采煤机自动调高控制及其关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采煤机是综采工作面的关键设备之一,是实现高效集约化采煤、减少煤矿重大恶性事故和改善工作面劳动条件的重要技术装备。目前,综采工作面技术研究重点是采煤机、液压支架和刮板输送机的三机协调控制技术,即所谓“三机联动”技术,这是为今后实现综采工作面全自动无人工作所进行的必要前期研究。当前,液压支架和刮板输送机已经实现联动自动化控制,而采煤机的单机自动控制还没有真正实现,更不用说实现与液压支架和刮板输送机的三机联动控制了。因此,采煤机的自动化控制已成为实现整个工作面自动化控制的关键。其原因是实现采煤机自动控制的瓶颈技术——滚筒自动调高控制及其有关关键技术,至今仍没有非常完善的解决方案。
     本论文结合国家“863”计划重点项目——“采煤机远程控制技术及监测系统”(编号:2008AA062202)的实施,在采煤机记忆截割控制技术基础上,围绕实现采煤机自动调高控制的关键技术进行研究。具体来说,本论文主要研究内容如下:
     (1)分析了进行采煤机自动调高控制技术研究需要解决的关键问题。通过对采煤机自动调高系统的组成和特点分析,指出采煤机调高机构截割负载的动态模拟、采煤机煤岩界面截割模式自动识别方法和采煤机自动调高技术控制策略研究是进行采煤机自动调高控制技术研究的关键问题,并分析了这些关键问题的研究进展情况。
     (2)对具有记忆截割功能的采煤机在工作面现场人工示教试验阶段拾取的截割电流等截割力响应信号进行分析。在对煤岩介质物理机械性质进行了解和总结前人对螺旋滚筒截割负载理论研究成果的基础上,对工作面现场人工示教阶段测试得到的截割电机电流及牵引电机转矩的分布进行分析,分析结果表明,采煤机截割力响应信号能反映截割介质的本质差别。在此基础上,进一步对滚筒截割负载的分布进行了研究,为通过可编程实现连续模拟各种煤岩截割介质及后续有关实验研究提供了参数条件。
     (3)利用模糊RBF神经网络对记忆截割条件下的煤岩界面截割模式自动识别算法做进一步深入研究。根据采煤工艺、当前采煤机强力截割实际和实际截割经验,改进采煤机煤岩界面截割模式自动识别算法,研究模糊RBF神经网络对所有的煤岩界面截割模式,包括正常截割、截割硬煤层、截割顶板、截割夹矸和截割断层等截割模式自动识别中的算法及应用。
     (4)采煤机自动调高液压控制系统的滑模控制研究。主要包括根据采煤机调高系统状态方程设计滑模面切换函数和滑模控制规律,得到滑模控制函数。在建立采煤机液压调高控制系统状态方程和滑模控制函数的基础上,进行采煤机调高控制器仿真分析。
     (5)采煤机自动调高控制关键技术实验研究。包括利用模糊RBF神经网络进行煤岩界面截割模式自动识别的可行性,以及利用滑模控制策略来控制采煤机滚筒进行目标截割路径跟踪时的稳定性、准确性与快速性研究。
     对工作面现场截割电机电流、牵引电机转矩采样值数据特征和滚筒截割负载数据特征的分析表明:采煤机截割力响应信号的均值特征能真实反映滚筒的截割工况。在本截割实验中,与纯煤截割时相比,滚筒截割底板时截割电机电流均值增加了48.1%,截割顶板时截割电机电流均值增大了8.7%;采煤机实际工作过程中,在各典型截割工况下,螺旋滚筒截割力响应信号如截割电流、牵引转矩等参数服从正态分布;在截割底板、正常截割和截割顶板工况下,正常截割工况下的截割力响应信号的方差最小,说明正常截割工况下截割力响应信号波动最小;截割状态持续时间是滚筒截割状态识别的重要参数之一;根据截割力响应信号的特征可以推出,采煤机在各截割工况下,滚筒上主要截割负载如截割阻力、截割阻力矩等服从正态分布。在截割底板、正常截割和截割顶板工况下,正常截割工况下的截割阻力、截割阻力矩的方差最小,即正常截割工况下载荷波动最小。
     实验研究表明,把改进的煤岩界面截割模式自动识别算法用于训练、测试模糊RBF神经网络成功后,将其用于煤岩界面截割模式识别,其输出的滚筒截割模式识别结果与滚筒实际截割模式相同,该模糊RBF神经网络能对所有的煤岩界面截割模式,包括正常截割、截割硬煤层、截割顶板、截割夹矸和截割断层等截割模式实现自动识别;同时,实验研究结果还表明,基于滑模控制的采煤机滚筒在整个目标截割路径跟踪过程中,最大跟踪误差为6mm,能满足采煤机调高要求。
A shearer is one of the key equipment of mechanized mining face, and is animportant technical equipment for achieving efficiently intensive coal-mining,reducing the fatal accidents of coalmine and improving the working conditions ofworking face. At present, the research focus of the fully mechanized coalfacetechnology is the three machines coordination control technology of a shearers, ahydraulic support and a scraper conveyor,, i.e., the so-called “three-machineinteraction” technology, which is necessarily preliminary studies for the futuralrealization of automatic unattended for fully mechanized coal face.The linkageautomatic control of hydraulic support and scraper conveyor has been achieved, butstand-alone automatic control of a shearer has not really realize, let alone linkagecontrol with hydraulic support and scraper conveyor. Therefore, the shearerautomation control has become the key to the entire face automatic control. Thereason is the bottleneck technology for shearer automatic control---The drumautomatical height control and its related key technology has still not a perfectsolution.
