黄河废弃水下三角洲土体破坏机制及桩靴承载能力研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
胜利油田埕北浅海石油开发区地处黄河口废弃水下三角洲滩海交界地带,该地区的水深和地质条件特别适合自升式平台作业。钻井平台桩靴贯入分析主要是研究地基土极限承载力是否满足桩腿最大预期荷载的问题。影响桩靴贯入的关键因素是土层的工程地质条件。
     研究区的浅地层工程地质条件、动力地貌特征、特别是黄河尾闾摆动后引起的岸线变化和泥沙运移规律十分复杂,地基土常由多层软硬不均的土体交叠构成。通过分析埕北海区近3年30余个井场的调查资料,把研究区分为Ⅰ区、Ⅱ区、Ⅲ区和Ⅳ区。
     根据研究区近三年平台就位资料,对浅部地层内有强度较大的粉土、粉质粘土层等地层类型的区域(如Ⅱ区和Ⅲ区),采用承载力理论预测插桩深度时总体来说偏保守,实际插桩深度常远小于理论预测深度。当浅部地层内为厚粘土等地层类型的区域(如Ⅳ区),理论预测插桩深度与实测结果较为一致。
     桩靴贯入过程中,桩靴底部土体的破坏机制非常复杂,土体破坏模式受到土质情况、基础尺寸和埋深以及加载速率等诸多因素的影响,不同的土体破坏模式和破坏深度直接决定了地基承载力,需要考虑各方面的因素后综合确定。
     通过有限元(FEA)分析表明,当基础尺寸与硬土层厚度的比值B/H大于0.3时,硬土层的承载能力需要考虑软弱下卧层的影响,层厚比越大,下卧软土层对地基承载力的影响越大,地基承载力越小;当层厚比小于0.3时,可以忽略下卧软土层对地基承载力的影响作用。
     刺穿现象发生时的刺穿模式与硬土层的相对厚度有关,而与下卧软土层无关。层厚比不同时,桩靴在硬土层中发生的刺穿模式不同。当基础尺寸与硬土层厚度比小于临界层厚比时,硬土层中基础承载力随深度先增加后减小,临界刺入破坏位置位于硬土层内某深度处,发生“层内刺穿”;当基础尺寸与硬土层厚度比大于临界层厚比时,这种情况下硬土层中基础承载力随深度增加呈持续减小的趋势,刺入破坏将发生在硬土层的表面,发生“层顶刺穿”。这一临界层厚比为B/H=0.286。根据有限元分析,提出了计算在硬土层中发生刺穿破坏时的临界刺穿深度计算公式。刺穿模式和刺穿位置仅与硬土层的相对厚度有关,而与下卧软土层无关,但桩靴在硬土层中极限承载力的大小受到下卧软土层强度控制。
     对硬土层层状地基的极限承载力,采用承载力理论公式计算出的承载力,当土体实际破坏模式与理论假定的某种特定破坏模式符合时,其结果趋于合理;当实际破坏模式与假定破坏模式不符时,结果会有较大偏差。对更为复杂的互层土来说,其承载力与基础下影响深度范围内所有土体的性状都密切相关,体现为土体的综合承载力。对尺寸较大的桩靴基础,应充分考虑3~3.5倍基础尺寸的深度范围内的所有土体的力学性质,这样得到的综合承载力才是合理的。
     研究区内桩靴基础贯入时土体破坏模式可以归纳为以下几种:砂性土破坏模式主要包括冲剪贯通破坏型、整体贯通破坏型和冲切型;粘性土破坏模式主要包括侧向塑流型、整体滑动破坏型和局部剪切破坏型。不同的土体破坏模式对桩靴承载力有着显著的影响。
     采用有限元法(FEA)分析桩基承载力,解决了承载力理论公式计算中存在的事先假定破坏面、计算结果和实际情况差异较大等问题,可以适用于更加复杂的模型和边界载荷条件,如复杂互层土、偏心荷载等,并能揭示地基渐进破坏过程和土体破坏机制,分析结果更加精确合理,可以很好地反映持力层影响深度范围内所有土层的性状,得到地基综合承载力,更为接近实际情况,无需再进行修正。通过对研究区各区内典型井场的计算与实测插桩深度结果对比,其预测结果与实测插桩深度相当一致。
     研究区水动力环境复杂,在风、浪、流等环境因素作用下钻井平台等海上构筑物附近将会引起冲刷、淘蚀现象,会造成桩靴入土深度减小和持力层有效厚度的减小,导致地基承载力减小,产生桩脚的额外贯入,甚至刺穿失稳。文中对研究区内海底构筑物就位后,桩基周围的水动力条件变化引起的冲刷作用对桩基竖向承载力的影响做简要分析。分析表明,当桩靴在类型1(厚层粉土-软弱粉质粘土型)地层结构的区域就位时,如果选择表层粉土层作为桩靴持力层,冲刷作用将对桩基承载能力产生显著的不利影响,应及时采取适当的工程处理措施以便预防和应对。
Shengli Oilfield of Chengbei offshore oil development zone is located in theabandoned underwater delta junction zone of the Yellow River, water depth and thegeology of the area is particularly suitable for the jack-up platform operation. The keyfactors affecting penetration of pile shoe is the engineering geological conditions ofsoil. The penetration depth of spudcan foundations is typically predicted by followingtraditional bearing capacity theory approaches to assess the depth at which theestimated capacity matches the maximum applied loading. In offshore oil and gasdevelopment history, due to the marine engineering geologic investigation andresearch is not enough, failure of analysis on foundation strength stability, cause theplatform legs suddenly penetrating or slipping to occur from time to time. Therefore,the stability analysis of foundation must be carried on, in order to ensure the operationsafety of the platform.
     The engineering geology and geomorphology characteristics of research area,especially caused by the Yellow River swinging shoreline change and sedimenttransport law is very complex, the foundation soil is often composed of multilayer soil.The shallow subsoil of research area mainly have three kinds of group types, type1:the thick layer of silt over soft silty clay; type2: thin silt over soft silty clay layer;type3: thick soft silty clay layer over silty soil.The low strength silty clay layer issilty clay of delta facies with shallow marine silty clay, the silt is form from dense siltlayer delta subjected to wave and current action jigging transformation form or thelacustrine silt and silty clay before Holocene transgression.
