超细Al_2O_3-TiC-Co复合粉体的制备及复合材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了得到品粒细小、均匀,力学性能优异的Co-Al_2O_3-TiC(ATC)复合陶瓷,解决陶瓷的脆性问题,本文在化学镀钴制备高性能ATC复合陶瓷的基础上,采用超声波化学镀方法,以提高钴在陶瓷粉末以及Al_2O_3与TiC陶瓷颗粒之间的分布均匀性,以期进一步提高ATC陶瓷的力学性能。其后,以获得纳米金属陶瓷复合材料为目标,对纳米Al_2O_3、TiC采用超声波化学镀Co,制备纳米ATC复合粉末,并进行烧结试验。在保证复合陶瓷中各相均匀性的同时,减小复合陶瓷的品粒尺寸,从而获得具有高力学性能的复合材料。
     用超声波化学镀装置,对微米、纳米Al_2O_3、TiC陶瓷粉体表面镀覆钴,研究各组成分布均匀的ATC复合粉末最佳制备工艺参数,以及复合粉末中钴含量的控制;用HIGH-MULTI 10000型多功能烧结炉对复合粉末进行热压烧结制备ATC复合陶瓷;用HRD-150型电子洛氏硬度机硬度计测定复合陶瓷的硬度;用三点弯曲法和单边切口梁法方法测定了ATC陶瓷的抗弯强度与断裂韧性;用X-ray衍射仪、扫描电子显微镜、能谱成分分析仪、透射电子显微镜对复合粉末和烧结材料的结构、微观形貌进行了观察分析。
     对陶瓷粉末化学镀钴法制备金属陶瓷复合粉末的研究表明:通过在粉体化学镀中引入超声波,使得反应可以在较低温度下进行,防止了镀液的自分解。同时相比较传统的机械搅拌分散工艺,超声波分散具有明显的优势,可以大大提高颗粒的分散性,使复合粉末中各组成更为均匀。其最佳的工艺参数为:硫酸钴25g/l、次亚磷酸钠25g/l、柠檬酸钠52.3g/l、硼酸25g/l、pH值10.0、温度45℃、超声波功率40KHZ,并且,通过调整化学镀时的装载量,可以控制复合粉末中钴的含量。
     超声波化学镀复合粉末通过热压烧结制备的微米ATC陶瓷力学性能,与常规化学镀钴法制备的ATC陶瓷相比得到明显提高。其断裂韧性达到11.28MPa/m~(1/2)。
     对纳米ATC粉体烧结工艺的研究表明:真空保护试样各项力学性能均优于氮气保护试样。氮气保护试样表而各元素分布很不均匀,晶粒大小相差很大,有较多的异常长大相。随着烧结温度的升高,超细ATC陶瓷硬度先上升后下降,
    
    浙江大学硕卜学位论文张超超细A120;一Tic一CO复合粉体的制各及复合材料的研究20043
    其抗弯强度和断裂韧性均随烧结温度的升高而下降。超细A丁C陶瓷硬度随钻含
    量的增加而降低,而抗弯强度则随钻含量的增加而增加,断裂韧性则随着钻含量
    的增加先降低,后升高。超细A」,C陶瓷主要的断裂方式是沿晶断裂,伴有部分
    穿品断裂及塑性断裂。
     与微米ATC陶瓷相比,已_1纳米ATC粉体制成的超细ATC陶瓷硬度较高,
    断裂韧性和抗弯强度较低,综合性能较好。
To obtain the ultra fine ATC ceramic with fine, uniform grain and high mechanical properties and solve the problem of brittle of ceramic, the technique of electroless cobalt plating under low temperature and ultrasonic was used to get a cobalt deposition on nano/micro Al2O3, TiC ceramic. The nano/micro Al2O3-TiC-Co composite powder with different cobalt content was prepared by changing the load. The composite powder was then hot-pressed into a ultra fine composite ceramic. The technique of electroless plating and hot-press, the microstructure, mechanical properties and toughen mechanism of the ultra fine composite ceramic were investigated.
    The best parameters of electroless plating were observed. Results demonstrated that by utilizing the ultrasonic into the electroless plating, the reaction can reacted in lower temperature and the self-decomposition of the solution can be prevented. The ultrasonic can also afford the energy that the electroless plating need so that the coating speed is rapider than the normal low-temperature electroless plating, then reduce the cost. The ultrasonic has great advantage in dispersion compared with the normal mechanical mixing.
    The mechanical properties of micro ATC ceramic is much higher than the AT ceramic and ATC ceramic prepared by normal electroless plating. The analysis on the micro structure demonstrated that the cobalt can prevent the ceramic's growth and the reaction between different ceramic. The cobalt along grain boundary can change the "hard" type bonding of ceramic interface and improve the toughness of the composite ceramic by plastic deformation. The loading and hot stress of the dispersed brittle ceramic can be relaxed by the cobalt which is in three-dimensional net structure. The cobalt can also be strengthened by the difference of the hot expansion coefficient between cobalt and ceramic. These all can improve the strength and toughness of the
    