     Connection with the state “863” project—“shearer remote control andmonitoring systems”(No:2008AA062202), the paper studies the key technologiesfor shearer automatic height control. Specifically, the main contents of the paper areas follows:
     (1) Key issues needed to be resolved for sheaere automatic control were analyzed.Through the analysis of the composition and characteristics of the shearer automaticheight control system, the paper pointed out that the dynamic simulation of cuttingloads, coal-rock interface cutting mode automatic identification method and controlstrategy research for automatic height adjustment were key technologies to carry outshearer automatic height control research.
     (2) Cutting current and other cutting force response signals detected in themanual teach stage at coal face are analyzed,and dynamic simulation expert systemfor cutting load are designed. On the basis of understanding physical and mechanicalproperties of coal and rock and summarizing predecessors’ theoretical research aboutthe cutting load of spiral drum, analysis of digital characteristics and distribution ofcutting current traction torque detected at face testing ground was carried out, and thedistribution of drum cutting loads was further studied. So the continuous simulation of the distribution of the various coal and rock media was realized programmablely.
     (3) Automatic recognition algorithm for cutting mode of the coal-rock interfacewas furtherly studied using fuzzyRBFneural network under memory cuttingcondition. According to the mining process, powerful cutting feature and actualcutting experience, the coal-rock interface automatic recognition algorithm wasimproved, and the application of FuzzyRBFneural network in the recognition of allcutting modes was researched,
     (4) The application of sliding mode control in the shearer automatic heighthydraulic control system was Indagated. Switching function of the sliding surface andsliding mode control law were designed and the sliding mode control function wasobtained based on the state equation of the shearer automatic lifting control system.On the basis, the sliding mode control of the shearer automatic lifting hydraulicsystem was simulated and experimentally verified.
     (5) Experimental studies of key technologies for shearer automatic height control.It mainly includes the feasibility study using fuzzy RBF neural network forautomatic identification of coal-rock interface cutting mode and the stability, accuracyand rapidity research using sliding mode control strategy for the drum target cuttingpath tracking.