     Through the analysis more than30field survey data of the ChengBei area inrecent three years, according to water depth, topography, strata distribution,engineering geological properties, suitable platform types and hazard factors, the research area had to be divided to I, II, III and IV block. The depth of water of I blockis very shallow, which affected by the artificial modification remarkably. And offshoredrilling engineering were rarely implemented in this region. Stratigraphic structure ofII block belongs to the type2with less area landslide, fault depression and otherdisastrous factors, is relatively stable in the research area block. Stratigraphicstructure of III block belongs to the type1where has serious rift, landslides, erosionand other hazard factors, is unstable block. Stratigraphic structure of IV area belongsto the type3where has less landslide, fault depression and other disastrous geologyfactors, is relatively stable block. Offshore drilling engineering are mainly distributedin the area II, III and IV area.
     According to the research data in the recent three years, the predictions of pileshoe depths were generally conservative by following traditional bearing capacitytheory. And the actual penetration depth is often far less than the theoretical predictiondepth, especially in the blocks which have thick-layer of silt or silty clay layer withthe high shear strength (such as II and III blocks). When the stratum is single such asthick clay (such as IV bolck), the predictions by following traditional bearing capacitytheory match well with the measured results.
     The failure mechanism of soil at the bottom of pile shoe is very complex whenpenetrating which is influenced by soil conditions, pile shoe size, depth and theloading rate etc. The bearing capacity of the foundation is determined directly by thedifferent soil failure mode and failure depth, which needs to consider all aspects of thecomprehensive factors.
     The results of finite element analysis (FEA) show that when B/H (the ratio ofpile shoe size and thickness of hard soil) is greater than0.3, the bearing capacity ofhard soil need to consider the effect of subjacent soft layer. The more ratio of B/H,the more influence of soft substratum and the less of bearing capacity. When the ratioof B/H is less than0.3, it can ignore the role of subjacent soft substratum on bearingcapacity.
     The thickness of hard soil layer is smaller, with the increasing of buried depth ofpile shoe, bearing capacity increases less, and critical penetrating depth is shallower. When the hard soil layer thickness is much larger than the size of pile shoes, the ratioof B/H is very small, the bearing capacity of foundation increases first and thendecreases with the penetration depth increasing, piercing damage occurred in a depthin the hard soil layer. When the hard soil layer thickness is relative small, B/H isgreater than the critical ratio, piercing damage occurred in the surface of hard soillayer, with the penetration depth increasing, the bearing capacity of foundationdecreases all the time.
