多种材料修饰脱细胞真皮基质胶原膜修复关节软骨缺损的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:天然胶原蛋白是结缔组织的主要成分之一,具有良好的生物相容性,但胶原存在加工性差、缺乏柔韧性、抗拉力差等缺点,单独用做修复软骨缺损的载体材料难以达到要求。软骨细胞外基质(ECM)富含蛋白聚糖、糖胺聚糖、Ⅱ型胶原蛋白及其它成分。关节软骨依靠大量的自分泌因子维持软骨细胞的表型和正常基质的代谢。生长因子可调节软骨细胞增殖、分化及代谢功能,并参与了关节软骨的生理及病理过程。本课题拟用牛真皮为原料,制备脱细胞真皮基质胶原膜(ADM),并在此基础上进一步应用硫酸软骨素(CS)、透明质酸钠(HA)、Ⅱ型胶原(Col-Ⅱ)、转化生长因子-β(TGF-β)和胰岛素样生长因子-Ⅰ(IGF-Ⅰ)等修饰ADM,以便最大程度上模拟软骨细胞的生长环境,促进软骨细胞更好的增长,更好的用于软骨缺损的治疗。
     方法:采用积水潭医院创伤骨科研究所提供的技术方法制备ADM。消毒包装后备用。
     取新生新西兰胎兔4只,行软骨细胞分离,原代培养,传代培养。绘制生长曲线,行HE及双醋酸荧光素(FDA)-碘化丙啶(PI)荧光染色。
     分为空白组、CS组、HA组、Col-Ⅱ组、TGF-β组、IGF-I组、混合组。配制0.5%(m/v)的CS高糖DMEM溶液;1.0%(m/v)的HA高糖DMEM溶液;0.5%(m/v)Col-Ⅱ高糖DMEM溶液;1ng/ml的TGF-β高糖DMEM溶液;10ng/ml的IGF-I高糖DMEM溶液;将上述五种修饰材料配成0.5%的CS+1.0%的HA+0.5%Col-Ⅱ+1ng/ml的TGF-β+10ng/ml的IGF-I高糖DMEM混合溶液。共6组溶液与ADM的复合。消毒包装后备用。
     软骨细胞体外培养至第3代,制成浓度为5×106/ml的软骨细胞悬液。与备用的7组ADM复合培养。于1、3、7、14、21天行扫描电镜观察,包埋切片,HE染色,S100免疫组化染色。免疫组化结果行阳性细胞计数。于1、3、7天时,取复合软骨细胞的ADM,行RT-PCR。BanScan4.3凝胶图像分析软件,分析所得结果。
     制作兔膝关节软骨缺损模型,分为3组,混合修复组植入物为多种材料修饰ADM复合软骨细胞,单纯胶原膜组植入物为未修饰的ADM复合软骨细胞,空白对照组不复合任何材料。分别于第1、2、3月取材行大体观察、HE染色、Col-Ⅱ免疫组化染色,并用Wakitani法进行组织学评分。
     结果:制备所得的ADM外观呈白色,具有弹性。电镜下可见呈多孔疏松结构,孔隙率较佳,适合软骨细胞生长。
     关节软骨经Ⅱ型胶原酶消化2~4小时后离心去上清液,加入培养液进行原代细胞培养,并能通过传代增殖获得大量软骨细胞。HE染色示细胞形态较好,FDA-PI荧光染色示细胞活性率达98%以上。
     电镜结果显示各组修饰效果:混合组>Col-Ⅱ>TGF-β>CS>HA及IGF-Ⅰ。HE及免疫组化结果示:混合修饰组细胞形态最佳,阳性率最高。显微镜下对阳性细胞数进行计数,统计结果表明:修饰效果同电镜结果,混合组效果最佳。RT-PCR结果示,第1天时,Col-Ⅱ组,TGF-β组及混合组扩增出的条带明显。其余各组未见明显的扩增条带。第3,7天Col-Ⅱ组及混合组扩增出的条带明显。BanScan4.3凝胶图像分析软件分析结果显示混合组Col-ⅡmRNA的表达最高。
     大体观察及HE染色显示:第1、2、3月时混合修复组修复为透明软骨样修复,单纯材料组和空白对照组为纤维软骨及纤维性修复。Col-Ⅱ免疫组化结果显示:混合修复组阳性表达>单纯胶原膜组强>空白对照组。Wakitani组织学评分结果显示:混合修复组修复结果明显优于单纯材料组及空白对照组。
     结论:ADM具有良好的生物相容性;适宜的生物降解性;较好的细胞黏附表面活性;良好的可塑性;良好的三维多孔结构。
     混合修饰的ADM与软骨细胞有较好的相容性。
     混合修饰的ADM最适宜作为修复软骨缺损的载体。其修复关节软骨缺损的效果较佳。
Objective: Natural collagen protein was a major component of connective tissue and it had good biocompatibility. But there had some disadvantages about the collagen, such as poor of flexibility, poor anti-tensile force. There’s some difficults in meeting the needs of using it as a separate carrier material for the repair of cartilage defects. Cartilage matrix is rich in proteoglycan, glycosaminoglycan, type-Ⅱcollagen and other components. Articular cartilage relyed on a large number of autocrine factors in the maintenance of chondrocytes and normal phenotype matrix metabolism. Growth factors can regulate the proliferation, differentiation and metabolism of chondrocytes and participate in the physiological and pathological processes of articular cartilage. The objective of this experiment was using cattle dermis for the preparation of acellular dermal matrix collagen membrane (ADM). On this basis, further application of chondroitin sulfate (CS), sodium hyaluronate (HA), collagen typeⅡ(Col-Ⅱ), transforming growth factor -β(TGF-β) and insulin-like growth factor-Ⅰ(IGF-Ⅰ) were used for the modification of ADM. Simulating the greatest degree of chondrocytes growth environment, in order to promote the growth of chondrocytes.
