micelles in mixed sodium dodecyl trioxyethylene sulfate-monolaurin aqueous system. Colloid. Polym. Sci.2008,286,1613-1619.
    [64]陈珍珍,蒋宝源,用于三次采油的烷基聚氧乙基硫酸盐耐盐表面活性剂性能的研究,油田化学1988,5,285-289.
    [65]肖进新,赵国玺,高浓度区正负离子表面活性剂混合胶团的形状与大小变化,化学研究与应用2001,13,502-505.
    [66]Wang, K.; Yin, H. Q.; Sha, W.; Huang, J. B.; Fu, H. L., Temperature-Sensitive Aqueous Surfactant Two-Phase System Formation in Cationic-Anionic Surfactant Systems. J. Phys. Chem. B 2007,111,12997-13005.
    [67]程新皓,赵欧狄,赵海娜,黄建滨,十二烷基伯胺盐酸盐与十二烷基聚氧乙烯硫酸钠复配体系中的表面性质,物理化学学报2014,30,917-922.
    [68]Yin, H. Q.; Lei, S.; Zhu, S. B.; Huang, J. B.; Ye, J. P., Micelle-to-Vesicle Transition Induced by Organic Additives in Catanionic Surfactant Systems. Chem. Eur. J.2006,12,2825-2835.
    [69]Peretz, S.; Florea-Spiroiu, M.; Anghel, D. F.; Munteanu, C.; Angelescu, D.; Stoian, C.; Zgherea, G., Chitosan-Sodium Lauryl Ether Sulfate Particles and Their Use for Adsorption of Cu(II) Ions. J. Appl. Polym. Sci.2014,131,40059.
    [70]Amer, W.; Abdelouahdi, K.; Ramananarivo, H. R.; Zahouily, M.; Fihri, A.; Djessas, K.; Zahouily, K.; Varma, R. S.; Solhy, A., Microwave-assisted synthesis of mesoporous nano-hydroxyapatite using surfactant templates, Crystengcomm 2014,16,543-549.
    [71]Ahmad, A.; Yeong, S. K; Ismail, R.; Ooi, T. L; Ahmad, S., Synergistic effect between sodium lauryl sulphate and sodium lauryl ether sulphate with alkyl polyglycoside. J. Oil Palmreserach 2007,19,332-337.
    [72]Abdel-Rahem, R. A.; Reger, M.; Hloucha, M.; Hoffmann, H., Rheology of aqueous solutions containing SLES, CAPB, and microemulsion:influence of cosurfactant and salt. J. Dispersion Sci.Technol.2014,35,64-75.
    [73]于立军,阴离子表面活性剂在油水界面吸附行为的实验和理论研究.硕士论文,中国石油大学,2011.
    [74]游慧,赵波,王正武,水溶液中表面活性剂月桂醇聚氧乙烯醚硫酸钠性能的介观模拟.物理化学学报2009,25,67-73.
    [75]Lima, F. S.; Cuccovia, I. M.; Horinek, D.; Amaral, L. Q.; Riske, K. A.; Schreier, S.; Salinas, R. K.; Bastos, E. L.; Pires, P. A. R.; Bozelli, J. C., Jr.; Favaro, D. C.; Rodrigues, A. C. B.; Dias, L. G.; El Seoud, O. A.; Chaimovich, H., Effect of counterions on the shape, hydration, and degree of order at the interface of cationic micelles:The triflate case. Langmuir 2013,29,4193-203.
    [76]Chen, J.; Hao, J., Molecular dynamics simulation of cetyltrimethylammonium bromide and sodium octyl sulfate mixtures:Aggregate shape and local surfactant distribution. Phys. Chem. Chem. Phys.2013,15,5563-71.
    [77]Ingram, T.; Storm, S.; Kloss, L.; Mehling, T.; Jakobtorweihen, S.; Smimova, I., Prediction of micelle/water and liposome/water partition coefficients based on molecular dynamics simulations, cosmo-rs, and cosmomic. Langmuir 2013,29,3527-3537.
    [78]Wallace, J. A.; Shen, J. K., Charge-leveling and proper treatment of long-range electrostatics in all-atom molecular dynamics at constant ph. J. Chem. Phys.2012,137,9.
    [79]Kuo, A. T.; Chang, C. H.; Shinoda, W., Molecular dynamics study of catanionic bilayers composed of ion pair amphiphile with double-tailed cationic surfactant. Langmuir 2012,28, 8156-8164.
    [80]Yan, H.; Cui, P.; Liu, C. B.; Yuan, S. L., Molecular dynamics simulation of pyrene solubilized in a sodium dodecyl sulfate micelle. Langmuir 2012,28,4931-4938.
    [81]Brocos, P.; Mendoza-Espinosa, P.; Castillo, R.; Mas-Oliva, J.; Pineiro, A., Multiscale molecular dynamics simulations of micelles:Coarse-grain for self-assembly and atomic resolution for finer details. Soft Matter 2012,8,9005-9014.
    [82]Longhi, G.; Abbate, S.; Ceraulo, L.; Ceselli, A.; Fornili, S. L.; Liveri, V. T., A molecular dynamics study of structure, stability and fragmentation patterns of sodium bis(2-ethylhexyl) sulfosuccinate positively charged aggregates in vacuo. Phys. Chem. Chem. Phys.2011,13, 21423-21431.
    [83]King, D. T.; Warren, D. B.; Pouton, C. W.; Chalmers, D. K., Using molecular dynamics to study liquid phase behavior:Simulations of the ternary sodium laurate/sodium oleate/water system. Langmuir 2011,27,11381-11393.
    [84]Pang, J. Y; Wang, Y. J.; Xu, G Y; Han, T. T.; Lv, X.; Zhang, J. A., Molecular dynamics simulations of SDS, DTAB, and C12E8 monolayers adsorbed at the air/water surface in the presence of dsep. J. Phys. Chem. B 2011,115,2518-2526.
    [85]Wenhong, Y; Rongliang, W.; Bin, K.; Xiongfei, Z.; Xiaozhen, Y., Molecular dynamics simulations of film rupture in water/surfactant systems. J. Phys. Chem. B 2009,113,8332-8.