     The ultimate bearing capacity of hard soil shell over soft stratum by followingtraditional bearing capacity theory tends to be more reasonable when the actual failuremode matches with the particular failure mode assumed in theory. On the contrary,when the actual failure mode does not comply with the assumption failure mode, theresult will be a larger deviation.
     On the multilayer foundation, the bearing capacity is closely related with thecharacters of all the effect depth range, embodies the comprehensive bearing capacityof soil. Full consideration should be given to the mechanical properties within alleffect depth range about3~3.5times the pile shoe dimension. And thecomprehensive bearing capacity is reasonable.
     The failure modes of soil in the research area can be divided into the followingseveral types: sandy soil failure mode mainly includes the local punching shear failuretype, the whole punching shear failure tyoe and the whole punching-through type;clay soil failure mode mainly includes lateral plastic flow type, whole sliding type andlocal shear failure type. Different soil failure modes have a significant effect on thebearing capacity of pile shoes.
     Using the finite element method simulating the bearing capacity of spudcanfoundation, solves the problems that the assumed failure surface of the theoreticalcalculation formula, and the calculation results can not match well with the actualsituation. It can be applied to more complex models and boundary conditions, such asmultilayer soil, eccentric load, and can reveal the progressive failure mechanism ofsoil. The analysis results are more reasonable and accurate, considering the charactersof all the effect depth range, the more closely to the actual situation, and no longer need to be modified. Through several typical demonstrations of well sites, it showsthat the prediction results by the Finite Element Method match well with the on-sitemeasurement penetration values.
     The hydrodynamic environment of research area is very complex. The effect ofwind, wave, flow and other environmental factors will cause erosion, scourphenomenon around drilling platform pile foundation. These can cause pile shoepenetration depth reducing and the effective bearing layer thickness decreasing, leadto a reduction in the bearing capacity of the foundation and the extra penetration, eventhrough the instability. Analysis shows that, when the pile shoes are in the type1(thethick layer of silt over soft silty clay) region choosing the thick layer of silt as the pileshoes bearing layer, the scouring process should have significant effect to the bearingcapacity. The appropriate engineering measures should be taken timely to prevent orrespond to pile shoe penetrating.
引文
[1].王楠,吴建政,徐永臣等.硬土层地基破坏模式及承载能力有限元分析[J].海洋石油.2012,30(4):88-95.
    [2]. El-Mabsout,M E.1991.A finite element model for the analysis of pile driving. PHDThesis. University of Texas, Austin, Tex.
    [3]. Mabsout,M E and Tassoulas J L.1994. A finite element model for the simulation of piledriving. Int.J.Num.Meth.Rngrg,37(2),257-278
    [4]. A O P. Casbarian Barnett&Casbarian “Footing type, soil affect leg penetration”[J].Offshore,1982.
    [5]. Steven C Helfrich, Alan G Young. Temporary seafloor support of jacket structures[A].Offshore Technology Conference[C],3750,1980.
    [6]. Alan G Young,et al. Foundation Performance of Offshore jack-up drilling rigs. Journal ofGeotechnical Engineering,1984,110(7).
    [7]. Fugro Engineer’s B V. Computation Methods for jack-up rig footings on UniformSoils.1992.
    [8]. McCleffand Fngineers,inc.Geotechnical Consultants, Jack-up rig foundation analysisBohai Area.Houston,Texas,July1983,pp.6-8.
    [9]. Young, A G, and Focht J A.1981.Subsurface Hazards affect mobile jack-up rig operations,Soundings[J], Mcclelland Engieers Inc, Houston, Vol3,No,2.pp.4-9.
    [10]. Young, A G, Quiros.G w and Ehlers c J.1981. Effects of offshore drilling, sampling andtesting on undrained soil shear strength[M]. Presented at Annual ASCE,TexasSection,Houston.Texas.