     Methods: Using the Jishuitan Hospital Trauma Orthopedic Institute technical methods for the preparation of ADM. Disinfection and packaging.
     4 New Zealand fetal rabbit were sacrificed and the chondrocytes were gathered, then cultured and passed. Growth curve, HE and fluoresceindiacetate (FDA)-propidium iodide (PI) fluorescence staining were carried out.
     There’s blank group, the CS group, HA group, Col-Ⅱgroup, TGF-βgroup, IGF-I group and mixed group. Prepare 0.5%(m/v)CS high glucose DMEM solution;1.0%(m/v)HA high glucose DMEM solution;0.5%(m/v)Col-Ⅱhigh glucose DMEM solution;1ng/ml TGF-βhigh glucose DMEM solution;10ng/ml IGF-I high glucose DMEM solution;Mixing the above five modified materials as 0.5%CS+1.0% HA+0.5%Col-Ⅱ+1ng/ml TGF-β+10ng/ml IGF-I high glucose DMEM mixture solution. Combine the total of six groups of solution with ADM.
     Chondrocytes were cultured in vitro to the third passage. Concentration of the chondrocytes suspension was 5×106/ml, and then mixed the chondrocytes suspension with the ADM. Scanning electron microscopy, embedding, HE staining, S100 immunohistochemical staining were carried out in 1, 3, 7, 14, 21days. After that, the positive cell count of immunohistochemical staining was also done. In 1, 3, 7 days, ADM were taken out and then analyzed with RT-PCR. BanScan4.3 gel image analysis software, analyzed the results.
     Made the model of articular cartilge defects of rabbits, divided in into three groups. A mixed group repair implants was a variety of composite materials modification ADM with chondrocytes. Pure collagen membrane group was the ADM for non-modified composite chondrocytes. The blank group did not composed with any material. Rbbits were sacrificed in 1, 2, 3 month. Then, the general observation, HE staining, Col-Ⅱimmunohistochemical staining and Wakitani for histologic score were analyzed.
     Results: ADM appears white and flexible structure. Electron microscope showed the porous structure of it. The porosity was suitable for the implantation and growth of chondrocytes.
     The acquired articular cartilage was digested by type-Ⅱcollagenase for 2 to 4 hours, and then removed the supernatant after centrifugation. Adding culture medium to the chondrocytes, and then could get more chondrocytes through the transferring in vitro. HE staining showed that cell morphology better, the FDA-PI fluorescence staining showed that cell survival rate was over 98%.
     Electron microscope showed the modification effect of all groups: Mixed bank> Col-Ⅱ> TGF-β>CS>HA and IGF-Ⅰ. HE and immunohistochemical staining showed the mixed bank had the best effect and the highest positive rate. Under the microscope, the numbers of positive cells were counted. The results show that: modification effects were similar to the result showed by the electron microscopy. Mixed bank had the best effect. The results of RT-PCR showed that on the first day, Col-Ⅱbank,TGF-βbank and mixed bank appeared obviously strap. The other banks could not see obviously strap. On the third and seventh days, Col-Ⅱbank and mixed bank had obviously strap. BanScan4.3 suggested that the Col-ⅡmRNA expression of the mixed bank was the highest.