    [86]He, X.; Guvench, O.; MacKerell, A. I., Jr.; Klein, M. L., Atomistic simulation study of linear alkylbenzene sulfonates at the water/air interface. J. Phys. Chem. B 2010,114,9787-9794.
    [87]Palazzesi, F.; Calvaresi, M.; Zerbetto, F., A molecular dynamics investigation of structure and dynamics of SDS and SDBS micelles. Soft Matter 2011,7,9148-9156.
    [88]Bruce, C. D.; Senapati, S.; Berkowitz, M. L.; Perera, L.; Forbes, M. D. E., Molecular dynamics simulations of sodium dodecyl sulfate micelle in water:The behavior of water. J. Phys. Chem.B 2002,106,10902-10907.
    [89]Fujimoto, K.; Yoshii, N.; Okazaki, S., Free energy profiles for penetration of methane and water molecules into spherical sodium dodecyl sulfate micelles obtained using the thermodynamic integration method combined with molecular dynamics calculations. J. Chem. Phys.2012,136, 014511.
    [90]Fujimoto, K.; Yoshii, N.; Okazaki, S., Molecular dynamics study of solubilization of immiscible solutes by a micelle:Free energy of transfer of alkanes from water to the micelle core by thermodynamic integration method. J. Chem. Phys.2010,133,074511.
    [91]Yang, W. H.; Yang, X. Z., Molecular dynamics study of the foam stability of a mixed surfactant/water system with and without calcium ions. J. Phys. Chem. B 115,4645-4653.
    [92]Gao, J.; Ren, Y.; Ge, W., Molecular dynamics simulation of effect of salt on the compromise of hydrophilic and hydrophobic interactions in sodium dodecyl sulfate micelle solutions. Chin. J. Chem. Eng.2009,17,654-660.
    [93]Darvas, M.; Gilanyi, T.; Jedlovszky, P., Adsorption of poly (ethylene oxide) at the free water surface. A computer simulation study.J. Phys. Chem. B 2010,114,10995-11001.
    [94]Velinova, M.; Tsoneva, Y.; Ivanova, A.; Tadjer, A., Estimation of the mutual orientation and intermolecular interaction of cl2ex from molecular dynamics simulations. J. Phys. Chem. B 2012, 116,4879-4888.
    [95]Chanda, J.; Bandyopadhyay, S., Molecular dynamics study of a surfactant monolayer adsorbed at the air/water interface. J. Chem. Theory Comput.2005,1,963-971.
    [96]Bandyopadhyay, S.; Tarek, M.; Lynch, M. L.; Klein, M. L., Molecular dynamics study of the poly(oxyethylene) surfactant C12E2 and water. Langmuir 2000,16,942-946.
    [97]Zahariev, T.; Ivanova, A.; Velinova, M.; Tadjer, A., Structure and aggregation proclivity of cl2e3 in aqueous solution. Chem. Phys.2013,410,1-8.
    [98]Cuny, V; Antoni, M.; Arbelot, M.; Liggieri, L., Structural properties and dynamics of C12E5 molecules adsorbed at water/air interfaces:A molecular dynamic study. Colloids Surf. A,2008, 323,180-191.
    [99]Sterpone, F.; Pierleoni, C.; Briganti, G.; Marchi, M., Molecular dynamics study of temperature dehydration of a C12E6 spherical micelle. Langmuir 2004,20,4311-4314.
    [100]Poghosyan, A. H.; Arsenyan, L. H.; Gharabekyan, H. H.; Falkenhagen, S.; Koetz, J.; Shahinyan, A. A., Molecular dynamics simulations of inverse sodium dodecyl sulfate (SDS) micelles in a mixed toluene/pentanol solvent in the absence and presence of poly(diallyldimethylammonium chloride) (PDADMAC). J. Colloid Interf. Sci,2011,358, 175-181.
    [101]Fu, Y. Z.; Liao, L. Q.; Yang, L. X.; Lan, Y. H.; Mei, L. Y; Liu, Y. Q.; Hu, S. Q., Molecular dynamics and dissipative particle dynamics simulations for prediction of miscibility in polyethylene terephthalate/polylactide blends. Mol. Simul.2013,39,415-422.
    [102]Song, Y.; Feng, W.; Liu, K.; Yang, P.; Zhang, W.; Zhang, X., Exploring the folding pattern of a polymer chain in a single crystal by combining single-molecule force spectroscopy and steered molecular dynamics simulations. Langmuir 2013,29,3853-7.
    [103]Eslami, H.; Muller-Plathe, F., How thick is the interphase in an ultrathin polymer film? Coarse-grained molecular dynamics simulations of polyamide-6,6 on graphene. J. Phys. Chem. C 2013,117,5249-5257.
    [104]Ting, G; Pierce, F.; Perahia, D.; Grest, G S.; Robbins, M. O., Molecular dynamics simulations of polymer welding:Strength from interfacial entanglements. Phys. Rev. Lett.2013, 110,098301 (5 pp.).
    [105]Simona, F.; Nussbaumer, A. L.; Haner, R.; Cascella, M., Supramolecular organization of heptapyrenotide oligomers-an in depth investigation by molecular dynamics simulations. J. Phys. Chem.B 2013,117,2576-2585.
    [106]Li, C. Y; Jaramillo, E.; Strachan, A., Molecular dynamics simulations on cyclic deformation of an epoxy thermoset. Polymer 2013,54,881-890.
    [107]Zhao, Y. R.; Chen, X.; Yang, C. J.; Zhang, G D., Mesoscopic simulation on phase behavior of pluronic p123 aqueous solution. J. Phys. Chem. B 2007, 111,13937-13942.
    [108]Wang, H.; Zhang, H.; Liu, C.; Yuan, S., Coarse-grained molecular dynamics simulation of self-assembly of polyacrylamide and sodium dodecylsulfate in aqueous solution. J. Colloid Interf. Sci,2012,386,205-11.
    [109]Shang, B. Z.; Wang, Z. W.; Larson, R. G, Molecular dynamics simulation of interactions between a sodium dodecyl sulfate micelle and a poly (ethylene oxide) polymer. J. Phys. Chem. B 2008,112,2888-2900.
    [110]Maria, D.; Tibor, G.; Pal, J., Competitive adsorption of surfactants and polymers at the free water surface. A computer simulation study of the sodium dodecyl sulfate-poly (ethylene oxide) system. J. Phys. Chem. B 2011,115,933-944.
