TiO_2和YAG:Ce~(3+)半导体微球的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米半导体材料以其优异的声光电磁效应,受到研究者们的广泛关注。空心、核壳结构的TiO_2纳米半导体材料,具有密度低、比表面积大等特点,在光催化、太阳能电池、废水处理等领域应用前景广阔。结晶度高的掺铈YAG微球,是制备白光LED的理想黄色荧光粉。通过优化半导体材料的结构以改善材料性能是广大研究者新的课题。虽然已有众多这方面的工作,但将具有特殊结构的纳米材料成功应用于生产生活的实例仍然较少,主要原因之一是制备工艺复杂,难以大规模生产。针对于此,本课题主要开展了以下工作:
     1.以钛酸四丁酯(TBOT)为前驱体,利用两步法水热合成了高比表面积介孔TiO_2空心球。系统研究了其对Cr~(6+)的吸附特性,包括溶液pH值、吸附剂添加量、等温吸附曲线以及与Cr~(3+)共存对吸附特性的影响。探讨了其吸附类型和重复利用能力。
     2.以硫酸钛为前驱体,水和乙醇为溶剂,通过水热法成功制备了锐钛矿型TiO_2空心球。分析了空心结构的形成机理,详细研究了产品的光催化特性。该反应具有操作便捷、反应时间短、无需任何添加剂的优点。
     3.以硫酸铁为铁源,硫酸钛为钛前驱体不使用任何模板,成功制备了Fe~(3+)掺杂的TiO_2空心球。对产物进行了XRD、SEM、TEM、Raman等多种表征,利用Uv-vis DRS、PL分析了产物的光学特性,评价了不同Fe~(3+)掺杂比例产物光降解甲基橙的特性。
     4.以硝酸铝、硝酸铈、硝酸钇的混合水溶液为原料,不添加任何添加剂,利用高频热等离子体技术合成了单分散YAG:Ce~(3+)微球。详细研究了产物的晶体结构、形貌、生长机理以及发射光谱强度与掺杂量之间的关系。
Nano semiconductor materials have attracted so much attention becauseof its excellent properties in optics, electrics, magnetics, chemistry, etc.Forming the special nanostructure and morphologies to improve the properityof the products has become the scientist's important task. TiO_2owns hollow orcore-shell structure, would be widely used in many fields, such asphotocatalysis, solar cell, waste water treatment, and so on, because of its highspecific surface and low density. The micro spherical YAG:Ce~(3+)powders withhigh crystallinity was thought to be the best yellow phosphor for white lightLED. In addition, although the research has been done very widely, the nanomaterial with special structure used in practice is very limited for itscomplicated producing process and it's poor yield. In this paper, the worksbelow have been done.
     1. Porous hollow TiO_2spheres with a high BET surface were synthesizedby hydrothermal method with two steps,in which TBOT was used as theprecursor. The adsorption results of the product to Cr~(6+)was studiedsystematically, such as pH, sorbent concentration, adsorption isothermal curve,adsorption model, recycle capability, the effect by Cr~((3+)and so on.
     2. Hollow TiO_2spheres have been synthesized by hydrothermal methodwith water and ethanol as the solvent, and the titanium sulfate as the precursor.The forming mechanism of the hollow TiO_2spheres was analysized, and thephoto catalysis was researched systematically. Compared with other methods,this method is very facile, in which no additive were used.
     3. Hollow TiO_2spheres doped wih Fe~(3+)were synthesized in hydrothermalsystem without any templete. Fe_2(SO_4)_3was used as Fe~(3+)precursor. XRD、SEM、TEM、Raman were used to characterized the products, and Uv-visDRS、PL were used to evaluated its optics performance.
     4. Monodisperse YAG:Ce3+microspheres were synthesized byradio-frequency (RF) thermal plasma using the aqueous solution of aluminumnitrates, yttrium nitrates and cerium nitrates as the starting materials withoutany additives. The phase structure, morphology, growth mechanism, andluminescence properties of the synthesized YAG:Ce~(3+)microspheres withdifferent Ce3+doping amount have been investigated in detail.