    [11]. Muhammad Shazzad Hossain, Faculty of engineering and computing department ofCivil Engineering, Investigation of soil failure mechanisms during spud foundationinstallation,2004.4
    [12]. Dilip.R.M,Luis.F.G.V,John.L.T. Installation and pullout of suction cassons: Finiteelement simulation. Proceedings of the international conference on offshore mechanics and arcticengineering OMAE.2003.3:875~881
    [13]. AOP.Casbarian Barnett&Casbarian”Footing type, soil affect legpenetration,Offshore,1982
    [14]. L.Kellezi and H.Stromann, FEM analysis of jack-up spud penetration for multi-layeredcritical soil conditions, GEO-Danish Geotechnical Institute,Lyngby,Denmark,411-420
    [15]. C.F.Leung, K.L.Teh,Y.K.Chow, Study on jack-up spud-through, Soft SoilEngineering-Chan&Law,2007,291-298
    [16]. Tateishi H,Watanabe Y. Leg penetration monitor system to avoid the punch-throughaccidents of jack-up rigs[A]. Offshore Technology Conference5223[C],1986.
    [17]. M J Cassidy, G T Houlsby etc. Determining appropriate stiffness levels for spudcanfoundations using jack-up case records[A].Proceedings of OMAE2002[C].
    [18]. S Micic,K Y LO and J Q Shang. A new technology for increasing the load-carryingcapacities of offshore foundations in soft clayss[A]. Proceedings of OMAE2003[C].
    [19]. Mabsout M E,T asoulas JL, A finite element model for the simulation of pile driving,Int.J.Numeer.Meth>engng.1994,37:257-278
    [20].陈宏,李春祥.自升式钻井平台的发展综述[J].中国海洋平台.2007.22(6):1-6.
    [21].付丽娜.自升钻井船桩靴承载能力研究.[硕士学位论文].天津:天津大学.结构工程.2008.
    [22]. DierA,CarrollB,Abolfathi5. Guidelines for jackup-rigs with Particular reference tofoundation integrity.MSLEngineeringLimited,2004.
    [23].于龙.三维RITSS大变形有限元方法及其在基础刺入破坏和锚板承载力问题中的应用[博士学位论文].大连:大连理工大学.水工结构工程系.2008.
    [24]龚闽.自升自航式船与地基土的相互作用研究,[博士学位论文],上海交通大学,2005.
    [25].海洋井场调查规范[S].中华人民共和国国家发展和改革委员会.SY/T6707-2008.北京:石油工业出版社,2008.
    [26].袁凡凡.关于层状地基极限承载力的计算方法[J].水利学报.2001.3.
    [27]. Hanna A M, and Meyerhof G G. Design Chart for Ultimate bearing capacity offoundation on sand overlying soft clay[J], Canadian Geotechnical Journal,1980.Vol.17.No.2.pp.300-303.
    [28]. Vincent P Naglioni,Gary S Chow, Shailendra N Endley, Fugro Gulf.Jack-up rigfoundation stability in stratified soil profiles[C]. Offshore Technology Conference.1982.4409.
    [29].陶常飞.曹妃甸浅滩海洋工程地质特征及插桩深度研究.[硕士学位论文].青岛:中国海洋大学.海洋地质.2008.
    [30].季春群,孙春昌.自升式平台地基承载力、抗倾稳性及桩腿插深分析[J].上海交通大学学报.1996.30(3).
    [31].段忠毅,要明伦.带桩靴自升式桩基钻井平台插桩深度的计算方法[J].中国海上油气.1998.10(4).
    [32].龚闽.自升式平台在层状地基上承载能力及穿透可能性分析[J].中国海洋平台.2004.19(2).
    [33].张异彪,杨文达.层状地层中自升式钻井平台桩脚稳定性分析[J].海洋石油.2005.25(4).
    [34].刘剑涛,吴文峰.自升式钻井船插桩深度预测[J].中国造船.2007.48(增).
    [35].杨果林.硬壳层软土地基中界面附加应力研究[J].湘潭矿业学院学报.1996,11(1):50-54
    [36]. Shailendra N Endley, Vladimir Rapoport. Prediction of jack-up rig footing pentration
    [C]. Offshore Technology Conference,1981.4144.
    [37].刑延.自升式钻井船桩脚插入深度计算[J].岩土工程学报.1991.13(5).
    [38].吴秋云,周扬锐,冯秀丽等.自升式钻井船基础刺穿分析方法在渤海石油开发区的应用[J].海岸工程.1999.18(4).
    [39].郑喜耀.自升式钻井平台插桩深度计算及几个问题的探讨[J].中国海上油气.2000.12(2).