    
    
    bulk ceramic.
    The research on the hot-press parameter of the nano ATC composite powder demonstrated that the ceramic prepared under vacuum has better mechanical properties than the ceramic prepared under N2. The hardness of the ultra fine ATC ceramic grows first and then fall down with the growing sinter temperature. The bending strength and fracture toughness of the ultra fine ATC ceramic all fall down with the growing sinter temperature. When the cobalt content grows, the hardness and bending strength fall down and the fracture toughness fall down first and then grow.
    The main fracture model of ultra fine ATC ceramic is intergranular fracture. The analysis on the microstructure of the ultra fine ATC ceramic demonstrated that the ceramic is intergranular-transgranular structure. The residual hot stress caused by the difference of the hot expansion coefficient between cobalt and ceramic can strengthen the grain boundary and disperse the energy of crack. The cobalt in the grain causes stress concentration and makes the crack through the sub-grain-boundary, which can increase the path of crack.
引文
[1] Sun Xudong, Yeomans J A, Ductile phase toughened brittle materials, J. Mater. Sci. Technol., 1996,12:124-134
    [2] Richerson D W, Modern Ceramic Engineering, New York, Marcel Dekker, 192, 78
    [3] Becher P F, Microstructural Design of Toughened Ceramics, J. Am. Ceram. Soc., 1991,74(2):225-269
    [4] Lange F F, Powder processing science and technology for increased reliability, J. Am. Ceram. Soc., 1989,72(1):3-15
    [5] Krstic V V, Nicholson P S, Hoagland R G, Toughening of glasses by metallic particles, J. Am. Ceram. Soc., 1981,64:499-504
    [6] Evans A G, Perspective on the development of high-toughnessceramics, J. Am. Ceram. Soc., 1990, 73(2):187-206
    [7] Sigl L S, Mataga P A, Dalgleish B J, McMeeking R M, Evans A G, On the toughness of brittle materials reinforced with a ductile phase, Acta. Metall., 1988, 36(4):945-953
    [8] Wahi R P, Ilschner B, Fracture bebaviour of composites based on Al_2O_3-TiC,J. Mater. Sci, 1980, 15(4):875-885
    [9] Li Z, Bradt R C, Micromechanical stresses in SiC-reinforced Al_2O_3 composites, J. Am. Ceram. Soc., 1989, 72(1):70-77
    [10] Ebvans A G, High toughness ceramics, Mater. Sci. Eng.,1988, A 105/106(11-12):65-75
    [11] Bacber PF, Hannink RHJ, Pasoe RT, Nature, 1975,258:703-710
    [12] Rohatgi P K, Pai B C, Seizure resistance of cast aluminium alloys containing dispersed graphite particles of various sizes, Wear, 1980, 59(2),323-332
    [13] Rohatgi P K, Pai B C, Panda S C, Preparation of cast aluminium em dash silica particulate composites, J. Mater. Sci., 1979, 14(10): 2277-2283
    [14] Deonath, Rohatgi P K, Cast aluminium ally composites containing copper-coated ground mica particles, J. Mater. Sci., 1981, 16(6):1599-1606
    [15] Ray S, Synthesis of cast metal matrix particulate composites, J. Mater. Sci., 1993, 28(20)5397-5413
    
