水玻璃砂微波硬化特性及溃散性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水玻璃砂具有价格低、强度高、无毒等优点,在铸造生产中获得广泛应用,但是由于其溃散性差,因此不能完全取代其它粘结剂。改善水玻璃砂溃散性的措施有多种,但均不能达到令人满意的效果。
    解决水玻璃砂溃散性的根本途径是提高水玻璃的粘结效率,减少其加入量。本文采用微波加热来硬化水玻璃砂,充分利用微波加热的特点,使砂粒表面的水玻璃膜在加热过程中同时发生硬化反应,从而提高水玻璃粘结效率,达到改善溃散性的目的。
    研究了在不同加热功率和加热时间的条件下,水玻璃加入量、模数、改性剂等对水玻璃砂性能的影响。结果表明:未改性水玻璃砂强度在硬化10 分钟时达到最大值;硬化工艺参数相同时,水玻璃模数越低,水玻璃砂强度值越高;水玻璃加入量相同时,4#改性水玻璃砂强度明显高于未改性水玻璃砂强度;在满足常温强度性能要求的前提条件下,4#改性水玻璃砂残留强度比未改性水玻璃砂残留强度低0.47~0.6MPa,溃散性明显得到改善。如果生产中使用该改性水玻璃,水玻璃加入量能降到1.5%及以下。
The sodium silicate sands were widely used in the commercial foundry for its notoxicity, high strength and low price. But the other adhesives in molding sands have not beenstill entirely replaced with the sodium silicate for its bad collapsibility. There are a lot ofmethods to improve the collapsibility, but their effects are not pleasing.
    An essential approach to solving the problem of low collapsibility is enhancing bondingefficiency of sodium silicate and reducing sodium silicate amount. Because the sodiumsilicate films covered sands heating by microwave can be cured at the same time, themicrowave-heating process was used in the present work. The bonding efficiency of thesodium silicate was obtained and the collapsibility was developed.
    The influences of the modulus of sodium silicate and the amount of modifying agentadded on the properties of sodium silicate sands with the different time and power ofmicrowave heating were investigated in this work. The results indicate that the tensilestrength of the unmodified sodium silicate sands reach the maximum value as heating for tenminutes. In the same parameter of hardening process, the lower modulus of sodium silicateis, the higher its tensile strength. With the same amount of sodium silicate, the tensilestrength of 4# modified sodium silicate sands is obviously higher than that of the unmodified.The retained strength of 4# modified sodium silicate sands is lower 0.47~0.6MPa than that ofthe unmodified so that the obvious low retained strength , i. e. a good collapsibility wasobtained. The amount of sodium silicate in the sands may reduce to 1.5 percent even lesswith the modified sodium silicate in foundry practice.
引文
[1] Mester J et al . The contribution to solving the collapsibility of sodium silicate molding sands[J]. Slevarenstvi. 1992,40(4):143-144
    [2] Carey Pand Sturtz G. Sand binder systems Part Ⅲ-silicate CO2 , silicate no-bake, CO2 cured alkaline phonetic [J]. Foundry M & T. 1996,(4): 74-82
    [3] 朱纯熙,卢晨等.水玻璃砂基础研究的最新进展[J].中国机械工程.1999,(2): 220-223
    [4] 朱纯熙,卢晨,季郭生著.水玻璃砂基础理论[M].上海:上海交通大学出版 社.2000
    [5] Czechoslovak Patent Specification. British Patent. 1947,12:81931
    [6] Petrzela L. 捷克-化学硬化法的生产报告[J].铸工.1956,11:36-40
    [7] Owusu Y. A. et al. Microwave cured sodium bonded cores[J]. AFS Transactions .1979,87:605-612
    [8] Owuse Y. A. et al. Humidity resistance of sodium silicate bonded sands cured with microwave energy[J].AFS Transactions.1980, 88:601-608
    [9] 肖波,徐正达,王秀萍等.微波固化水溶性有机粘结剂的研究[J].铸造.1997, (3):21-23
    [10] 朱纯熙.水玻璃砂的新进展及发展前景[J].中国铸造装备与技术.1999, (2):7-10
    [11] Cajkova R., Novotny V..Possibilities of the practical Utilization of Magnestically treated Sodium Silicate[J]. Slevarenstvi. 1978, 26(2):96-99
    [12] Jelinek P,Petrikova R.,Hahnel U,et al.Possibilities for the modification of sodium silicate solutions using magnetic field and ultra sonic treatment and practical experience in the application of magnetically treated sodium delicate solutions in Czech[J]. Part 1. 1982,(1):21-25
    [13] 赵芳侠.超声改性水玻璃砂的初步研究[J].铸造.1995,33(5):33-38
    [14] И.С.Сычев.磷对水玻璃与型砂性能的影响[J].Литейноепроизводство. 1987(7):13-14
    [15] 屈银虎.三聚磷酸钠对水玻璃的改性作用[J].铸造技术.1999,(3):37-39
    [16] И. В. Морозов. 利用表面活性物质改善水玻璃性质[J].Литейноепроизводство.1986,(3):53-56
    [17] 屈银虎等.新型复合改性水玻璃的研制[J].大型铸锻件.1990,(2):24-29
    [18] 张永平等.新型水玻璃改性剂的研究[J].铸造技术.1999,(3):34-36
    [19] 王桂芹等.新型水玻璃改性剂(LiOH)的研究[J].铸造.1996,(9):17-20