     Experimental studies showed that the output cutting pattern recognition results offuzzy RBF neural network after successful training and testing is the same as theactual cutting mode of the drum. Hence, it is feasible that using fuzzy RBF neural networkfor automatic identification of the shearer drum coal-rock interface cutting mode; in theoverall objective of the cutting path tracking, the maximum tracking error of theshearer, based on sliding mode control, was6mm and could meet the requirements ofshearer height control.
引文
[1]刘春生,荆凯,万丰.采煤机滚筒记忆程控液压调高系统的仿真[J].中国工程机械学报,2007,5(2):142-146.
    [2]方新秋,何杰,郭敏江.煤矿无人工作面开采技术研究[J].科技导报,2008,26(9):56-61
    [3]张福建.电牵引采煤机记忆截割控制策略的研究[D].上海:煤科总院上海分院,2007.
    [4]梁义维.采煤机智能调高控制理论与技术[D].山西:太原理工大学,2005.
    [5]刘春生,荆凯,杨秋.采煤机滚筒调高截割记忆程控的控制策略[J].辽宁工程技术大学学报,2007,26(5):751-753.
    [6]王占林.近代电气液压伺服控制[M].北京:北京航空航天大学出版社,2005.
    [7]贺利乐.建设机械液压与液力传动[M].北京:机械工业出版社,2004.
    [8]钱伟学.煤岩截割阻抗测试方法综述[J].煤矿机电,1997,2:12-13.
    [9] Moiseenko M G.,Ostapenko P V. Cutting Resistance of hard Rocks during working by a rotorexcavator[J]. Soviet Mining Science1974,10(4):472-475.
    [10]刘晶辉,许朝佐.煤岩切割阻力指标及确定方法的探讨[J].煤炭学报,1986,4(6):85-91.
    [11] Goktan R M,Gunes N. A. Semi-empirical approach to cutting force prediction forpoint-attack picks [J]. Journal of the South African Institute of Mining and Metallurgy,2005,105(4):257-263.
    [12]刘送永.采煤机滚筒截割性能及截割系统动力学研究[D].徐州,中国矿业大学,2010.
    [13] Nishimatsu Y. The mechanics of rock cutting[J]. International Journal of Rock Mechanics andMining Science,1972,9:261-270.
    [14] Nishimatsu Y. The mechanics of the rock cutting[J]. Int J Rock Mech Min Sci1972,9:261–71.
    [15]徐小荷,余静.岩石破碎学[M]北京:煤炭工业出版社,1984.
    [16] Evans I. A theory of the basic mechanics of coal ploughing[C]. Proceedings of theinternational symposium onmining research, Vol.2. University of Missouri, Oxford: PergamonPress,1961.
    [17] Evans I. Line spacing of picks for efficient cutting[J]. Int J Rock Mech Min Sci1972,9:355–363.
    [18] Evans I. Optimum line spacing for cutting picks[J]. Min Eng,1982,1:433–437.
    [19] Evans I. A theory of the cutting force for point attack picks[J]. Int J Min Eng1984,2:63–71.
    [20][19] Evans I. Basic Mechanics of the point attack pick[J]. Colliery Guardian,1984,5:189–193.
    [21] Hurt K G., MacAndrew K M. Cutting efficiency and life of rock-cutting picks[J].MiningScience&Technology,1985,2(2):139-151.
    [22]T.Muro, Y.Takegaki, K.Yoshikawa. Impact cutting property of rock material using a pointattack bit[J]. Journal of Terramechanics,1997,34(2):83-108.
    [23]T.Muro, D.T. Tran.Regression analysis of the characteristics of vibro-cutting blade fortuffaceous rock[J]. Journal of Terramechanics,2004,40(1):191-219.
    [24] N.Bilgin, M.A.Demircm, H.Copur,et.al. Dominant rock properties affecting the performanceofconical picks and the comparison of some experimental and theoretical results[J].InternationalJournal of Rock Mechanics&Mining Sciences.2006,43:139-156.