    [40]. M.S.Hossain, M.F.Randolph, Centre for Offshore Foundation Systems University ofWestern Australia, Investigating Potential for punch-though for spud foundations on layered clays,Proceddings of the seventeenth international Offshore and Polar Engineering Conference, ISOPE,Lisbon, Portugal, July1-6,2007,1510-1517.
    [41]. M.S.Hossain, M.F.Randolph, Punch-through of spud foundations in two-layer clay,Frontiers in offshore Geotechnics:ISFOG2005,535-540.
    [42]. Liu Jun, Hu Yu xia, Deep Penetration of Spudcan Foundation into Double Layed Soils.China Ocean Engineering.2005,19(2):309-324.
    [43].丁红岩.利用有限元法模拟较大桩靴拔出对筒形基础平台地基的影响[J].中国海上油气.2004.16(5).
    [44].王建军.自升式海洋平台地基稳定性分析[J].中国修船.2010.23(3).
    [45].张浦阳,丁红岩.海上自升式钻井平台穿刺现象的数值分析[J].中国石油大学学报.2011.35(2).
    [46].张浦阳,于晓阳,丁红岩.海上自升式钻井平台插桩阶段桩靴承载力计算[J].石油勘探与开发.2011.38(5).
    [47].邓楚健,孔位学.极限分析有限元法讲座III——增量加载有限元法求解地基极限承载力[J].岩土力学.2005.26(3).
    [48].姜谙男,唐春安.含下卧软层地基极限分析数值试验及承载力安全性研究[J].岩土力学.2010.31(3).
    [49].成国栋.现代黄河三角洲的演化与结构[J].海洋地质与第四纪地质,1987,7(增刊):7-18.
    [50].宋清峰.黄河水下三角洲插拔桩对底土的扰动与恢复研究.[硕士学位论文].青岛:中国海洋大学.海洋地质.2007.
    [51].杨作声,王涛.埕岛油田勘探开发海洋环境[M].青岛:青岛海洋大学出版社1997.
    [52].赵维霞,杨作升,冯秀丽.埕岛海区浅地层地质灾害因素分析[J].海洋科学,2006,35(10):20-24.
    [53].张朋.埕岛海域工程地质环境与工程适宜性研究.[硕士学位论文].青岛:中国海洋大学.海洋地质.2012.
    [54].冯秀丽,吴世强,林霖,刘涛,周松望.黄河三角洲埕岛近岸海域悬浮泥沙运动[J].海洋科学.2003(12).
    [55].臧启运等著.黄河三角洲近岸泥沙[M].海洋出版社,1996.
    [56].张卫明,梁瑞才,牟晓东等.埕岛油田海域海底沉积特征与工程地质特性[J].海洋科学进展,2005,23(3):305-312.
    [57].吴建政等.埕岛油田移动式平台稳定性研究报告[M].青岛海洋地质研究所.1997.
    [58].袁凡凡.成层土地基基础极限承载力的模型试验研究[J].中国港湾建设.2003.2(1):14-17.
    [59].钱家欢,殷宗泽.土工原理与计算.第二版.[M].北京:中国水利水电出版社.1996.
    [60].李洪,邓金根等.自升式平台桩脚在含硬壳层地基中的插深分析[J].海岸工程.2010.29(2).
    [61].黄建维,郭颖.波浪作用下海上墩式建筑物周围局部冲刷的试验研究[J].海洋工程.1994.12(4).
    [62].孙永福,宋玉鹏等.潮流作用下海洋平台桩基冲刷过程及冲刷深度计算[J].海洋科学进展.2007.25(2).
    [63].孙永福,宋玉鹏等.海洋平台桩基周围冲刷过程及冲刷机理分析[J].中国海洋大学学报.2007.37(4).
    [64].边淑华,胡泽建,胡光海等.淤泥质粉砂海底典型平台桩基冲刷[J].海洋测绘.2006.26(2).
    [65]. RICHARDSON E V, DAVIS S R. Evaluating scour at briages. Fourt h EditionHydraulic Engineering circular No.18[R]. Atlanta: National Highway Insitute, FederalHighway Administ ration, U S Department of Transportation,2001.
    [66]. JONES J S, SHEPPARD D M. Scour at wide bridge piers[C].Proceedings of JointConference on Water Resource Engineering and Water Resouces Planning and Management.Minneapolis, Minnesota, USA:[s. n],2000.