     On the 1, 2, 3 month, general observation and HE staining showed that, the repaired organization of the mixed group was likely hyaline cartilage repair. Pure collagen membrane group and the blank group was the fiber restoration. The positive rate of Col-Ⅱimmunohistochemical staining showed that the mixed group>Simple materials group>control group. The result of Wakitani histologic score suggested that the mixed group had a better effect of restoration for the defects.
     Conclusion: ADM had better biocompatibility, suitable biodegradation, better cell adhesion surface activity, better plasticity and better three-dimensional porous structure.
     Mixed modification ADM had a better compatibility with chondrocytes.
     Mixed modification ADM appears as the most suitable scaffold for repairing of cartilage defects.
引文
1 Buckwalter JA, Mankin HJ, Grodzinsky AJ. Articular cartilage and osteoarthritis.Instr Course Lect, 2005(54):465-480
    2 Poole AR. What type of cartilage repair are we attempting to attain. J Bone Joint Surg Am.2003, 85-A Suppl 2:40-44
    3 Raghunath J, Rollo J, Sales KM, et al. Biomaterials and scaffold design: key to tissue-engineering cartilage.Biotechnol Appl Biochem. 2007 Feb, 46(2):73-84
    4 Buckwalter JA. Articular cartilage injuries. Clin Orthop Relat Res. 2002 Sep, (402):21-37
    5 Magnussen RA, Dunn WR, Carey JL, et al. Treatment of Focal Articular Cartilage Defects in the Knee: A Systematic Review. Clin Orthop Relat Res, 2008 Jan 12
    6 Kong QQ, Xiang Z, Yang ZM. Potential seeding cells for cartilage tissue engineering-bone marrow stromal stem cells. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2002 Jul, 16(4):277-280
    7 Steinert AF, Ghivizzani SC, Rethwilm A,et al. Major biological obstacles for persistent cell-based regeneration of articular cartilage. Arthritis Res Ther, 2007, 9(3):213
    8 Sharma B, Elisseeff JH. Engineering structurally organized cartilage and bone tissues. Ann Biomed Eng, 2004 Jan, 32(1):148-159
    9 Raghunath J, Rollo J, Sales KM, et al. Biomaterials andscaffold design: key to tissue-engineering cartilage. Biotechnol Appl Biochem. 2007 Feb, 46(2):73-84
    10 Neherer S, Brelnan HA,Ramappa A,et al. Canine chondrocytes seeded in type I and type II collagen implants investigated in vitro.J Biomed Mater Res,1997,38(1):95-104
    11 Krejci NC, Cuono CB, Langdon RC, et al. In vitro reconstitution of skin: fibroblasts facilitate kerationcyte groth and differentiation on acelluar reticular dermis. J Invest Dermatol, 1991, 97:84
    12 Prasertsung I, Kanokpanont S,Bunaprasert T,et al. Development of acellular dermis from porcine skin using periodic pressurized technique. J Biomed Mater Res B Appl Biomater, 2007 Sep 12, Epub ahead of print
    13 Kawasaki Y, Chung UI, Nakamura K, et al. Recent advances in cartilage metabolism research. Clin Calcium. 2006 Oct, 16(10):1730-1735
    14 Eyre DR. Collagens and cartilage matrix homeostasis. Clin Orthop Relat Res. 2004 Oct, 427(1):118-122
    15 Loeser RF. Chondrocyte integrin expression and function. Biorheology. 2000, 37(1-2):109-116
    16 Ulrich-Vinther M, Maloney MD.Articular cartilage biology.J Am Acad Orthop Surg, 2003 Nov-Dec, 11(6):421-430
    17 Sarzi-Puttini P, Cimmino MA, Scarpa R, et al. Osteoarthritis: an overview of the disease and its treatment strategies. Semin Arthritis Rheum, 2005 Aug, 35(1):1-10
    18 Schwartz NB. Biosynthesis of chondroitin sulfate. Role ofphospholipids in the activity of UDP-D-galactose: D-xylose galactosyltransferase. J Biol Chem,1976 Jan,251(2):285-291
    19 Pipitone VR. Chondroprotection with chondroitin sulfate, drugs. Drugs Exp Clin Res. 1991, 17(1):3-7
    20 Goldberg VM, Buckwalter JA. Hyaluronans in the treatment of osteoarthritis of the knee: evidence for disease-modifying activity. Osteoarthritis Cartilage, 2005 Mar, 13(3):216-224