引文
[1] Baran A, Bi ak E, Baysal S H, et al. Comparative studies on the adsorption of Cr(VI) ions on tovarious sorbents[J]. Bioresource Technology,2007,98(3):661-665
    [2] Guan J G, Deng H Y, Wei W, et al. Preparation of well-defined core-shell nanocomposite particlesbased on colloidal templates[J]. Progress in Chemistry,2004,16(3):327-334
    [3] Caruso F, Shi X Y, Caruso R A, et al. Hollow titania spheres from layered precursor deposition onsacrificial colloidal core particles[J]. Advanced Materials,2001,13(10):740-744
    [4] Caruso R A, Susha A, Caruso F. Multilayered titania, silica, and Laponite nanoparticle coatings onpolystyrene colloidal templates and resulting inorganic hollow spheres[J]. Chemistry of Materials,2001,13(2):400-409
    [5] Caruso F, Spasova M, Susha A, et al. Magnetic nanocomposite particles and hollow spheresconstructed by a sequential layering approach[J]. Chemistry of Materials,2001,13(1):109-116
    [6] Susha A S, Shkorik N A, Caruso R A, et al. Employment of the layer-by-layer technique for theformation of polymer-TiO2core-shell particles and TiO2hollow spheres[J]. Physics, Chemistryand Application of Nanostructures,2001:295-298
    [7] Song X Q, Yang X H, Chen R F, et al. Self-assembly and characterization of nanostructuralTiO2/PS and TiO2hollow spheres[J]. Acta Chimica Sinica,2006,64(3):198-202
    [8] Zhong Z, Yin Y, Gates B, et al. Preparation of Mesoscale Hollow Spheres of TiO2and SnO2byTemplating Against Crystalline Arrays of Polystyrene Beads[J]. Advanced Materials,2000,12(3):206-209
    [9] Tissot I, Reymond J P, Lefebvre F, et al. SiOH-functionalized polystyrene latexes. A step towardthe synthesis of hollow silica nanoparticles[J]. Chemistry of Materials,2002,14(3):1325-1331
    [10] Titirici M-M, Antonietti M, Thomas A. A Generalized Synthesis of Metal Oxide Hollow SpheresUsing a Hydrothermal Approach[J]. Chemistry of Materials,2006,18(16):3808-3812
    [11] Wang H, Wu Z, Liu Y. A Simple Two-Step Template Approach for Preparing Carbon-DopedMesoporous TiO2Hollow Microspheres[J]. The Journal of Physical Chemistry C,2009,113(30):13317-13324
    [12] Yu J, Wang G. Hydrothermal synthesis and photocatalytic activity of mesoporous titania hollowmicrospheres[J]. Journal of Physics and Chemistry of Solids,2008,69(5-6):1147-1151
    [13] Feng X, Yang L, Liu Y. Preparation of titania hollow spheres by catalyst-free hydrothermalmethod and their high thermal stabilities[J]. Applied Surface Science,2010,257(3):756-761
    [14] Li X, Xiong Y, Li Z, et al. Large-Scale Fabrication of TiO2Hierarchical Hollow Spheres[J].Inorganic Chemistry,2006,45(9):3493-3495
    [15] Feng X, Yang L, Liu Y. A simple one-step fabrication of micrometer-scale hierarchical TiO2hollow spheres[J]. Materials Letters,2010,64(24):2688-2691
    [16] Jiao Y, Peng C, Guo F, et al. Facile Synthesis and Photocatalysis of Size-Distributed TiO2HollowSpheres Consisting of {116} Plane-Oriented Nanocrystallites[J]. The Journal of PhysicalChemistry C,2011,115(14):6405-6409
    [17]陈章贤.铜硫属化合物空心纳米结构的设计、制备与相关性能研究[D].合肥:合肥工业大学,2009