    [25] C.Balci,N.Bilgin.Correlative study of linear small and full-scale rock cutting tests to selectmechanized excavation machines[J].International Journal of Rock Mechanics&MiningSciences.2007,44:468-476.
    [26] N.Gunes, Yilmaz,M, Yurdakul, et al. Prediction of radial bit cutting force in high-strengthrocks using multiple linear regression analysis[J]. International Journal of Rock Mechanics&Mining Sciences.2007,44:962-970.
    [27]陈渠,高天林.楔形截齿最佳截槽间距的研究[J].重庆大学学报,1989,12(4):100-105.
    [28]牛东民.刀具切削破煤机理研究[J].煤炭学报,1993,18(5):49-54.
    [29]牛东民.煤炭切削力学模型的研究[J].煤炭学报,1994,19(5):526-529.
    [30]李晓豁.镐型截齿的截割试验研究[J].辽宁工程技术大学学报,1999,18(6):649-652.
    [31]李晓豁.刀形截齿的截割性能研究[J].辽宁工程技术大学学报,2000,19(5):526-529.
    [32]刘春生.采煤机截齿截割阻力曲线分形特征研究[J].煤炭学报,2004,29(1):115-118.
    [33]杨丽伟.滚筒式采煤机整机力学模型理论和分析方法的研究[D].北京:煤炭科学研究总院,2006.
    [34]王英山.采煤机滚筒截煤载荷的模拟[J].煤矿机电,1996,2:2-4,12.
    [35]李晓豁.采煤机螺旋滚筒随机载荷的模拟[J].黑龙江科技学院学报,2001,11(4):8-10
    [36]韩振铎,徐爱民,刘玉宝等.采煤机滚筒载荷谱的计算机模拟[J].矿山机械,2000,3:22-23.
    [37]王启广,滚筒截齿配置对采煤机载荷的影响研究[J].煤矿机械,2001,8:11-13.
    [38]向虎.采煤机调高系统虚拟样机研究[D].太原:太原理工大学机械工程学院,2004.
    [39]刘楷安.采煤机截割部虚拟样机及其动态特性仿真研究[D].太原:太原理工大学机械工程学院,2005.
    [40]廉自生,刘楷安.采煤机摇臂虚拟样机及其动力学分析[J].煤炭学报,2005,30(6):801-804.
    [41]纪玉祥.基于虚拟样机技术的采煤机动力学仿真[D].太原:太原理工大学机械工程学院,2006.
    [42]姬国强,廉自生,卢绰.基于LS-DYNA的镐型截齿截割力模拟[J].科学之友,2008,4:131-132.
    [43]姬国强.采煤机镐型截齿截割过程的计算模拟[D].太原:太原理工大学,2008.
    [44]周娟利.采煤机截割部动力学仿真[D].西安:西安科技大学,2009.
    [45] Mowrey G L. Horizorl Control Holds Key to Automation [J].Coal,1991,11:44-49.
    [46] Wang Zengcai, Zhao Yongrui, Yang Qianming. Monitoring the Remnant Roof Coal Thicknessby Automatic Vertical Steering of Shearer Drum[C]. Proceedings of the Second InternationalSymposium on Instrumentation Science and Technology,2002,1:590-595.
    [47] Boloban VN, Tsesarenko NP. Control of the Coal-rock Boundary by Elastic Vibrations.Soviet Mining Science1975,11(5):579-583.
    [48] Feng Tao, Zhao Fujun, Lin Jian. Study on fasART neuro-fuzzy networks for distinguishingthe difficulty degree of top coal caving in steep seam[J]. Journal of Coal Science&Engineering(China),2005,2:101-104.
    [49]陈延康.煤岩分界辨识及系煤机滚筒自动调高控制系统[G]//中国煤炭科学基金会.中国煤炭科学基金科研成果论文集1986-1990,北京:煤炭工业出版社,1992:361-367.