    [111]Gong, H.; Xu, G.; Liu, T.; Xu, L.; Zhai, X.; Zhang, J.; Lv, X., Aggregation behaviors of peo-ppo-ph-ppo-peo and ppo-peo-ph-peo-ppo at an air/water interface:Experimental study and molecular dynamics simulation. Langmuir 2012,28,13590-13600.
    [112]Pang, J.; Wang, Y.; Xu, G.; Han, T.; Lv, X.; Zhang, J., Molecular dynamics simulations of SDS, DTAB, and C12E8 monolayers adsorbed at the air/water surface in the presence of DSEP. J. Phys. Chem. B 2011,115,2518-2526.
    [113]Pang, J.; Xu, G., Molecular dynamics simulations of the interactions between SWNT and surfactants. Comput. Mater. Sci.2012,65,324-330.
    [114]Pang, J.; Xu, G, Comparison of the influence of fluorocarbon and hydrocarbon surfactants on the adsorptions of SDS, DTAB and C12E8 at the air/water interface by MD simulation. Chem. Phys. Lett.2012,537,118-125.
    [115]Pang, J.; Xu, G.; Bai, Y.; Yuan, S.; He, F.; Wang, Y.; Sun, H.; Hao, A., Molecular dynamics simulations of the interactions between beta-cyclodextrin derivatives and single-walled carbon nanotubes. Comput. Mater. Sci.2010,50,283-290.
    [116]Pang, J.Y.; Lue, X.; Zhang, J.; Yuan, S. L.; Xu, G. Y, Mesoscopic simulations on the aggregation behavior of polymeric surfactants in aqueous solutions. Acta Physico-Chimica Sinica 2011,27,520-529.
    [117]Chen, Y J.; Xu, G Y.; Yuan, S. L.; Sun, H. Y, Dynamic study of gemini surfactant and single-chain surfactant at air/water interface. Chin. Chem. Lett.2005,16,688-690.
    [118]Chen, Y. J.; Xu, G. Y.; Yuan, S. L.; Sun, H. Y, Molecular dynamics simulations of AOT at isooctane/water interface. Colloids Surf. A,2006,273,174-178.
    [119]Li, Y. M.; Xu, G. Y.; Chen, Y. J.; Luan, Y X.; Yuan, S. L., Computer simulations of surfactants and surfactant/polymer assemblies. Comput. Mater. Sci.2006,36,386-396.
    [120]Li, Y. M.; Xu, G. Y.; Luan, Y. X.; Yuan, S. L.; Zhang, Z. Q., Studies on the interaction between tetradecyl dimethyl betaine and sodium carboxymethyl cellulose by DPD simulations. Colloids Surf. A,2005,257-58,385-390.
    [121]Pang, J. Y.; Xu, G. Y.; Bai, Y.; Zhao, T. T., Molecular dynamics simulation of the inclusion complex of beta-cyclodextrin with CTAB at air/water interface. Chemical Journal of Chinese Universities-Chinese 2009,30,735-740.
    [122]Yuan, S. L.; Chen, Y. J.; Xu, G Y, Molecular dynamics studies on octadecylammonium chloride at the air/liquid interface. Colloids Surf. A,2006,280,108-115.
    [123]Zhao, T; Xu, G; Yuan, S.; Chen, Y.; Yan, H., Molecular dynamics study of alkyl benzene sulfonate at air/water interface:Effect of inorganic salts.J. Phys. Chem. B 2010,114,5025-5033.
    [124]Mu, J. H.; Li, G. Z.; Jia, X. L.; Wang, H. X.; Zhang, G. Y., Rheological properties and microstructures of anionic micellar solutions in the presence of different inorganic salts. J. Phys. Chem. B 2002,106,11685-11693.
    [125]Mu, J. H.; Li, G. Z., The formation of wormlike micelles in anionic surfactant solutions in the presence of bivalent counterion. Chem. Phys.Lett.2001,345,100-104.
    [126]Mu, J. H.; Li, G. Z., Rheology of viscoelastic anionic micellar solutions in the presence of multivalent counterion. Colloid. Polym. Sci.,2001,279,872-878.
    [127]Dahanayake, M.; Cohen, A. W.; Rosen, M. J.; Relationship of Structure to Properties of Surfactants.13. Surface and Thermodynamic Properties of Some Oxyethylenated Sulfates and Sulfonates, J. Phys. Chem.1986,90,2413-2418.
    [128]Zhang, Z.; Zhu, R. L.; Dong, B.; Zhang, Z. X., Tenside surfactants detergents 2013,50, 430-433.
    [129]Jadidi, N.; Adib, B.; Malihi, F. B., J. Surfactants Deterg.2013,16,115-121.
    [1]Boissier, C.; Lofroth, J. E.; Nyden, M. Interactions between polyvinylpyrrolidone, sodium dodecylsulfate and nonylphenol ethoxylate in solution and on polystyrene particles. Colloids Surf. A 2007,301,444-452.
    [2]Richards, C.; Tiddy, G. J. T.; Casey, S. Liquid crystal and solution phases of sodium dodecyl-p-benzene sulphonate (NaLAS) and octa-oxyethylene glycol hexadecyl ether (C16E8):1: 1 mixtures in water. Colloid Polym. Sci.2008,286,31-46.
    [3]Shrestha, R. G.; Shrestha, L. K.; Aramaki, K. Wormlike micelles in mixed amino acid-based anionic/nonionic surfactant systems. J. Colloid Interf. Sci.2008,322,596-604.
    [4]Sagisaka, M.; Fujita, Y.; Shimizu, Y.; Osanai, C.; Yoshizawa, A. Unique liquid crystal behavior in water of anionic fluorocarbon-hydrocarbon hybrid surfactants containing oxyethylene units. J. Colloid Interf. Sci.2011,357,400-406.
    [5]Rehman, N.; Khan, A.; Bibi, I.; Siddiq, M. Micellar parameters of diblock copolymers and their interactions with ionic surfactants. Chinese J. Polym. Sci.2012,30,217-226.
    [6]Fainerman, V. B.; Aksenenko, E. V.; Petkov, J. T.; Miller, R. Influence of solubilised dodecane on the dynamic surface tension and dilational rheology of micellar Triton X-45 and SDS solutions. Colloids Surf.A 2012,413,125-129.