    [18] Au L, Lu X M, Xia Y N. A comparative study of galvanic replacement reactions involving Agnanocubes and AuCl-2or AuCl-4[J]. Advanced Materials,2008,20(13):2517-2522
    [19] Zeng H C. Ostwald ripening: A synthetic approach for hollow nanomaterials[J]. CurrentNanoscience,2007,3(2):177-181
    [20] Yang H G, Zeng H C. Preparation of Hollow Anatase TiO2Nanospheres via Ostwald Ripening[J].The Journal of Physical Chemistry B,2004,108(11):3492-3495
    [21] Chang Y, Teo J J, Zeng H C. Formation of Colloidal CuO Nanocrystallites and Their SphericalAggregation and Reductive Transformation to Hollow Cu2O Nanospheres[J]. Langmuir,2005,21(3):1074-1079
    [22] Teo J J, Chang Y, Zeng H C. Fabrications of Hollow Nanocubes of Cu2O and Cu via ReductiveSelf-Assembly of CuO Nanocrystals[J]. Langmuir,2006,22(17):7369-7377
    [23] Liu B, Zeng H C. Symmetric and asymmetric Ostwald ripening in the fabrication of homogeneouscore-shell semiconductors[J]. Small,2005,1(5):566-571
    [24] Li J, Zeng H C. Hollowing Sn-doped TiO2nanospheres via Ostwald ripening[J]. Journal of theAmerican Chemical Society,2007,129(51):15839-15847
    [25] Tu K, G sele U. Hollow nanostructures based on the Kirkendall effect: Design and stabilityconsiderations[J]. Applied Physics Letters,2005,86:093111
    [26] Yin Y, Rioux R M, Erdonmez C K, et al. Formation of hollow nanocrystals through the nanoscaleKirkendall effect[J]. Science,2004,304(5671):711-714
    [27] Fan H J, G sele U, Zacharias M. Formation of nanotubes and hollow nanoparticles based onKirkendall and diffusion processes: a review[J]. Small,2007,3(10):1660-1671
    [28] Yu J G, Guo H, Davis S A, et al. Fabrication of Hollow Inorganic Microspheres by ChemicallyInduced Self-Transformation[J]. Advanced Functional Materials,2006,16(15):2035-2041
    [29] Yu J G, Liu S W, Yu H G. Microstructures and photoactivity of mesoporous anatase hollowmicrospheres fabricated by fluoride-mediated self-transformation[J]. Journal of Catalysis,2007,249(1):59-66
    [30] Yu J, Shi L. One-pot hydrothermal synthesis and enhanced photocatalytic activity oftrifluoroacetic acid modified TiO2hollow microspheres[J]. Journal of Molecular Catalysis A:Chemical,2010,326(1-2):8-14
    [31] Yu J, Yu J C, Ho W, et al. A Simple and General Method for the Synthesis of MulticomponentNa2V6O16·3H2O Single-Crystal Nanobelts[J]. Journal of the American Chemical Society,2004,126(11):3422-3423
    [32] Ho W K, Yu J C, Lee S C. Low-temperature hydrothermal synthesis of S-doped TiO2with visiblelight photocatalytic activity[J]. Journal of Solid State Chemistry,2006,179(4):1171-1176
    [33] Yu J, Xiang Q, Ran J, et al. One-step hydrothermal fabrication and photocatalytic activity ofsurface-fluorinated TiO2hollow microspheres and tabular anatase single micro-crystals withhigh-energy facets[J]. CrystEngComm,2010,12(3):872-879
    [34] Purwanto A, Wang W N, Ogi T, et al. High luminance YAG:Ce nanoparticles fabricated from ureaadded aqueous precursor by flame process[J]. Journal of Alloys and Compounds,2008,463(1-2):350-357
    [35] Lin C C, Liu R S. Advances in Phosphors for Light-emitting Diodes[J]. Journal of PhysicalChemistry Letters,2011,2(11):1268-1277