    [50]徐瑛,张强.国外煤岩界面传感器开发动态综述[J].煤矿自动化,1995,2:62-65.
    [51]梁义维.采煤机自动调高控制理论与技术[D].太原:太原理工大学,2005.
    [52]付华.基于信息融合技术的采煤机自动调高系统研究[D].阜新:辽宁工程技术大学电气与控制工程学院,2008.
    [53]于凤英.基于遗传神经网络的煤岩界面识别方法的研究[D].太原:太原理工大学机械工程学院
    [54] Mowrey G L. Passive infrared coal interface detection[C]. SME Annual Meeting,1990,1:88-96.
    [55] Mowrey G L, Maksimovic S D. Investigation of the feasibility of natural gamma radiationcoal interface detection method in U.S. coal seams[C]. SME Annual Meeting,1990,1:127-138.
    [56] Mowrey Gary L. Adaptive signal discrimination as applied to coal interface detection[C].Conference Record of the1988industry application society annual meeting,1988,2:1277-1282.
    [57] Mowrey Gary L. Promising coal interface detection methods[J]. Mining Engineering,1991,43(1):134-138.
    [58] Bilgin N, Demircin M A, Copur H et al. Dominant rock properties affecting the performanceof conical picks and the comparison of some experimental and theoretical results[J]. InternationalJournal of Rock Mechanics&Mining Sciences,2006,43:139-156.
    [59] Xun Luo, Andrew King, Matt Van De Werken. Sensing roof conditions ahead of a longwallmining using the shearer as a seismic source[C]. Geoscience and Remote Sensing Symposium,2008.2008,5:17-20.
    [60] Stephen L, Bessinger, Michael G. Nelson. Remnant roof coal thickness measurement withpassive gamma ray instruments in coal mine [J]. Industry Applications,1993,29(3):562-565.
    [61] Klempner K S, Smirnov A I, Filippov A M, et al. Improvement of radiometric separatorsusing a microcomputer[J]. Soviet Mining Science,1985,21(6):546-549.
    [62] Fan Shuchen, Geng Maixiang, Xu Jianping. The application of pattern recognition in theautomatic vertical steering system of shearer's drum[J]. Journal of Coal Science&Engineering,1996,1:105-110.
    [63] GU Tao, LI Xu. New equipment of distinguishing rock from coal based on statistical analysisof fast fourier transform [C]. Xiamen: Global Congress on Intelligent Systems,2009:269-273.
    [64] Mowrey G L.张敏译.确保在煤层内—对煤层界面探测与采煤导向的观察[J].煤矿机械,1993,3:17-20.
    [65] Hartley D. Apparatus for steering a longwall mineral mining machine:美国,USD3719394[P].1971-1-11.
    [66] Yamada Ryujiigata Shoj. Double ended ranging drum shearer and method of controllingworking height in mining face in use of the same:美国,US19870098474[P].1987-09-08.
    [67] Reisner Guente. Apparatus for detecting the cutting horizon for mining machines:美国,US19880284337[P].1988-02-0-21.
    [68]樊淑趁.基于模式识别的煤岩分界辨识方法研究[J].煤矿机械,1993,6:9-12.
    [69]樊淑趁,王东,郭玲香.基于模式识别的采煤机滚筒自动调高系统的研究[J].焦作矿业学院学报,1995,14(6):84-90.
    [70]廉自生.基于采煤机截割力响应的煤岩界面识别技术研究[D].北京:中国矿业大学,1995.
    [71]秦剑秋,郑建荣,朱旬.自然γ射线煤岩界面识别传感器的理论建模及实验验证[J].煤炭学报,1996,21(5):513-516.
    [72]秦剑秋.采煤机自动调高用自然γ射线煤岩界面识别传感器技术研究[D].北京:中国矿业大学1993
    [73]王增才,王汝琳,徐建华等.自然γ射线法在采煤机摇臂自动调高中检测煤层厚度的研究[J].煤炭学报,2002,27(4):425-429.