    
    [16] Cutler R A, Hurford A C, Pressureless-sintered Al 203-TiC composites, J. Mat. Sci. Eng., A105-106(1988) 183-192
    [17] 葛启录,雷廷权,Al_2O_3-ZrO2-SiCw陶瓷复合材料的断裂特点和韧化机理材料科学进展,1992,6(2):180-184
    [18] Nihara K. New design concepts of structured ceramics-matrix nanocomposites. J. Ceram. Soc. Jn, 1991,99(10):947-982
    [19] 闫联生,余惠琴,宋麦丽,王涛,纳米陶瓷复合材料研究进展,宇航材料工艺,2003,第1期,6-9
    [20] Shinoda Y, Nagano T, Gu H, Wakai F, Super plasticity of silicon carbide, J. Am. Ceram. Soc., 1999, 82(10):2916-2918
    [21] 张立德,纳米材料研究的新进展及在21世纪的战略地位,中国粉体技术,2000,6(1):1-5
    [22] 新原皓一,Nanostructure design and mechanical properties of ceramic composites.粉体粉末冶金,1990,37(2):348-356
    [23] 斯温M V(澳大利亚)主编,郭景坤等译,陶瓷的结构与性能,科学出版社,1998:486
    [24] Niihara K, Nakahira A, Sasaki G, Proceeding of the international meeting on advanced materials, Vol. 4,Materials Research Socity, Tokyo, Japan, 1989
    [25] Levin I, Kaplan W D, Brandon D G, Effects of SiC Submicronmeter particle size and control on fracture toughness of alumina-SiC nanacomposites, J. Am. Ceram. Soc., 1995,78(1):254-260
    [26] Zhao J, Stearns L C, Harmer M P, Mechanical behavior of anlunina-silicon carbide nanocomposites, J. Am. Ceram. Soc., 1993, 76 (2):503-510
    [27] Oh ji T, Jeong Y K, Choa Y H, Strengthening and toughening mechanisms of ceramic nanocomposites, J Am Ceram Soc, 1998, 81 (6):1453-1460
    [28] Chen R Z, Tuan W H, Pressureless sintering of Al_2O_3/Ni nanocomposites, J. Euro. Ceram. Soc., 1999, 19(4):463-468
    [29] 张立德,牟季美,纳米材料学,辽宁科技出版社,1994
    [30] Morrell R, Hand book of properties of technical & Engineering Ceramics, Her Majesty's Stationery Office, 1985
    
    
    [31] Vincernzini P, Ceramics Today-Tomorrows Ceramics. Elsevier Science Publisher's BV, 1991
    [32] Vincernzini P, High tech ceramics. Elsevier Science Publisher's B V,1987
    [33] 靳喜海,高濂,纳米复相陶瓷的制备、显微结构构和性能,无机材料学报,2001,16(2):200-206
    [34] 申玉芳,芦令超,程新,常钧,刘福田,Al_2O_3基纳米复相陶瓷的研究进展,济南大学学报(自然科学版),2002,16(1):105-107
    [35] 曾照强,胡晓清,林旭平,添加Cr_2O_3埘Al_2O_3-TiC陶瓷烧结及纳米结构形成的影响,硅酸盐学报,1998,26(2):178-181
    [36] 王宏志,高濂,归林华,内晶型Al_2O_3-SiC纳米复合陶瓷的制备,无机材料学报,1997,12(5):671-674
    [37] Niihara K,New design concept of structural ceramics,The Centennial Memorial Issue of The Ceramic Society of Japan, 1991,99(10):974-982
    [38] 范景莲,徐浩翔,黄伯云,刘军,马运柱,金属—Al_2O_3陶瓷基复合材料的研究与发展前景,粉末冶金工业,2003,13(3):1-5
    [39] Harmer M P, Chan H M, Miller G A, Unique oppotunities for microstructural engineering with duplex and laminar composites, J. Am. Ceram. Soc., 1992,75: 1715-1728
    [40] 果世驹,粉末烧结理论,冶金工业出版社,1998
    [41] Hwang H J, Toriyama M, Sekino T, In-situ fabrication of ceramic/metal nanocomposites by reduction reaction in barium titanate-metal oxide systems. J. Eur. Ceram. Soc., 1998,18(14):2193-2199
    [42] Sekino T, Niihara K, Microstructure characteristics and mechanical properties for Al_2O_3/metal nanocomposites. Nanostruct. Mater.,1995, 6(5-8): 663-666
    [43] Li G J, Huang X X, Guo J K, Fabrication of Ni-coated Al_2O_3 powders by the heterogeneous precipitation method, Mater. Res. Bull., 2001, 36(7-8): 1307-1315
    [44] 竹下淳一,无电解微粒子表面处理,表面技术,1996,47(11):896-899
    [45] Lacovangelo C D,Continuous In-Situ Regeneration of Electroless Nickel Baths During Powder Plating, Plat. Surf. Finish., 1995:77-81
    