    [36] Yang H S, Lee D K, Kim Y S. Spectral variations of nano-sized Y3Al5O12:Ce3+phosphors viacodoping/substitution and their white LED characteristics[J]. Materials Chemistry and Physics,2009,114(2-3):665-669
    [37]张星.白光LED用几种高效荧光材料的制备及其性能研究[D].北京:北京化工大学,2011
    [38] Yang H, Zhu G, Yuan L, et al. Characterization and Luminescence Properties of YAG:Ce3+Phosphors by Molten Salt Synthesis[J]. Journal of the American Ceramic Society,2012,95(1):49-51
    [39] Lee H M, Cheng C C, Huang C Y. The synthesis and optical property of solid-state-preparedYAG:Ce phosphor by a spray-drying method[J]. Materials Research Bulletin,2009,44(5):1081-1085
    [40] Kang Y C, Lenggoro I W, Park S B, et al. YAG:Ce phosphor particles prepared by ultrasonic spraypyrolysis[J]. Materials Research Bulletin,2000,35(5):789-798
    [41] Jain R, Girshick S L, Heberlein J V, et al. Direct Synthesis of Yttrium Aluminum Garnet Particlesin an Inductively Coupled Radio-Frequency Plasma System[J]. Plasma Chemistry and PlasmaProcessing,2010,30(6):795-811
    [42] Li J G, Li X D, Sun X D, et al. Monodispersed colloidal spheres for uniform Y2O3:Eu3+red-phosphor particles and greatly enhanced luminescence by simultaneous Gd3+doping[J].Journal of Physical Chemistry C,2008,112(31):11707-11716
    [43] Wu Z, Zhang X, He W, et al. Preparation of YAG:Ce spheroidal phase-pure particles bysolvo-thermal method and their photoluminescence[J]. Journal of Alloys and Compounds,2009,468(1-2):571-574
    [44] Saxena S. Sol-gel preparation and optical characterization of TbxY3-xAl5O12[J]. Materials Letters,2006,60(11):1315-1318
    [45] Pan Y X, Wu M M, Su Q. Comparative investigation on synthesis and photoluminescence ofYAG: Ce phosphor[J]. Materials Science and Engineering B-Solid State Materials for AdvancedTechnology,2004,106(3):251-256
    [46] Kasuya R, Isobe T, Kuma H, et al. Photoluminescence Enhancement of PEG-Modified YAG:Ce3+Nanocrystal Phosphor Prepared by Glycothermal Method[J]. The Journal of Physical Chemistry B,2005,109(47):22126-22130
    [47] Purwanto A, Wang W N, Lenggoro I W, et al. Formation and luminescence enhancement ofagglomerate-free YAG:Ce3+submicrometer particles by flame-assisted spray pyrolysis[J]. Journalof the Electrochemical Society,2007,154(3): J91-J96
    [48] Guo Y P, Qi J R, Yang S F, et al. Adsorption of Cr(VI) on micro-and mesoporous rice husk-basedactive carbon[J]. Materials Chemistry and Physics,2003,78(1):132-137
    [49]向炜成,胡鹏,张星,等.纳米多孔二氧化钛空心球的水热法制备及其对Cr(Ⅵ)的吸附特性[J].过程工程学报,2011,11(04):678-683
    [50] Vasileva E, Hadjiivanov K, Mandjukov P. Adsorption of Cr6+oxo anions on pure andperoxide-modified TiO2(anatase)[J]. Colloids and Surfaces A: Physicochemical and EngineeringAspects,1994,90(1):9-15
    [51]夏清.化3学+还原法处理含铬废水工艺条件研究[J].无机盐工业,2003,35(03):37-39
    [52]孙俊. Al、Fe3+对有机酸还原六价铬的催化作用研究[D].南京:南京农业大学,2007
    [53]赵玉华,魏志宇,王成雨,等.化学还原法处理Cr(Ⅵ)废水沉淀及过滤效能[J].沈阳建筑大学学报(自然科学版),2009,25(04):737-740
    [54]李国会,马相宾,裴燏.化学还原法处理电镀含铬废水的工程应用[J].工业安全与环保,2011,37(10):12-15
    [55] Lan Y, Li C, Mao J, et al. Influence of clay minerals on the reduction of Cr6+by citric acid[J].Chemosphere,2008,71(4):781-787
    [56]于永海.直接电化学法在废水中Cr(Ⅵ)的还原因素与过程表征研究[D].大连:大连理工大学,2008