    [67].周俊昌.南黄海铁板砂海床插桩问题分析与对策[J].中国海上油气工程.2003.15(4):1-4.
    [68].陈祖煜.地基承载力的数值分析方法[J].岩土工程学报.1997.19(5).
    [69].吴建政.山东全新世滨海软土与工程地质灾害的研究[J].海洋地质与第四纪地质,1995,15(3):44-54
    [70]. APl RP2A(1993)规范.中国石油学会.中国石油工业标准化技术委员会.1993.
    [71].陈希哲.土力学地基基础.第四版.[M].北京:清华大学出版社.1997.
    [72].龚晓南.土塑性力学.第二版.[M].杭州:浙江大学出版社.1997.
    [73].蒋习民.浅海新型单立柱平台在埕岛海域中的应用口[J].中国海洋平台,2005,20(4):41-43.
    [74].唐世栋,李阳.基于ANSYS软件模拟桩的挤入过程[J].岩土力学.2006,27(6):974-976
    [75].鹿群,龚晓南.饱和成层地基中静压单桩挤土效应的有限元模拟[J].岩土力学.2008,29(11):3017-3020
    [76].周火矗,施建勇.饱和软黏土中足尺静压桩挤土效应试验研究[J].岩土力学.2009,30(11):3291-3296
    [77].郑俊杰,邢泰高.沉桩挤土效应的参变量有限元分析[J].岩土工程学报.2005,27(7):796-799
    [78].徐建平,周健.沉桩挤土效应的模型试验研究[J].岩土力学.2000,21(3):235-238
    [79].詹云刚.复杂条件下海洋结构物地基承载力特性数值研究[博士学位论文].武汉:中国科学院.岩土工程.2008.
    [80].樊敦秋.辽河作业一号平台总体性能研究[硕士学位论文].青岛:中国海洋大学.水利工程.2004.
    [81].鹿群.成层地基中静压桩挤土效应及防治措施[博士学位论文].杭州:浙江大学.建筑工程学院岩土工程系.2007.
    [82].张浦阳.海上自升式钻井平台插_拔桩机理及新型桩靴静—动承载力研究.[博士学位论文].天津:天津大学.建筑工程技术与管理系.2008.
    [83].郑颖人,赵尚毅等.极限分析有限元法讲座—岩土工程极限分析有限元法[J].岩土力学.2005,26(1):163-168
    [84].赵尚毅,郑颖人等.极限分析有限元法讲座—有限元强度折减法中边坡失稳的判据探讨[J].岩土力学.2005,26(2):332-336
    [85].郑颖人,王敬林等.关于岩土材料滑移线理论中速度解的讨论—广义塑性理论的应用[J].水利学报.2001,6:1-7
    [86].郑颖人,赵尚毅.岩土工程极限分析有限元法及其应用[J].土木工程学报.2005,38(1):91-104
    [87].郑颖人,赵尚毅等.有限元极限分析法发展及其在岩土工程中的应用[J].中国工程科学.2006,8(12):39-61
    [88].孔位学,郑颖人等.地基承载力的有限元计算及其在桥基中的应用[J].土木工程学报.2005,38(4):97-102
    [89].邓楚健,郑颖人等.载荷试验有限元数值模拟[J].岩土力学.2007,28(增):249-253
    [90].邓楚健,郑颖人等.基于M-C准则的D-P系列准则在岩土工程中的应用研究[J].岩土工程学报.2006,28(6):735-739
    [91].刘怡林,黄茂松等.公路路基地基承载力的离心模型试验与分析[J].岩土力学.2010,31(11):3499-3504
    [92].赵杰,邵龙潭.土体结构极限承载力的有限元分析[J].岩石力学与工程学报.2007,26(增1):3193-3189
    [93].张钦喜,李继红.地基承载力的新计算方法[J].岩土工程学报.2010,32(增2):37-41
    [94].吕艳平,陈福全.不排水双层粘性土地基极限承载力的数值分析[J].工程地质学报.2007,15(6):766-771
    [95].陈祖煜.土力学经典问题的极限分析上—下限解[J].岩土工程学报.2002,24(1):1-11
    [96].马少坤,于劲.条形浅基础下无重土地基承载力研究[J].沈阳建筑大学学报(自然科学版).2008,24(2):230-233
    [97].王哲,王国才等.矩形浅基础地基极限承载力的理论解[J].岩土力学.2008,29(4):1001-1009
    [98].马少坤,于劲等.浅基础地基极限承载力的有限元分析[J].武汉理工大学学报.2007,29(4):99-102
    [99].姜谙男.地基渐进破坏应变控制数值试验及极限承载力研究[J].大连海事大学学报.2009,35(4):86-90
    [100].刘怡林,黄茂松.公路路基地基承载特性及破坏模式[J].地下空间与工程学报.2010,6(1):84-89
    [101].彭芳乐,M.S.A. Siddiquee等.有关砂土地基承载力数值解析问题的讨论[J].岩土力学.2004,25(增2):475-478
    [102].袁凡凡.非均质介质地基破坏机制及极限承载力分析研究[博士学位论文].天津:天津大学.港口、海岸及近海工程.2002.