    [7]Jiang, Y.; Chen, H.; Mao, S. Z.; Luo, P. Y.; Du, Y. R.; Liu, M. L. Dynamics of mixed surfactants in aqueous solutions. J. Phys. Chem. B 2011,115,1986-1990.
    [8]Chauhan, S.; Chauhan, M. S.; Jyoti, J.; Thakur, R. S. Study of SDS in aqueous solution of PEG (6000)-A physico-chemical approach. J. Polym. Mater.2011,28,59-73
    [9]Cui, X. H.; Jiang, Y.; Yang, C. S.; Lu, X. Y.; Chen, H.; Mao, S. Z.; Liu, M. L.; Yuan, H. Z.; Luo, P. Y.; Du, Y R. Mechanism of the mixed surfactant micelle formation. J. Phys. Chem. B 2010,114, 7808-7816.
    [10]Yang, W. H.; Yang, X. Z. Molecular Dynamics study of the foam stability of a mixed surfactant/water system with and without calcium Ions. J. Phys. Chem. B 2011,115,4645-4653.
    [11]Brocos, P.; Mendoza-Espinosa, P.; Castillo, R.; Mas-Oliva, J.; Pineiro, A. Multiscale molecular dynamics simulations of micelles:coarse-grain for self-assembly and atomic resolution for finer details. Soft Mater 2012,8,9005-9014.
    [12]Computer studies on the effects of long chain alcohols on sodium dodecyl sulfate (SDS) molecules in SDS/dodecanol and SDS/hexadecanol monolayers at the air/water interface. Dominguez, H. J. Phys. Chem. B 2006,110,13151-13157.
    [13]Mehling, T.; Kloss, L.; Ingram, T.; Smirnova, I. Partition coefficients of ionizable solutes in mixed nonionic/ionic micellar systems. Langmuir 2013,29,1035-1044.
    [14]Tusing, T. W.; Paynter, O. E.; Opdyke, D. L.; Snyder, F. H. Toxicologic studies on sodium lauryl glyceryl ether sulfonate and sodium lauryl trioxyethylene sulfate. Toxicol. Appl. Pharm. 1962,4,402-9.
    [15]Cheon, H. Y.; Kim, M. S.; Jeong, N. H. Experimental and theoretical studies of cationic gemini surfactant and anionic sodium lauryl ether sulfate. J Ind Eng Chem 2005,11,10-19.
    [16]Khleifat, K. M. Biodegradation of sodium lauryl ether sulfate (SLES) by two different bacterial consortia. Curr. Microbiol.2006,53,444-448.
    [17]Hoeman, K. W.; Culbertson, C. T. A novel, environmentally friendly sodium lauryl ether sulfate-, cocamidopropyl betaine-, cocamide monoethanolamine-containing buffer for MEKC on microfluidic devices. Electrophoresis 2008,29,4900-4905.
    [18]Ahmad, A.; Yeong, S. K.; Ismail, R.; Ooi, T. L.; Ahmad, S. Synergistic effect between sodium lauryl sulphate and sodium lauryl ether sulphate with alkyl polyglycoside. J. Oil Palm. Res.2007, 19,332-337.
    [19]Cocera, M.; Lopez, O.; Estelrich, J.; Parra, J. L.; de la Maza, A. Adsorption of sodium lauryl ether sulfate on liposomes by means of a fluorescent probe:Effect of the ethylene oxide groups. Langmuir 2002,18,8250-8254.
    [20]Parekh, P.; Varade, D.; Parikh, J.; Bahadur, P. Anionic-cationic mixed surfactant systems: Micellar interaction of sodium dodecyl trioxyethylene sulfate with cationic gemini surfactants. Colloids Surf. A 2011,385,1-3.
    [21]Aoudia, M.; Al-Maamari, T.; Al-Salmi, F. Intramolecular and intermolecular ion-dipole interactions in sodium lauryl ether sulfates (SLES) self-aggregation and mixed micellization with Triton X-100. Colloids Surf. A 2008,335,55-61.
    [22]Vollhardt, D.; Czichocki, G.; Rudert, R. Effect of the molecular structure on the adsorption of alkyl ether sulphates and alkane ether sulphonates at the air-water interface. Colloids Surf. A 1998, 142,315-322.
    [23]Jin, Z.Q.; Xu, Z. C.; Gong, Q. T.; Zhao, S.; Yu, J. Y. Synthesis and properties of anionic surfactants containing oxyethylene group or/and branched Tail. J. Disper. Sci. Technol.2011,32, 898-902.
    [24]Zhou, Z. H.; Xu, Z. C.; Li, Z. Q.; Song, X. W.; Cao, X. L.; Zhang, L.; Zhao, S.; Yu, J. Y. Effect of oxyethylete units on adsorption and micellization properties of novel benzene sulfonate surfactants. J. Disper. Sci. Technol.2011,32,60-66.
    [25]Matsubara, H.; Muroi, S.; Kameda, M.; Ikeda, N.; Ohta, A.; Aratono, M., Interaction between ionic and nonionic surfactants in the adsorbed film and micelle.3. Sodium dodecyl sulfate and tetraethylene glycol monooctyl ether. Langmuir 2001,17,7752-7757.
    [26]Matsubara, H.; Ohta, A.; Kameda, M.; Ikeda, N.; Aratono, M., Interaction between ionic and nonionic surfactants in the adsorbed film and micelle. Dodecylammonium chloride and tetraethylene glycol monooctyl ether. Langmuir 2000,16,7589-7596.
    [1]Penfold, J.; Thomas, R. K.; Dong, C. C.; Tucker, I.; Metcalfe, K.; Golding, S.; Grillo, I. Equilibrium surface adsorption behavior in complex anionic/nonionic surfactant mixtures. Langmuir 2007,23,10140-10149.
    [2]Penfold, J.; Tucker, I.; Thomas, R. K.; Staples, E.; Schuermann, R. Structure of mixed anionic/nonionic surfactant micelles:experimental observations relating to the role of headgroup electrostatic and steric effects and the effects of added electrolyte. J. Phys. Chem. B 2005,109, 10760-10770.