    [57]兰善红,孙水裕,刘如意,等.沉淀浮选法处理电镀废水中Cr6+的研究[J].广东工业大学学报,1999,16(04):74-78
    [58]张志军,李玲,朱宏,等.化学沉淀法去除电镀废水中铬的实验研究[J].环境科学与技术,2008,31(07):96-97+131
    [59]黄树杰.微电解-中和沉淀法处理含Cr6+与Cu2+电镀废水的试验研究[J].广东化工,2011,38(09):135-136
    [60] Dabrowski A, Hubicki Z, Podko cielny P, et al. Selective removal of the heavy metal ions fromwaters and industrial wastewaters by ion-exchange method[J]. Chemosphere,2004,56(2):91-106
    [61]范力,张建强,程新,等.离子交换法及吸附法处理含铬废水的研究进展[J].水处理技术,2009,35(01):30-33
    [62]张晓东.离子交换法除去合成羟胺反应液中的铁、铬离子[D].长沙:中南大学,2002
    [63]易琼.超滤膜技术处理高校实验室含铬、铜废水的研究[J].实验技术与管理,2009,26(02):43-44+54
    [64]徐德志,相波,邵建颖,等.膜技术在工业废水处理中的应用研究进展[J].工业水处理,2006,26(04):1-4
    [65]张建民,宋庆文,朱宝瑜,等.生物法处理电镀铬废水的研究[J].西北纺织工学院学报,1999,13(04):421-424
    [66]龙腾发,柴立元,郑粟,等.生物法解毒六价铬技术的应用现状与进展[J].安全与环境工程,2004,11(3):5
    [67] Mohan D, Pittman C U. Activated carbons and low cost adsorbents for remediation of tri-andhexavalent chromium from water[J]. Journal of Hazardous Materials,2006,137(2):762-811
    [68] Sag Y, Kutsal T. An overview of the studies about heavy metal adsorption process bymicroorganisms on the lab. scale in Turkey[J]. Biohydrometallurgy and the Environment towardthe Mining of the21st Century, Pt B1999,1999,9:307-316
    [69]王璟琳,刘国宏,张新荣.纳米材料吸附剂的研究进展[J].分析化学,2005,33(12):1787-1793
    [70] Tian X F, Gao X C, Yang F, et al. Catalytic role of soils in the transformation of Cr(VI) to Cr(III)in the presence of organic acids containing alpha-OH groups[J]. Geoderma,2010,159(3-4):270-275
    [71] Wang Q, Shang J, Song H. Factors Influencing the Photoelectrocatalytic Reduction of Cr(VI) overTiO2Nanotube Arrays[J]. Chinese Journal of Catalysis,2011,32(9):1525-1530
    [72] Yang J K, Lee S M. Removal of Cr(VI) and humic acid by using TiO2photocatalysis[J].Chemosphere,2006,63(10):1677-1684
    [73] Bussi J, Ohanian M, Vazquez M, et al. Photocatalytic removal of Hg from solid wastes ofchlor-alkali plant[J]. Journal of Environmental Engineering-Asce,2002,128(8):733-739
    [74] Kabra K, Chaudhary R, Sawhney R L. Treatment of hazardous organic and inorganic compoundsthrough aqueous-phase photocatalysis: A review[J]. Industrial&Engineering Chemistry Research,2004,43(24):7683-7696
    [75] Prairie M, Pacheco J, Evans L Solar detoxification of water containing chlorinated solvents andheavy metals via TiO2photocatalysis; Sandia National Labs., Albuquerque, NM (United States):1991
    [76] Turchi C S, Ollis D F. Mixed Reactant Photocatalysis-Intermediates and Mutual RateInhibition[J]. Journal of Catalysis,1989,119(2):483-496
    [77] Lin W Y, Wei C, Rajeshwar K. Photocatalytic Reduction and Immobilization of HexavalentChromium at Titanium-Dioxide in Aqueous Basic-Media[J]. Journal of the ElectrochemicalSociety,1993,140(9):2477-2482
    [78]王国宏.多孔二氧化钛光催化材料的水热制备[D].武汉:武汉理工大学,2008
    [79] Qian S, Wang C, Liu W, et al. An enhanced CdS/TiO2photocatalyst with high stability andactivity: Effect of mesoporous substrate and bifunctional linking molecule[J]. J. Mater. Chem.,2011,21(13):4945-4952
    [80] Maurya A, Chauhan P. Structural and optical characterization of CdS/TiO2nanocomposite[J].Materials Characterization,2011:
    [81] Yin H, Wada Y, Kitamura T, et al. Enhanced Photocatalytic Dechlorination of1,2,3,4-Tetrachlorobenzene Using Nanosized CdS/TiO2Hybrid Photocatalyst under Visible LightIrradiation[J]. Chemistry Letters,2001,30(4):334-335
    [82]郝恩才,孙轶鹏,杨柏,等. CdS/TiO2复合纳米微粒的原位合成及性质研究[J].高等学校化学学报,1998,19(8):1190-1194
    [83] Halkides T I, Kondarides D I, Verykios X E. Catalytic reduction of NO by C3H6over Rh/TiO2catalysts:: Effect of W6+-cation doping of TiO2on morphological characteristics and catalyticperformance[J]. Applied Catalysis B: Environmental,2003,41(4):415-426
    [84] Umebayashi T, Yamaki T, Itoh H, et al. Analysis of electronic structures of3d transitionmetal-doped TiO2based on band calculations[J]. Journal of Physics and Chemistry of Solids,2002,63(10):1909-1920
    [85] Serpone N, Lawless D, Disdier J, et al. Spectroscopic, photoconductivity, and photocatalyticstudies of TiO2colloids: naked and with the lattice doped with Cr3+, Fe3+, and V5+cations[J].Langmuir,1994,10(3):643-652
    [86] Ioannides T, Verykios X E. Effects of Altervalent Cation Doping of TiO2on H2, and COAdsorption on Supported Rh[J]. Journal of Catalysis,1994,145(2):479-490
    [87] Akubuiro E C, Verykios X E. Effects of altervalent cation doping on electrical conductivity ofplatinized titania[J]. Journal of Physics and Chemistry of Solids,1989,50(1):17-26
    [88] Yang K, Dai Y, Huang B. Understanding Photocatalytic Activity of S-and P-Doped TiO2underVisible Light from First-Principles[J]. The Journal of Physical Chemistry C,2007,111(51):18985-18994
    [89] Liu G, Zhao Y, Sun C, et al. Synergistic Effects of B/N Doping on the Visible‐LightPhotocatalytic Activity of Mesoporous TiO2[J]. Angewandte Chemie International Edition,2008,47(24):4516-4520
    [90] Ghicov A, Macak J M, Tsuchiya H, et al. Ion implantation and annealing for an efficient N-dopingof TiO2nanotubes[J]. Nano letters,2006,6(5):1080-1082
    [91] Burda C, Lou Y, Chen X, et al. Enhanced nitrogen doping in TiO2nanoparticles[J]. Nano letters,2003,3(8):1049-1051
    [92] Jimmy C Y, Yu J, Ho W, et al. Effects of F-doping on the photocatalytic activity andmicrostructures of nanocrystalline TiO2powders[J]. Chemistry of Materials,2002,14(9):3808-3816
    [93] Teoh W Y, M dler L, Beydoun D, et al. Direct (one-step) synthesis of TiO2and Pt/TiO2nanoparticles for photocatalytic mineralisation of sucrose[J]. Chemical engineering science,2005,60(21):5852-5861
    [94] Subramanian V, Wolf E E, Kamat P V. Influence of metal/metal ion concentration on thephotocatalytic activity of TiO2-Au composite nanoparticles[J]. Langmuir,2003,19(2):469-474
    [95] Sclafani A, Herrmann J M. Influence of metallic silver and of platinum-silver bimetallic depositson the photocatalytic activity of titania (anatase and rutile) in organic and aqueous media[J].Journal of Photochemistry and Photobiology A: Chemistry,1998,113(2):181-188
    [96] Koudelka M, Monnier A, Sanchez J, et al. Correlation between the surface composition of Pt/TiO2catalysts and their adsorption behaviour in aqueous solutions[J]. Journal of Molecular Catalysis,1984,25(1-3):295-305
    [97]杨刚.纳米级多孔二氧化钛空心球的制备及其性能研究[D].北京:北京化工大学,2010