    [20] 虞芝芸等.VRH 法在造型和制芯中的应用[J].铸造技术.1991,(3):36-38
    [21] 程骥,宫泽信夫等.水玻璃砂VRH-CO2硬化法的研究铸造[J] .1993,(10):10-15
    [22] 金大洲等.VRH 法水玻璃砂在铸钢生产中的应用[J].铸造.1992,(12):30-32
    [23] B. Polasek, I. Vesely. 无机氟化物硬化[J]. Slev. 1980(3):97-102
    [24] 杨士仪.水玻璃常温自硬剂的试用[J].大型铸锻件.1986,(4):32-36
    [25] 季崇参等.酯硬化水玻璃砂的研制及其在铸钢生产中的应用[J].造型材料. 1987,(2):43-45
    [26] 李华基,谢卫东.水玻璃砂微波加热工艺及工程应用方案的研究[J].重庆大学学报.1999,22(6):24-28
    [27] 王秀萍,肖波等.微波水玻璃试样和砂型及其旧砂再生[J].特种铸造及有色合金.1997,(4):7-9
    [28] 冯士明,钱茹.微波炉加热技术在材料工业中的应用前景[J].热固性树脂. 1999,(4):118
    [29] 叶新强,王占湖,付宣.应用前景广阔的微波处理技术[J].山东环境.1998,(1): 21
    [30] E. V. Ratnikov. A waveguide chamber for measurements of temperature distributions in raw materials under microwave heating. Instruments and Experimental Techniques. 2001,44(5):690-692
    [31] 祝圣远,王国恒.微波干燥原理及其应用[J].工业炉.2003,25(3):42-45
    [32] 陈克巧等. 矿物及化合物微波化学理论与应用研究进展述评[J].云南冶金, 1998,27(4):32-36
    [33] 徐勇等.国外微波能在金属提取中应用研究的进展[J].上海有色金属.1997, 18(2):64-67
    [34] K.G.Bosisiol,J.L.Cambon,C.Chavarie and D.Klvana. Microwave power[J]. 1997,12(4):3Ol
    [35] J.D.Ford, D.C.T Pei. Microwave power[J].1967,2(2):61
    [36] M. A.Dikusar, L.V.Kubrakova, A.A.Chinarev and N.V.Bovin. Polymeriza tion of 4-Nitrophenyl acrylate under microwave heating conditions[J]. Russian Journal of Bioorganic Chemistry. 2001,27(6):408-412
    [37] 徐勇等.国内微波化学应用研究现状及进展[J].上海化工.1998(6):3-4
    [38] S. Marinel, M. Pollet, G. Desgardin. Sintering of CaZrO_3-based ceramic using mixed conventional and microwave heating[J]. Journal of Materials Science: Materials in Electronics. 2002,13:149-155
    [39] K.G.Ayappa, Tirthankar Sengugupta. Microvave heating in multiphase systems: evaluation of series solutions[J]. Journal of Engineering Mathematics. 2002,44:155-171
    [40] J.Palacios, M.Ayala, M. Rubio. The influnce of self-association of aliphatic alcohols on microwave heating[J]. Journal of Materials Science Letters. 1999,18:285-288
    [41] L. Ghussn, J. R. Martinelli.A novel method to produce niobium phosphate glasses by microwave heating[J]. Journal of Material Science. 2004,39:1371-1376
    [42] H.Urabe, Y. Nomura, K. Shirai. Effect of filler content and size to properties of composite resins on microwave curing[J]. Journal of Materials Science: Materials in Medicine. 1999,10:375-378
    [43] Tatsuo Ohgushi, SriDhar Komarneni and Amar S.Bhalla. Mechanism of microwave heating of zeolite A[J]. Journal of Porous Materials 2001,8:23-35
    [44] Mukhopadhyay, A. K, Datta, S, Basu, D. Novel method of developing oxide coating on aluminum using microwave heating[J]. Journal of Materials Science Letters. 2003, 22(22):1635-1637
    [45] H. Chang. E. L. Chen. Collapsibility of sodium silicate cores cured by microwave energy and CO2 gassing process[J]. AFS Transaction. 1980(6): 217-222
    [46] 贾佑装.微波硬化对酸固化树脂砂性能的影响[J].造型材料.1986,2:17-20
    [47] 许进.CO2硬化工艺用改性水玻璃的研究[D].华中理工大学博士论文.1994
    [48] 金文芷.型砂化学[M].上海:上海科学技术出版社.1985
    [49] 朱纯熙,卢晨.我看铸造型砂的发展[J].中国机械工程.1998,9(6):79-81
    [50] Chang H, Chen E L. Collapsibility of sodium silicate cores cured by microwave energy and CO2 gassing process [J]. AFS Transactions . 1988,96:217-222
    [51] 肖波,徐正达,王秀萍.铸造水玻璃砂粘结性能研究新方法[J].湖北工学院学报.1997,10(增刊):6-9
    [52] Gardzie A,Kwasnoik A,Cobos L. Recent studies comparing core-making process [J]. Mordern Casting. 1996,86(3):39-42
    [53] WANG Wen-qing,et al. An investigation of the influence of properties and different purifying process for the base sand on the strength of cold-setting synthetic resin sand mixture [J]. AFS Transactions. 1983,91:613-620
    [54] DAI Xu-qi,WANG Wen-qing,et al. On the bonding mechanism of cold-set ting synthetic resin sand mixture[J]. AFS International Cast Metals. 1981,6(3):567-572
    [55] 化学工业部科学技术情报研究所.化工产品手册[M].有机化工原料(下册). 北京:化学工业出版社.1985
    [56] 黄光佛,李盛彪,鲁琴,黄世强.聚醋酸乙烯乳液的研究进展[J].中国胶粘剂. 2001,10(1):44
    [57] 曹文龙.铸造工艺学[M].北京:机械工业出版社.1989

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700