    [74] Ren Fang, Yang Zaojian, Xiong Shibo. Application of wavelet packet decomposition and itsenergy spectrum on the coal-rock interface identification[J]. Journal of Coal Science&Engineering(China),1997,1:113-117.
    [75]任芳,杨兆建,熊诗波.基于改进BP网络的煤岩界面自动识别[J].煤矿机电,2002,5:20-23.
    [76] Ren Fang, Yang Zhaojian, Xiong Shibo. Study on the Coal-rock Inter-face RecognitionMethod Based on Multi-sensor Data Fusion Technique[J]. Chinese Journal of MechanicalEngineering,2003,16(3):321-324.
    [77]梁义维,熊诗波.基于神经网络和Dempster-Shafter信息融合的煤岩界面预测[J].煤炭学报,2003,28(1):86-90.
    [78]肖建.基于信息融合技术的采煤机自动调高系统研究[D].辽宁工程技术大学,2008.
    [79] Tian Muqin, Xiong Shibo. Previewing control systems of automatic heights adjustment forcoal excavator based on memory cutting[C]. Proceedings of the International Conference onActive Media Technology,2003,v1:396-401.
    [80]刘春生,杨秋,李春华.采煤机滚筒记忆程控截割的模糊控制系统仿真[J].煤炭学报,2008,33(7):822-825.
    [81]张伟.基于采煤机DSP主控平台的自动调高预测控制[D].上海:上海交通大学,2007.
    [82]王冬.采煤机记忆调高试验模型控制系统研究[D].西安科技大学,2009.
    [83]张丽丽,谭超,王忠宾.基于微粒群算法的采煤机记忆截割路径优化[J].煤炭科学技术,2011,38(4):69-71.
    [84]张丽丽,谭超,王忠宾.基于遗传算法的采煤机记忆截割路径优化.煤炭工程,2011,2:111-113.
    [85]周斌,王忠宾.灰色系统理论在采煤机记忆截割技术中的应用[J].煤炭科学技术,2011,39(3):75-77.
    [86]王忠宾,徐志鹏,董晓军.基于人工免疫和记忆截割的采煤机滚筒自适应调高[J].煤炭学报,2009,34(10):1405-1409.
    [87]徐志鹏,王忠宾.基于粒子滤波的采煤机截割负载特性分析[J].煤炭学报,2011,36(4):696-700.
    [88]雷玉勇,阴正锡,田逢春等.用采煤机的调高油缸工作压力实现采煤机自动调高[J].煤矿机电,1994,5:14-16.
    [89]雷玉勇,阴正锡,钱骅.采煤机液压自动调高系统的研究[J].重庆大学学报,1994,17(1):52-58.
    [90]张俊梅,范迅,赵雪松.采煤机自动调高控制系统研究[J].2002,31(4):415-418.
    [91]张俊梅,李文彬,范迅等.基于单片机的采煤机自动调高控制系统[J].煤矿机电,2004,1:6-9.
    [92] Liang Yiwei, Xiong Shibo. Neural network and pid hybrid adaptive control for horizontalcontrol of shearer [C]. The Seventh International Conference on Control, Automation, Roboticsand Vision,2002,v2,671-675.
    [93] Tian Muqin, Yang Tiemei, Xiong Shibo. Automatic height adjustment previewing controlsystem for coal excavator based on memory cutting with identification of object model by neuralnetworks[C]. Proceedings of the International Symposium on Test and Measurement,2003,v2:953-956.
    [94]刘春生,杨秋,李春华.采煤机滚筒记忆程控截割的模糊控制系统仿真[J].煤炭学报,2008,33(7):822-825.
    [95]张修荣.采煤机滚筒自适应液压调高系统研究[D].西安:西安科技大学,2009.
    [96]权国通,谭超,周斌.基于模糊自适应PID算法的采煤机液压自动调高系统研究[J].矿山机械,2010,38(15):20-23.