    [98] Yang G, Hu P, Cao Y B, et al. Fabrication of Porous TiO2Hollow Spheres and Their Applicationin Gas Sensing[J]. Nanoscale Research Letters,2010,5(9):1437-1441
    [99]付宏祥,吕功煊,张宏,等. Cr(VI)离子在TiO2表面的吸附与光催化还原消除[J].环境科学,1998,19(03):82-85
    [100]邵涛,姜春梅.膨润土对不同价态铬的吸附研究[J].环境科学研究,1999,12(06):47-49
    [101]黄彪,吴新华,黄碧忠.粉煤灰活性炭吸附水中六价铬试验[J].化工环保,1997,17(06):26-29
    [102] Huang C, Wu M. The removal of chromium(VI) from dilute aqueous solution by activatedcarbon[J]. Water Research,1977,11(8):673-679
    [103] Asuha S, Zhou X, Zhao S. Adsorption of methyl orange and Cr(VI) on mesoporous TiO2preparedby hydrothermal method[J]. Journal of Hazardous Materials,2010,181(1):204-210
    [104]褚效中,赵宜江,徐继明,等.高比表面积活性炭的制备及对Cr(Ⅵ)吸附的研究[J].环境工程学报,2010,4(02):315-318
    [105] Langmuir I. The Adsorption of Gases on Plane Surfaces of Glass, Mica and Platinum.[J]. Journalof the American Chemical Society,1918,40:1361-1403
    [106] Yang Y H, Chen H, Pan G. Particle concentration effect in adsorption/desorption of Zn(II) onanatase type nano TiO2[J]. Journal of Environmental Sciences-China,2007,19(12):1442-1445
    [107]尹洪喜,张万忠,高恩君.纳米二氧化钛对隔离子的吸附研究[J].当代化工,2007,36(005):482-484
    [108] Ye J, Liu W, Cai J, et al. Nanoporous Anatase TiO2Mesocrystals: Additive-Free Synthesis,Remarkable Crystalline-Phase Stability, and Improved Lithium Insertion Behavior[J]. Journal ofthe American Chemical Society,2011:
    [109] Lou X W, Yuan C, Rhoades E, et al. Encapsulation and Ostwald Ripening of Au and Au–ClComplex Nanostructures in Silica Shells[J]. Advanced Functional Materials,2006,16(13):1679-1684
    [110] Wang D, Song C, Lin Y, et al. Preparation and characterization of TiO2hollow spheres[J].Materials Letters,2006,60(1):77-80
    [111] Liu S, Yu J, Jaroniec M. Tunable Photocatalytic Selectivity of Hollow TiO2MicrospheresComposed of Anatase Polyhedra with Exposed {001} Facets[J]. Journal of the AmericanChemical Society,2010,132(34):11914-11916
    [112] Lü X, Huang F, Mou X, et al. A General Preparation Strategy for Hybrid TiO2HierarchicalSpheres and Their Enhanced Solar Energy Utilization Efficiency[J]. Advanced Materials,2010,22(33):3719-3722
    [113] Hu P, Han N, Zhang X, et al. Fabrication of ZnO nanorod-assembled multishelled hollow spheresand enhanced performance in gas sensor[J]. J. Mater. Chem.,2011,21(37):14277-14284
    [114] Zhang J A, Liu W. Thin porous metal sheet-supported NaA zeolite membrane for water/ethanolseparation[J]. Journal of Membrane Science,2011,371(1-2):197-210
    [115] Wang G. Hydrothermal synthesis and photocatalytic activity of nanocrystalline TiO2powders inethanol-water mixed solutions[J]. Journal of Molecular Catalysis a-Chemical,2007,274(1-2):185-191
    [116]司崇殿,高洪涛,刘广军,等.铁掺杂TiO2光催化性能研究进展[J].化工新型材料,2011,39(3):1-4
    [117] Wang X, Li J G, Kamiyama H, et al. Pyrogenic iron (III)-doped TiO2nanopowders synthesized inRF thermal plasma: phase formation, defect structure, band gap, and magnetic properties[J].Journal of the American Chemical Society,2005,127(31):10982-10990
    [118] Zhou M, Yu J, Cheng B. Effects of Fe-doping on the photocatalytic activity of mesoporous TiO2powders prepared by an ultrasonic method[J]. Journal of Hazardous Materials,2006,137(3):1838-1847