    [3]Penfold, J.; Tucker, I.; Staples, E.; Thomas, R. K. Adsorption of aromatic counterions at the surfactant/water interface:a neutron reflectivity study of hydroxybenzoate and chlorobenzoate counterions at the hexadecyl trimethylammonium surfactant/water interface. Langmuir 2004,20, 8054-8061.
    [4]Alargova, R. G.; Petkov, J. T.; Petsev, D. N. Micellization and interfacial properties of alkyloxyethylene sulfate surfactants in the presence of multivalent counterions. J. Colloid Interf. Sci.2003,261,1-11.
    [5]Casillas-Ituarte, N. N.; Chen, X. K.; Castada, H.; Allen, H. C. Na+ and Ca2+ effect on the hydration and orientation of the phosphate group of DPPC at air-water and air-hydrated silica interfaces. J. Phys. Chem. B 2010,114,9485-9495.
    [6]Hu, X. Y.; Li, Y.; Sun, H. Q.; Song, X. W.; Li, Q. W.; Cao, X. L.; Li, Z. Q. Effect of divalent cationic ions on the adsorption behavior of zwitterionic surfactant at silica/solution interface. J. Phys. Chem. B 2010,114,8910-8916.
    [7]Ibergay, C.; Malfreyt, P.; Tildesley, D. J.; Mesoscale modeling of polyelectrolyte brushes with salt.J. Phys. Chem.B 2010,114,7274-7285.
    [8]Ainalem, M. L.; Kristen, N.; Edler, K. J.; HOOk, F.; Sparr, E.; Nylander, T. DNA binding to zwitterionic model membranes. Langmuir 2010,26,4965-4976.
    [9]Sammalkorpi, M.; Karttunen, M.; Haataja, M. Ionic surfactant aggregates in saline solutions: sodium dodecyl sulfate (SDS) in the presence of excess sodium chloride (NaCl) or calcium chloride (CaCl2). J. Phys. Chem. B 2009,113,5863-5870.
    [10]Yan, H.; Yuan, S. L.; Xu, G. Y.; Liu, C. B. Effect of Ca2+ and Mg2+ ions on surfactant solutions investigated by molecular dynamics simulation. Langmuir 2010,26,10448-10459.
    [11]Zhao, T. T.; Xu, G. Y.; Yuan, S. L.; Chen, Y. J.; Yan, H. Molecular dynamics study of alkyl benzene sulfonate at air/water interface:effect of inorganic salts. J. Phys. Chem. B 2010,114, 5025-5033.
    [12]Tucker, I.; Penfold, J.; Thomas, R. K.; Dong, C. C.; Golding, S.; Gibson, C.; Grillo, I. The adsorption and self-assembly of mixtures of alkylbenzene sulfonate isomers and the role of divalent electrolyte. Langmuir 2011,27,6674-6682.
    [13]Benrraou, M.; Bales, B. L.; Zana, R. Effect of the nature of the counterion on the properties of anionic surfactants.1. cmc, ionization degree at the cmc and aggregation number of micelles of sodium, cesium, tetramethylammonium, tetraethylammonium, tetrapropylammonium, and tetrabutylammonium dodecyl sulfates. J. Phys. Chem. B 2003,107,13432-13440.
    [14]Dey, J.; Thapa, U.; Ismail, K. Aggregation and adsorption of sodium dioctylsulfosuccinate in aqueous ammonium chloride solution:Role of mixed counterions. J. Colloid Interf. Sci.2012,367, 305-310.
    [15]Tepale, N.; Macias, E. R.; Bautista, F.; Puig, J. E.; Manero, O.; Gradzielski, M.; Escalante, J. I. Effects of electrolyte concentration and counterion valence on the microstructural flow regimes in dilute cetyltrimethylammonium tosylate micellar solutions. J. Colloid Interf. Sci.2011,363, 595-600.
    [16]Li, H. H.; Imai, Y.; Yamanaka, M.; Hayami, Y.; Takiue, T.; Matsubara, H.; Aratono, M. Specific counterion effect on the adsorbed film of cationic surfactant mixtures at the air/water interface. J. Colloid Interf. Sci.2011,359,189-193.
    [17]Michele, A. Di; Brinchi, L.; Profio, P. Di; Germani, R.; Savelli, G.; Onori, G. Effect of head group size, temperature and counterion specificity on cationic micelles. J. Colloid Interf. Sci.2011, 358,160-166.
    [18]Rashidi-Alavijeh, M.; Javadian, S.; Gharibi, H.; Moradi, M.; Tehrani-Bagha, A. R.; Shahir, A. A. Intermolecular interactions between a dye and cationic surfactants:Effects of alkyl chain, head group, and counterion. Colloids Surf. A 2011,380,119-127.
    [19]Li, Y.; Xu, R.; Bloor, D. M.; Penfold, J.; Holzwarth, J. F.; Wyn-Jones, E. Moderation of the interactions between sodium dodecyl sulfate and poly(vinylpyrrolidone) using the nonionic surfactant hexaethyleneglycol mono-n-dodecyl ether C12EO6:an electromotive force, microcalorimetry, and small-angle neutron scattering study. Langmuir 2000,16,8677-8684.
    [20]de Oliveira, H. P. M.; Gehlen, M. H. Characterization of mixed micelles of sodium dodecyl sulfate and tetraoxyethylene dodecyl ether in aqueous solution. Langmuir 2002,18,3792-3796.
    [21]Matsubara, H.; Muroi, S.; Kameda, M.; Ikeda, N.; Ohta, A.; Aratono, M. Interaction between ionic and nonionic surfactants in the adsorbed film and micelle.3. Sodium dodecyl sulfate and tetraethylene glycol monooctyl ether. Langmuir 2001,17,7752-7757.
    [22]Aoudia, M.; Al-Haddabi, B.; Al-Harthi, Z.; Al-Rubkhi, A. Sodium lauryl ether sulfate micellization and water solubility enhancement towards naphthalene and pyrene:effect of the degree of ethoxylation. J. Surfactants Deterg.2010,13,103-111.
    [23]Mu, J. H.; Li, G. Z.; Jia, X. L.; Wang, H. X.; Zhang, G. Y. Rheological properties and microstructures of anionic micellar solutions in the presence of different inorganic salts. J. Phys. Chem.B 2002,106,11685-93.