    
    [46] Harizanov O A, Stefchev P L, Iossifova A, Metal coated alumina powder for metalloceramics, Mater. Lett., 1998, 33:297-299
    [47] Deonath, P.K. Rohatgi, Fludity of mica particle dispersed aluminium alloy, J. Mater. Sci., 1980, 15(11):2777-2784
    [48] Shipley C R Jr, The colloidal Pd-Sn catalyst, U.S. Patent 3011950, 1961
    [49] Fujinami T, Watanabe J, Honma H., Catalytic activity and stability of mixed PdCl_2/SnCl_2 catalysts, T. I. Met. Finish., 1996,74(6):193-197
    [50] Page B J, Evaluation of mixed Tin-Palladium activators for abs, Plat. Surf. Finish.,1987,74:56-60
    [51] Stremsdoerfer G, Wang Y, Nguyen D, Clechet P, Martin J R, Electrodes Ni as a refractory ohmic contact for n-InP, J. Electrochem. Soc., 140(7) (1993) 2022-2028
    [52] Wang C Y, Zhou Y, Zhu Y R, Hu Y, Chen Z Y, Synthesis and characterization of NiP-TiO_2 ultrafine composite particles, Mater. Sci. Eng. B, 2000,77:135-137
    [53] Yudina T F, Pyatachkova T V, Ershova T V, Strogaya G M,Creating a catalytically active phase on dielectric surfaces prior to electroless copper plating, Elektrokhimiya, 2001, 37(7): 866-870
    [54] 江东亮,郭景坤,复相陶瓷,硅酸盐学报,1991,19(3):258-268
    [55] Di Giampaolo A R, Ordonez J G, Gugliemacci J M, Lira J, Electroless nickel-boron coatings on metal carbides, Surf. Coat. Tech., 1997, 89:127-131
    [56] Chung W S, Chang S Y, Lin S J, Electroless nickel plating on SiC powder with hypophosphite as a reducing agent, Plat. Surf. Finish., 1996, 83(3): 68-71
    [57] Wen G, Guo Z X, Davies C K L, Microstructural characterization of electroless-nickel coatings on zirconia powder, Scripta Mater., 2000,43 (4):307-311
    [58] Harizanov O A, Stefchev P L, Iossifova A, Metal coated alumina powder for metalloceramics, Mater. Lett., 1998,33:297-299
    [59] Chiou W C, Hu C T, Processing of the intermetallic matrix composite Ni76Al23.9B0.1/α-Al_2O_3 from nickel-plated alumina powder, Scripta Metallurgica et Materialia, 1994,31 (5):619-624
    [60] Tatsuzawa K, Matsubara H, Kihara J, Iwama K, Preparation of TiC-Ni cermets using composite powders, J. Jap. Soc. Powder Powder Metall., 1990,37(7):1009-1012
    