    [119] Peng B, Meng X, Tang F, et al. General synthesis and optical properties of monodispersemultifunctional metal-ion-doped TiO2hollow particles[J]. The Journal of Physical Chemistry C,2009,113(47):20240-20245
    [120]王建强,辛柏福,于海涛,等.二氧化钛系列光催化剂的拉曼光谱[J].高等学校化学学报,2003,24(07):1237-1240
    [121] Wang S-F, Rao K K, Wu Y-C, et al. Synthesis and Characterization of Ce3+:YAG Phosphors byHeterogeneous Precipitation Using Different Alumina Sources[J]. International Journal of AppliedCeramic Technology,2009,6(4):470-478
    [122] Wang W N, Purwanto A, Lenggoro I W, et al. Investigation on the correlations between dropletand particle size distribution in ultrasonic spray pyrolysis[J]. Industrial&Engineering ChemistryResearch,2008,47(5):1650-1659
    [123] Onofri F R A, Wozniak M, Barbosa S. On the Optical Characterisation of Nanoparticle and theirAggregates in Plasma Systems[J]. Contributions to Plasma Physics,2011,51(2-3):228-236
    [124] Lin I C, Navrotsky A, Richard Weber J K, et al. Thermodynamics of glass formation andmetastable solidification of molten Y3Al5O12[J]. Journal of Non-Crystalline Solids,1999,243(2–3):273-276
    [125] Li J G, Kamiyama H, Wang X H, et al. TiO2nanopowders via radio-frequency thermal plasmaoxidation of organic liquid precursors: Synthesis and characterization[J]. Journal of the EuropeanCeramic Society,2006,26(4-5):423-428
    [126] Yuan F L, Ryu H J. Ce-doped YAG phosphor powders prepared by co-precipitation andheterogeneous precipitation[J]. Materials Science and Engineering B-Solid State Materials forAdvanced Technology,2004,107(1):14-18
    [127] Marchal J, John T, Baranwal R, et al. Yttrium Aluminum Garnet Nanopowders Produced byLiquid-Feed Flame Spray Pyrolysis (LF-FSP) of Metalloorganic Precursors[J]. Chemistry ofMaterials,2004,16(5):822-831
    [128] Su L T, Tok A I Y, Zhao Y, et al. Synthesis and Electron-Phonon Interactions of Ce3+-Doped YAGNanoparticles[J]. Journal of Physical Chemistry C,2009,113(15):5974-5979
    [129] Nyman M, Shea-Rohwer L E, Martin J E, et al. Nano-YAG:Ce Mechanisms of Growth andEpoxy-Encapsulation[J]. Chemistry of Materials,2009,21(8):1536-1542
    [130] Pan Y X, Wu M M, Su Q. Tailored photoluminescence of YAG:Ce phosphor through variousmethods[J]. Journal of Physics and Chemistry of Solids,2004,65(5):845-850
    [131] Li J G, Wang X H, Watanabe K, et al. Phase structure and luminescence properties of EU3+-dopedTiO2nanocrystals synthesized by Ar/O2radio frequency thermal plasma oxidation of liquidprecursor mists[J]. Journal of Physical Chemistry B,2006,110(3):1121-1127
    [132] Potdevin A, Chadeyron G, Boyer D, et al. Sol-gel based YAG:Ce3+powders for applications inLED devices[J]. physica status solidi (c),2007,4(1):65-69
    [133] Katelnikovas A, Vitta P, Pobedinskas P, et al. Photoluminescence in sol-gel-derived YAG: Cephosphors[J]. Journal of Crystal Growth,2007,304(2):361-368
    [134] Pan Y X, Wang W, Liu G K, et al. Correlation between structure variation and luminescence redshift in YAG:Ce[J]. Journal of Alloys and Compounds,2009,488(2):638-642

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700