    [1]Cirin, D. M.; Posa, M. M.; Krstonosic, V. S.; Milanovic, M. L., Conductometric study of sodium dodecyl sulfate-nonionic surfactant (triton x-100, tween 20, tween 60, tween 80 or tween 85) mixed micelles in aqueous solution. Hem. Ind.2012,66,21-28.
    [2]El-Aila, H. J. Y., Interaction of nonionic surfactant triton-x-100 with ionic surfactants. J. Dispersion Sci. Technol.2009,30,1277-1280.
    [3]Goloub, T. P.; Pugh, R. J.; Zhmud, B. V., Micellar interactions in nonionic/ionic mixed surfactant systems. J. Colloid Interf. Sci.2000,229,72-81.
    [4]Halacheva, S. S.; Penfold, J.; Thomas, R. K.; Webster, J. R. P., Effect of polymer molecular weight and solution ph on the surface properties of sodium dodecylsulfate-poly(ethyleneimine) mixtures. Langmuir 2012,28,14909-14916.
    [5]Kim, S. Y.; Kwon, S. Y.; Moon, J. H.; Kim, M. W., Length shortening and surfactant mixing behavior of nonionic/ionic mixed cylindrical micelle. Chem. Phys. Lett.2008,464,82-86.
    [6]Kwon, S. Y.; Lee, S. H., Small angle neutron scattering study on the effect of molecular interaction on the structural properties of cationic and nonionic surfactant mixed micelles in aqueous solutions. Curr. Appl. Phys.2011,11,1042-1047.
    [7]Matsubara, H.; Muroi, S.; Kameda, M.; Ikeda, N.; Ohta, A.; Aratono, M., Interaction between ionic and nonionic surfactants in the adsorbed film and micelle.3. Sodium dodecyl sulfate and tetraethylene glycol monooctyl ether. Langmuir 2001,17,7752-7757.
    [8]Ruiz, C. C., Fluorescence anisotropy of probes solubilized in micelles of tetradecyltrymethylammonium bromide:Effect of ethylene glycol added. J. Colloid Interf. Sci. 2000,221,262-267.
    [9]Shiloach, A.; Blankschtein, D., Measurement and prediction of ionic/nonionic mixed micelle formation and growth. Langmuir 1998,14,7166-7182.
    [10]Werts, K. M.; Grady, B. P., Mixtures of nonionic surfactants made from renewable resources with alkyl sulfates:Comparison of headgroups. J. Surfactants Deterg.2011,14,77-84.
    [11]de Oliveira, H. P. M.; Gehlen, M. H., Characterization of mixed micelles of sodium dodecyl sulfate and tetraoxyethylene dodecyl ether in aqueous solution. Langmuir 2002,18,3792-3796.
    [12]Feitosa, E.; Brown, W., Mixed micelles of the anionic surfactant sodium dodecyl sulfate and the nonionic pentaethylene glycol mono-n-dodecyl ether in solution. Langmuir,1998,14, 4460-4465.
    [13]Goloub, T. P.; Pugh, R. J., The role of the surfactant head group in the emulsification process: Binary (nonionic-ionic) surfactant mixtures. J. Colloid Interf. Sci.2005,291,256-262.
    [14]Grillo, I.; Penfold, J., Self-assembly of mixed anionic and nonionic surfactants in aqueous solution. Langmuir 2011,27,7453-7463.
    [15]Garamus, V. M., A new method for the determination of the dehydration coefficient of ethylene oxide groups of non-ionic surfactants in mixed micelles. Chem. Phys. Lett.1998,290, 251-254.
    [16]Garamus, V. M., Formation of mixed micelles in salt-free aqueous solutions of sodium dodecyl sulfate and C12E6. Langmuir 2003,19,7214-7218.
    [17]Tripathi, S.; Brown, D. G., Effects of linear alkylbenzene sulfonate on the sorption of brij 30 and brij 35 onto aquifer sand. Environ. Sci. Technol.2008,42,1492-1498.
    [18]Glenn, K.; van Bommel, A.; Bhattacharya, S. C.; Palepu, R. M., Self aggregation of binary mixtures of sodium dodecyl sulfate and polyoxyethylene alkyl ethers in aqueous solution. Colloid Polym. Sci.2005,283,845-853.
    [19]Patel, T.; Ghosh, G.; Aswal, V.; Bahadur, P., Micellization of sodium dodecyl sulfate and polyoxyethylene dodecyl ethers in solution. Colloid. Polym. Sci.2009,287,1175-1181.
    [20]Romani, A. P.; Gehlen, M. H.; Lima, G. A. R.; Quina, F. H., The change in the properties of sodium dodecyl sulfate micelles upon addition of isomeric and unsaturated short-chain alcohols probed by photophysical methods. J. Colloid Interf. Sci.2001,240,335-339.
    [21]Petkov, J. T.; Tucker, I. M.; Penfold, J.; Thomas, R. K.; Petsev, D. N.; Dong, C. C.; Golding, S.; Grillo, I., The impact of multivalent counterions, Al3+, on the surface adsorption and self-assembly of the anionic surfactant alkyloxyethylene sulfate and anionic/nonionic surfactant mixtures. Langmuir 2010,26,16699-16709.
    [22]Iglesias, E.; Montenegro, L., Kinetic investigations of the interaction between sodium dodecyl sulfate and the nonionic surfactants cmen. Electrical conductivity and fluorescence probe measurements. Phys. Chem. Chem. Phys.1999,1,4865-4874.
    [23]Pegiadou, S.; Eleftheriadis, I., Mixed micelles of sodium dodecylsulphate and ethoxylated nonylphenols with different ethoxylation number. Tenside Surfactants Deterg.2001,38,234-237.
    [24]Dominguez, H., Computer simulations of surfactant mixtures at the liquid/liquid interface. J. Phys. Chem. B 2002,106,5915-5924.
    [25]Dominguez, H.; Rivera, M., Mixtures of sodium dodecyl sulfate/dodecanol at the air/water interface by computer simulations. Langmuir 2005,21,7257-7262.
    [26]Chatterjee, S.; Sen, P. K.; Das, K.; Bhattacharya, S. C.; Palepu, R., Mixed micellization of ionic and nonionic surfactants in aqueous solution. J. Dispersion Sci. Technol.2006,27,751-759.