    21 Liu Y, Shu XZ, Prestwich GD. Osteochondral defect repair with autologous bone marrow-derived mesenchymal stem cells in an injectable, in situ, cross-linked synthetic extracellular matrix.Tissue Eng.2006 Dec,12(12):3405-3416
    22 Tognana E, Borrione A, De Luca C, et al. Hyalograft C: hyaluronan-based scaffolds in tissue-engineered cartilage. Cells Tissues Organs. 2007, 186(2):97-103
    23 Tehranzadeh J, Booya F, Root J. Cartilage metabolism in osteoarthritis and the influence of viscosupplementation and steroid: a review. Acta Radiol, 2005 May, 46(3):288-296
    24 Burton-Wurster N, Liu W. TGF beta 1 and biglycan, decorin, and fibromodulin metabolism in canine cartilage. Osteoarthritis Cartilage, 2003 Mar, 11(3):167-176
    25 Grimaud E, Heymann D, Rédini F.Recent advances in TGF-beta effects on chondrocyte metabolism. Potential therapeutic roles of TGF-beta in cartilage disorders. Cytokine Growth Factor Rev. 2002 Jun, 13(3):241-257
    26 Darling EM, Athanasiou KA. Biomechanical strategies for articular cartilage regeneration. Ann Biomed Eng. 2003Oct,31(9):1114-1124
    27 Glowacki J, Yates KE, Maclean R, et al. In vitro engineering of cartilage: effects of serum substitutes, TGF-beta, and IL-1alpha. Orthod Craniofac Res. 2005 Aug, 8(3):200-208
    28 Carrascosa A, Audí L. Human studies on the biological actions of IGF-I. Evidence suggesting that human fetal and postnatal epiphyseal cartilage is a target tissue for IGF-I action. J Pediatr Endocrinol. 1993 Jul-Dec, 6(3-4):257-261
    29 Asanbaeva A, Masuda K, Thonar EJ,et al. Regulation of immature cartilage growth by IGF-I, TGF-beta1, BMP-7, and PDGF-AB: role of metabolic balance between fixed charge and collagen network. Biomech Model Mechanobiol. 2007 Aug 29
    30 Sviri GE, Blumenfeld I I, Livne E. Differential metabolic responses to local administration of TGF-beta and IGF-I in temporomandibular joint cartilage of aged mice. Arch Gerontol Geriatr. 2000 Oct, 31(2):159-176
    31 Buckwalter JA. Articular cartilage injuries. Clin Orthop Relat Res. 2002 Sep, (402):21-37
    32 Trippel SB. Growth factor actions on articular cartilage. J Rheumatol Suppl. 1995 Feb, 43:129-132
    33 Van der Kraan PM, Buma P. Interaction of chondrocytes, extracellular matrix and growth factors: relevance for articular cartilage tissue engineering. Osteoarthritis Cartilage. 2002 Aug, 10(8):631-637
    34 Yoon DM, Fisher JP. Chondrocyte signaling and artificialmatrices for articular cartilage engineering. Adv Exp Med Biol. 2006, 585:67-86
    
    1 Swieszkowski W, Tuan BH, Kurzydlowski KJ, et al. Repair and regeneration of osteochondral defects in the articular joints. Biomol Eng. 2007 Nov, 24(5):489-495
    2 Woodfield TB, Bezemer JM, Pieper JS, et al. Scaffolds for tissue engineering of cartilage. Crit Rev Eukaryot Gene Expr. 2002, 12(3):209-236
    3 Germani RM, Vivero R, Herzallah IR, ET AL. Endoscopic reconstruction of large anterior skull base defects using acellular dermal allograft. Am J Rhinol. 2007 Sep-Oct, 21(5):615-618
    4 Guilak F, Alexopoulos LG, Upton ML, et al. The pericellular matrix as a transducer of biomechanical and biochemical signals in articular cartilage. Ann N Y Acad Sci. 2006 Apr, 1068:498-512
    5 Mow VC, Wang CC, Hung CT. The extracellular matrix, interstitial fluid and ions as a mechanical signal transducer in articular cartilage. Osteoarthritis Cartilage. 1999 Jan, 7(1):41-58
    6 Werb Z, Chin JR. Extracellular matrix remodeling during morphogenesis. Ann N Y Acad Sci. 1998 Oct 23,857:110-118
    1 Buckwalter JA, Mankin HJ, Grodzinsky AJ. Articular cartilage and osteoarthritis. Instr Course Lect, 2005(54): 465-480
    2 Redman SN, Oldfield SF, Archer CW.Current strategies for articular cartilage repair. Eur Cell Mater, 2005 Apr 14(9): 23-32
    3 Steadman JR, Briggs KK, Rodrigo JJ, et al. Outcomes of microfracture for traumatic chondral defects of the knee: average 11-year follow-up. Arthroscopy, 2003 May-Jun, 19(5): 477-484
    4 Messner K, Gillquist J. Cartilage repair, a critical review. Acta Orthop Scand, 1996 Oct, 67(5):523-529