    [97] Fan Qigao, Li Wei, Wang Yuqiao et al. Control strategy for an intelligent shearer heightadjusting system [J]. Mining Science and Technology,2010,6(20):908-912.
    [98]樊启高,李威,王禹桥等.一种采用灰色马尔科夫组合模型的采煤机记忆截割算法[J].中南大学学报(自然科学版).2011,10(42):2913-2918.
    [99]吉祥子,刘德林,王志刚等.采煤机及其采高系统:中国,CN201020553763.6[P].2010-02-05.
    [100]吉祥子,刘德林,王志刚等.采煤机及其采高系统:中国,CN201010503319.8[P].2010-10-06.
    [101]李威,苏秀平,范启高等.采煤机滚筒自动调高实验装置及控制方法:中国,CN201010160904.2[P].2010-10-09.
    [102]杨静,虞烈,沈钱.圆锥形电磁轴承动力学模型与控制仿真[J].系统仿真学报,2003,15(2):283-286.
    [103]邹俊,傅新,杨华勇等.自适应交互在液压伺服系统中的应用[J].机械工程学报,2006,42(11):179-183.
    [104] Yang Yong, Luo An, Han Hua. Coordinating optimization–based sliding model variablestructure control for eletro-hydraulic servo system[J]. Journal of Control Theory andApplicantions,2006,2(1):168-174.
    [105]管成,潘双夏.含有非线性不确定参数的电液系统滑模自适应控制[J].控制理论与应用,2008,16(12):1275-1284.
    [106] Dinh Quang Truong, Kyoung Kwan Ahn. Force control for hydraulic load simulator usingself-tuning grey predictor-fuzzy PID[J]. Mechatronics,2009,19(2):233-246.
    [107] David W Clarke. Adaptive control of servo hydraulic materials-testing machines: acomparison between black and grey-box models[J]. Annual Reviews in Control,2001,25(1):77-78.
    [108] Christophe Lurette, Stephane Lecoeuche. Unsupervised and auto-adaptive neuralarchitecture for on-line monitoring[J]. Application to a hydraulic process. EngineeringApplications of Artificials Intelligence,2003,16(4):441-451.
    [109] Sang Yeal Lee,Hyung Suck cho. A fuzzy controller for an eletro-hydraulic fin actuator usingphase plane method[J]. Control Engineering Practice,2003,11(7):697-708.
    [110]周连佺,王小椿.一种二次对角再生神经网络及其在舰炮控制中的应用[J].机械工程学报,2005,41(4):215-219.
    [111] Karam M, Elbayomy, Jiao Zongxia. PID controller optimization by GA and its performanceson the eletrol-hydraulic sero control system[J]. Chinese Journal of Aeronautics,2008,21(3):378-384.
    [112] Cheng Yichean, Li Qiangliub, Chi Chengc et al. Fuzzy controller design for synchronousmotion in a dual-cylinder eletro-hydraulic system[J]. Control Engineering Practice,2008,16(6):658-673.
    [113]段广仁,侯明哲,谭峰.基于滑模方法的自适应一体化导引与控制律设计[J].兵工学报,2010,31(2):191-198.
    [114]高为炳.变结构控制的理论及设计方法[M].北京:科学出版社,1996.
    [115]程功林,李垚.瓦斯地质[M].北京:煤炭工业出版社,2009.
    [116]孙建国.岩石物理学基础[M].北京:地质出版社,2006.
    [117]刘春生.滚筒式采煤机工作机构[M].哈尔滨:哈尔滨工程大学出版社,2010.
    [118]张敬芬,孟光,赵德有.基于模糊神经网络的薄板不同指标裂纹诊断[J].机械工程学报,2006,42(3):145-149.
    [119]刘金琨,孙富春.滑模变结构控制理论及其算法研究与进展[J].控制理论与应用,2007,24(3):407-418

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700