    [27]Zakharova, L. Y; Valeeva, F. G.; Ibragimova, A. R.; Zakharov, V. M.; Kudryavtseva, L. A.; Elistratova, Y. G; Mustafina, A. R.; Konovalov, A. I.; Shtykov, S. N.; Bogomolova, I. V., Properties of a sodium dodecyl sulfate-brij 35 binary micellar system and their effect on the alkaline hydrolysis of o-ethyl-o-p-nitrophenyl chloromethyl phosphonate. Colloid J.2007,69, 718-725.
    [28]Kelarakis, A.; Chaibundit, C.; Krysmann, M. J.; Havredaki, V; Viras, K.; Hamley, I. W., Interactions of an anionic surfactant with poly (oxyalkylene) copolymers in aqueous solution. J. Colloid Interface Sci.2009,330,67-72.
    [29]Chavda, S.; Bahadur, P., Thermodynamic study of a cationic surfactant in aqueous solution containing ethylene glycol and its oligomers:Effect of number of ethereal oxygen atoms in glycols molecule. J. Dispersion Sci. Technol.2013,34,84-91.
    [1]Bandyopadhyay, P.; Ghosh, A. K.; Bandyopadhyay, S. Brij-micelle and polyacrylic acid interaction investigated by Cu2+-induced pyrene fluorescence:Effect of brij-micelle structure. Chem. Phys. Lett.2009,476,244-248.
    [2]Guerrero-Martinez, A.; Avila, D.; Martinez-Casado, F. J.; Ripmeester, J. A.; Enright, G D.; De Cola, L.; Tardajos, G Solid crystal network of self-assembled cyclodextrin and nonionic surfactant pseudorotaxanes. J. Phys. Chem. B 2010,114,11489-11495.
    [3]Chang, L. Y.; Lee, C. P.; Vittal, R.; Lin, J. J.; Ho, K. C. Control of morphology and size of platinum crystals through amphiphilic polymer-assisted microemulsions and their uses in dye-sensitized solar cells. J. Mater. Chem.2012,22,12305-12312.
    [4]Schulz, E. N.; Ambrusi, R. E.; Garcia, S. G.; Brigante, M. Interaction between cetyltrimetyl ammonium tosylate and two poly(oxyethylene)-poly(oxypropylene)-poly(oxyethylene) block copolymers studied by cyclic voltammetry. J. Chem. Eng. Data.2012,57,2956-2962.
    [5]Pisarcik, M.; Polakovicova, M.; Devinsky, F. Solubilisation of camptothecin by nonionic surfactants and alkyldimethylamine oxides. Cent. Eur. J. Chem.2013,11,619-628.
    [6]Feitosa, E.; Brown, W. Mixed micelles of the anionic surfactant sodium dodecyl sulfate and the nonionic pentaethylene glycol mono-n-dodecyl ether in solution. Langmuir 1998,14, 4460-4465.
    [7]Li, Y.; Xu, R.; Bloor, D. M; Penfold, J.; Holzwarth, J. F.; Wyn-Jones, E. Moderation of the interactions between sodium dodecyl sulfate and poly(vinylpyrrolidone) using the nonionic surfactant hexaethyleneglycol mono-n-dodecyl ether C12EO6:an electromotive force, microcalorimetry, and small-angle neutron scattering study. Langmuir 2000,16,8677-8684.
    [8]Matsubara, H.; Muroi, S.; Kameda, M.; Ikeda, N.; Ohta, A.; Aratono, M. Interaction between ionic and nonionic surfactants in the adsorbed film and micelle.3. Sodium dodecyl sulfate and tetraethylene glycol monooctyl ether. Langmuir 2001,17,7752-7757.
    [9]Penfold, J.; Tucker, I.; Thomas, R. K.; Staples, E.; Schuermann, R. Structure of mixed anionic/nonionic surfactant micelles:experimental observations relating to the role of headgroup electrostatic and steric effects and the effects of added electrolyte. J. Phys. Chem. B 2005,109, 10760-10770.
    [10]Vollhardt, D.; Czichocki, G.; Rudert, R. Effect of the molecular structure on the adsorption of alkyl ether sulphates and alkane ether sulphonates at the air-water interface. Colloids Surf. A 1998, 142,315-322.
    [11]Zhang, L. Q.; Shi, J. H.; Xu, A. H.; Geng, B.; Zhang, S. X. Synthesis and surface activities of novel succinic acid monofluoroalkyl sulfonate surfactants. J. Surfactants Deterg.2013,16, 183-190.
    [12]Liu, X. P.; Feng, J.; Zhang, L.; Gong, Q. T.; Zhao, S.; Yu, J. Y. Synthesis and properties of a novel class of anionic gemini surfactants with polyoxyethylene spacers. Colloids Surf. A 2010, 362,39-46.
    [13]Aoudia, M.; Al-Haddabi, B.; Al-Harthi, Z.; Al-Rubkhi, A. Sodium lauryl ether sulfate micellization and water solubility enhancement towards naphthalene and pyrene:Effect of the degree of ethoxylation. J. Surfactants Deterg.2010,13,103-111.
    [14]Sagisaka, M.; Fujita, Y.; Shimizu, Y.; Osanai, C; Yoshizawa, A. Unique liquid crystal behavior in water of anionic fluorocarbon-hydrocarbon hybrid surfactants containing oxyethylene units. J. Colloid Inerf Sci.2011,357,400-406.
    [15]Aoudia, M.; Al-Maamari, T.; Al-Salmi, F. Intramolecular and intermolecular ion-dipole interactions in sodium lauryl ether sulfates (SLES) self-aggregation and mixed micellization with Triton X-100. Colloids Surf. A 2009,335,55-61.
    [16]Bodvik, R.; Karlson, L.; Edwards, K.; Eriksson, J.; Thormann, E.; Claesson, P. M. Aggregation of modified celluloses in aqueous solution:Transition from methylcellulose to hydroxypropylmethylcellulose solution properties induced by a low-molecular-weight oxyethylene additive. Langmuir 2012,28,13562-13569.
    [17]Yan, H.; Xu, Z.; Chen, Y; Yuan, S. L. Molecular dynamics simulation of pyrene solubilization in a sulfobetaine micelle.Sci. China Chem.2013,43,1-9.