    
    [61] Mao D S, Liu X H, Li J, A fine cobalt-toughened Al_2O_3-TiC ceramic and its wear resistance, J. Mater. Sci. 1998,33:5677-5882
    [62] 艾仕云,李慧琪,超声波在表面工程和电化学中的应用,表面工程,1996,2:36-37
    [63] Mallory G O, Effects of ultrasonic irradiation on electroless nickel plating,Trans. Imf.,1978,56:81-86
    [64] 李慧琪,刘俊波,低温超声波化学镀镍工艺研究,电镀与涂饰,1998,3:1-5
    [65] Touyeras F, Hihn J Y, Doche M L, Roizard X, Electroless copper coating of epoxide plates in an ultrasonic field, Ultrason. Sonochem., 2001,8(3):285-290
    [66] Matsuda H, Takano O, Influence of ultrasonic radiation on electroless cobalt phosphorus deposition, T. I. Met. Finish., 1993, 71 (4):138-141
    [67] Kobayashi K, Chiba A, Minami N, Effects of ultrasound on both electrolytic and electroless nickel depositions, Ultrasonics, 2000, 38(1):676-681
    [68] Val'syunene Ya I, Electroless silver plating, Protect. Met+, 1989, 24(6): 811-813
    [69] Rashid H, Tay B Y, Edirisinghe M J, Dispersion of ceramic ink using an ultrasonic disruptor, J. Mater. Sci. Lett., 2000, 19(9):799-801
    [70] Tay B Y, Rashid H, Edirisinghe M J, On the preparation of ceramic ink for continuous jet, J. Mater. Sci. Lett., 2000,19(13):1151-1154
    [71] Heegn H,Trinkler M,Langbein H , Phase formation and solid state structure on calcination of a nickel ferrite acetate precursor, Cryst. Res. Technol.,2000, 35(3):255-264
    [72] Zhang Q Q, Chan H L W, Zhou Q F, Choy C L, Effects of dispersing agent on the microstructure and properties of PCLT/P(VDF-TrFE) 0-3 nanocomposites, Ferroelectrics, 1999, 230(1-4):333-338
    [73] 马智勇,化学镀法制备纳米Co-Al_2O_3复合粉末的研究,浙江大学硕士学位论文,2002
    [74] 徐红娣,李光萃,常用电镀溶液的分析(第三版)
    [75] 金属维氏硬度试验方法GB340-84
    [76] Evans A G, Charles E A, Fracture toughness determinations by indentation, J.Am.Ceram.Soc., 1976,59:371-372
    [77] 工程陶瓷弯曲强度试验方法GB6569-86
    [78] 金属材料平面应变断裂韧度K_(IC)试验方法GB4161-84
    
    
    [79] Tuan W H,Chou W B, Preparation of Al_2O_3-AIN-Ni composite, J. Am. Ceram. Soc., 1995, 78: 2705-708
    [80] Tuan W H, Wu H H,Yang T J, The preparation of Al_2O_3/Ni composites, J. Am. Ceram. Soc.,80(9) 1997, 2418-2420
    [81] Sekino T, Nakajima T, Ueda S, Nihara K, Reduction and sintering of a Nickel-dispersed-Alumina composite and its properties, J. Am. Ceram. Soc., 1997,80(5): 1139-1148
    [82] Sun X D,Yeomans J A, Ductile phase toughened brittle materials, J. Mater. Sci. Technol., 1996,12: 187-206
    [83] Humenik J M,Kingery W D, Metal-ceramic interactions: Surface tension and wettability of metal ceramic systems, J. Am. Ceram. Soc., 1954,37:18-25
    [84] Huang L P, Li J,Properties of cobalt-reinforced Al_2O_3-TiC ceramic matrix composite made via a new processing route, Composites A,1999,30:615—618
    [85] 黄立萍,复合陶瓷Al_2O_3-TiC-siCw-Co的制备及性能研究,浙江大学硕士学位论文,1998
    [86] Oh S T, Sekino T, Niihara K, Fabrication and mechanical properties of 5 vol% copper dispersed alumina nanocomposite, J. Eruo. Cera. Soc., 1998, 18:31-37
    [87] Sekino T, Niihara K, Fabrication and mechanical properties of fine-tungsten-dispersed alumina-based composites, J. Mater. Sci., 1997, 32:3943-3949

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700