    [103].肖华平,闫澍旺.基于迈耶霍夫和汉纳冲剪理论计算地基极限承载力的研究[J].岩土力学.2006,27(增):875-880
    [104].杨果林.硬壳层软土地基极限承载力研究[J].湘潭矿业学院学报.1995,10(2):51-56
    [105].袁凡凡,闫澍旺.成层土地基基础极限承载力的模型试验研究[J].中国港湾建设.2003,1:14-22
    [106].问延煦.双层地基承载与变形特性研究.[博士学位论文].上海:同济大学.土木工学院.2007.
    [108].杨果林.含软弱下卧层的双层地基工程特性试验研究[J].工程勘察.1998,1:1-5
    [109].王锡朝,史册光.地表硬壳层对下卧软土层的封闭作用[J].石家庄铁道学院学报.1995,8(2):62-65
    [110].王晓谋.考虑硬壳层作用的软土地基临塑荷载计算[J].岩土工程学报.2002,24(6):720-723
    [111].唐建中.双层地基应力扩散的特性研究[J].地基处理.1993,4(2):25-31
    [112].吴能森,谢成新.基底压力分布对扩展基础冲切承载力影响的研究[J].西北建筑工程学院学报.2002,19(1):1-6
    [113].王新志,汪稔.钙质砂室内载荷试验研究[J].岩土力学.2009,30(1):147-156
    [114].胡晓军.基础基底压力的数值模拟及其对基础结构分析的影响[J].安徽水利水电职业技术学院学报.2001,1(1):6-9
    [115].高红.岩土材料屈服破坏准则研究.[博士学位论文].武汉:中国科学院.岩土工程.2007.
    [116].詹云刚,袁凡凡. V—M荷载作用下双层黏土地基破坏包络线研究[J].海洋工程.2008,26(1):64-70
    [117].袁凡凡,栾茂田.港口工程中非均质层状地基承载力计算方法[J].岩土力学.2006,27(4):1124-1128
    [118].詹云刚,袁凡凡.均质土地基上埋深条形基础极限承载力系数数值研究[J].岩石力学与工程学报.2008,27(增2):3408-3415
    [121].袁凡凡.成层土地基基础极限承载力的模型试验研究[J].中国港湾建设.2003.2(1):14-17.
    [122].王楠.渤海湾西部海洋工程环境与桩基适宜性研究.[硕士学位论文].青岛:中国海洋大学.地球探测与信息技术.2005.
    [123].王凯.南堡--曹妃甸海域工程地质特征及桩基适宜性研究.[硕士学位论文].青岛:中国海洋大学.海洋地质.2010.
    [126].王楠,吴建政,徐永臣等.单一地层平台插桩地基土破坏模式及插桩深度有限元分析[J].海岸工程.2012,31(4):20-28.
    [127].鹿洪友,李广雪.黄河三角洲埕岛地区近年海底冲淤规律及水深预测[J].长安大学学报:地球科学版,2003,25(1):57-61.
    [128].刘勇,李广雪,邓声贵等.黄河废弃三角洲海底冲淤演变规律研究[J].海洋地质与第四纪地质,2002,22(3):26-34.
    [129].宋清峰,吴建政等.插拔桩对黄河水下三角洲浅层土的扰动及恢复研究[J].海岸工程,2007,26(2):11-18.
    [130].邹广电,蒋婉莹.复杂地基极限承载力的数值模拟[J].工程力学.2005.22(4).
    [131].卢肇钧.土的变形破坏机理和土力学计算理论问题[J].岩土工程学报.1989.11(6).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700