    [18]Chen, Y J.; Xu, G Y Improvement of Ca2+-tolerance by the introduction of EO groups for the anionic surfactants:Molecular dynamics simulation. Colloids Surf. A 2013,424,26-32.
    [19]Hoover. W, G. Canonical dynamics:Equilibrium phase-space distributions. Phys. Rev. A 1985,31,1695-7.
    [1]Berglund, K. D.; Przybycien, T. M.; Tilton, R. D., Coadsorption of sodium dodecyl sulfate with hydrophobically modified nonionic cellulose polymers.1. Role of polymer hydrophobic modification. Langmuir 2003,19,2705-2713.
    [2]Lauten, R. A.; Nystrom, B., Time dependent association phenomena in dilute aqueous mixtures of a hydrophobically modified cellulose derivative and an anionic surfactant. Colloids Surf. A 2003,219,45-53.
    [3]Griffiths, P. C.; Roe, J. A.; Howe, A. M.; Pitt, A. R., Decreased surfactant activity coefficients in polymer-surfactant mixtures. Colloid Polym. Sci.2004,282,1160-1164.
    [4]Sakar-Deliormanli, A., Interaction of sodium dodecyl sulfate with poly (ethyleneimine) in bulk solution and at the air-solution interface. J. Dispers. Sci. Technol.2010,31,23-30.
    [5]Dong, Z.-Q.; Cao, Y.; Han, X.-J.; Fan, M.-M.; Yuan, Q.-J.; Wang, Y.-F.; Li, B.-J.; Zhang, S., Photoreversible polymer-surfactant micelles using the molecular recognition of alpha-cyclodextrin. Langmuir 2013,29,3188-94.
    [6]Halacheva, S. S.; Penfold, J.; Thomas, R. K., Adsorption of the linear poly (ethyleneimine) precursor poly(2-ethyl-2-oxazoline) and sodium dodecyl sulfate mixtures at the air-water interface: The impact of modification of the poly(ethyleneimine) functionality. Langmuir 2012,28, 17331-17338.
    [7]Carlstedt, J.; Lundberg, D.; Dias, R. S.; Lindman, B., Condensation and decondensation of DNA by cationic surfactant, spermine, or cationic surfactant-cyclodextrin mixtures:Macroscopic phase behavior, aggregate properties, and dissolution mechanisms. Langmuir 2012,28, 7976-7989.
    [8]Cattoz, B.; de Vos, W. M.; Cosgrove, T.; Crossman, M.; Prescott, S. W., Manipulating interfacial polymer structures through mixed surfactant adsorption and complexation. Langmuir 2012,28,6282-6290.
    [9]Mikhailovskaya, A. A.; Noskov, B. A.; Lin, S. Y.; Loglio, G.; Miller, R., Formation of protein/surfactant adsorption layer at the air/water interface as studied by dilational surface rheology.J.Phys. Chem. B 2011,115,9971-9979.
    [10]Thurn, T.; Couderc, S.; Sidhu, J.; Bloor, D. M.; Penfold, J.; Holzwarth, J. F.; Wyn-Jones, E., Study of mixed micelles and interaction parameters for ABA triblock copolymers of the type EOm-POn-EOm and ionic surfactants:Equilibrium and structure. Langmuir 2002,18,9267-9275.
    [11]Rao, A.; Kim, J. D.; Thomas, R. R., Interfacial rheological studies of gelatin-sodium dodecyl sulfate complexes adsorbed at the air-water interface. Langmuir 2005,21,617-621.
    [12]Cooke, D. J.; Dong, C. C.; Thomas, R. K.; Howe, A. M.; Simister, E. A.; Penfold, J., Interaction between gelatin and sodium dodecyl sulfate at the air/water interface:A neutron reflection study. Langmuir 2000,16,6546-6554.
    [13]Samanta, A.; Bera, A.; Ojha, K.; Mandal, A., Effects of alkali, salts, and surfactant on rheological behavior of partially hydrolyzed polyacrylamide solutions. J. Chem. Eng. Data,2010, 55,4315-4322.
    [14]Rosen, M. J.; Zhou, Q., Surfactant-surfactant interactions in mixed monolayer and mixed micelle formation. Langmuir 2001,17,3532-3537.
    [15]Varga, I.; Meszaros, R.; Makuska, R.; Claesson, P. M.; Gilanyi, T., Effect of graft density on the nonionic bottle brush polymer/surfactant interaction. Langmuir 2009,25,11383-11389.
    [16]Bao, H.; Li, L.; Gan, L. H.; Zhang, H., Interactions between ionic surfactants and polysaccharides in aqueous solutions. Macromolecules 2008,41,9406-9412.
    [17]Kundu, S., Polyelectrolyte-surfactant complexes on solid surface. J. Colloid Interf. Sci.2010, 344,547-555.
    [18]Cui, Y.; Pelton, R.; Cosgrove, T.; Richardson, R.; Dai, S.; Prescott, S.; Grillo, I.; Ketelson, H.; Meadows, D., Not all anionic polyelectrolytes complex with dtab. Langmuir 2009,25, 13712-13717.
    [19]Sardar, N.; Ali, M. S.; Kamil, M.; Kabir ud, D., Phase behavior of nonionic polymer hydroxypropylmethyl cellulose:Effect of gemini and single-chain surfactants on the energetics at the cloud point. J. Chem. Eng. Data,2010,55,4990-4994.
    [20]Lof, D.; Niemiec, A.; Schillen, K.; Loh, W.; Olofsson, G, A calorimetry and light scattering study of the formation and shape transition of mixed micelles of EO20PO68EO20 triblock copolymer (P123) and nonionic surfactant (C12EO6). J. Phys. Chem. B 2007,111,5911-5920.
    [21]Machado, A. H. E.; Lundberg, D.; Ribeiro, A. J.; Veiga, F. J.; Miguel, M. G.; Lindman, B.; Olsson, U., Interactions between DNA and nonionic ethylene oxide surfactants are predominantly repulsive. Langmuir 2010,26,13102-13109.
    [22]Rotureau, E.; Tribet, C.; Fouilloux, S.; Marchal, P.; Sadtler, V.; Marie-Begue, E.; Durand, A.; Perrin, P., Light-responsiveness of C12E6/polymer complexes swollen with dodecane. J. Phys. Chem.B 2010,114,13294-13303.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700