    5 Kainer MA, Linden JV, Whaley DN, et al. Clostridium infections associated with musculoskeletal-tissue allografts. N Engl J Med, 2004 Jun 17,350(25): 2564-2571
    6 Kawamura S, Wakitani S, Kimura T, et al. Articular cartilage repair Rabbit experiments with a collagen gel-biomatrix and chondrocytes cultured in it. Acta Orthop Scand, 1998 Feb, 69(1):56-62
    7 Grande DA, Pitman MI, Peterson L, et al. The repair of experimentally produced defects in rabbit articular cartilage by autologous chondrocyte transplantation. J Orthop Res, 1989, 7(2):208-218
    8 Bentley G, Biant LC, Carrington RW, et al. A prospective, randomised comparison of autologous chondrocyte implantation versus mosaicplasty for osteochondral defects in the knee.J Bone Joint Surg Br, 2003 Mar, 85(2):223-230
    9 Fu FH, Zurakowski D, Browne JE,et al. Autologous chondrocyte implantation versus debridement for treatment of full-thickness chondral defects of the knee: an observational cohort study with 3-year follow-up. Am J Sports Med, 2005 Nov, 33(11):1658-1666
    10 Raghunath J, Rollo J, Sales KM, et al. Biomaterials and scaffold design: key to tissue-engineering cartilage. Biotechnol Appl Biochem, 2007 Feb, 46(2):73-84
    11 Magnussen RA, Dunn WR, Carey JL,et al. Treatment of Focal Articular Cartilage Defects in the Knee : A Systematic Review. Clin Orthop Relat Res, 2008 Jan 12
    12 Zheng MH, Willers C, Kirilak L,et al. Matrix-induced autologous chondrocyte implantation (MACI): biological and histological assessment. Tissue Eng, 2007 Apr, 13(4):737-746
    13 杨造成,张仲文,侯世科等。武警医学,2007,18(4):249-253
    14 Mario Ronga, Federico A. Grassi, Paolo Bulgheroni. Arthroscopic autologous chondrocyte implantation for the treatment of a chondral defect in the tibial plateau of the knee. The Journal of Arthroscopic & Related Surgery. 2004, 20(1):79-84
    15 Bartlett W, Gooding CR, Carrington RW,et al.Autologous chondrocyte implantation at the knee using a bilayer collagen membrane with bone graft. J Bone Joint Surg Br, 2005 Mar, 87(3):330-332
    16 Bartlett W, Skinner JA, Gooding CR, et al. Autologous chondrocyte implantation versus matrix-induced autologous chondrocyte implantation for osteochondral defects of the knee: a prospective, randomised study. J Bone Joint Surg Br, 2005 May, 87(5):640-645
    17 Behrens P, Bitter T, Kurz B, et al.Matrix-associated autologous chondrocyte transplantation/ implantation (MACT/MACI)—5-year follow-up. Knee,2006 Jun,13(3):194-202
    18 Trattnig S, Ba-Ssalamah A, Pinker K, et al. Matrix-based autologous chondrocyte implantation for cartilage repair: noninvasive monitoring by high-resolution magneticresonance imaging. Magn Reson Imaging, 2005 Sep, 23(7):779-787
    19 Trattnig S, Pinker K, Krestan C, et al. Matrix-based autologous chondrocyte implantation for cartilage repair with HyalograftC: two-year follow-up by magnetic resonance imaging. Eur J Radiol,2006 Jan,57(1):9-15
    20 Zheng MH, Willers C, Kirilak L, et al. Matrix-induced autologous chondrocyte implantation (MACI): biological and histological assessment. Tissue Eng, 2007 Apr, 13(4):737-746
    21 Marlovits S, Striessnig G, Kutscha-Lissberg F,et al. Early postoperative adherence of matrix-induced autologous chondrocyte implantation for the treatment of full-thickness cartilage defects of the femoral condyle. Knee Surg Sports Traumatol Arthrosc, 2005 Sep, 13(6):451-457
    22 Brittberg M, Sj?gren-Jansson E, Lindahl A,et al. Influence of fibrin sealant (Tisseel) on osteochondral defect repair in the rabbit knee. Biomaterials, 1997 Feb, 18(3):235-242
    23 Kirilak Y, Pavlos NJ, Willers CR,et al. Fibrin sealant promotes migration and proliferation of human articular chondrocytes: possible involvement of thrombin and protease-activated receptors. Int J Mol Med, 2006 Apr, 17(4):551-558
    24 Martin I, Miot S, Barbero A, et al. Osteochondral tissue engineering. J Biomech, 2007, 40(4):750-765

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700