硬质材料的激光三维雕刻技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为一种先进制造技术,激光雕刻成形加工目前已在许多领域得到应用。综观现有的几种激光立体雕刻工艺,主要局限在高分子聚合物和几种透明材料,很少见到能在陶瓷、钢铁等硬质材料表面直接加工三维图形的激光雕刻技术的相关报道。本文提出了一种可以用激光在材料表面雕刻真正三维图形的新工艺、新技术——采用分层制造原理的激光三维雕刻技术,并从三维雕刻软件开发、控制系统设计、雕刻工艺实践与探索等方面入手,系统研究了激光三维雕刻的若干关键技术问题。主要研究结果总结如下:
     采用STL文件作为该系统与通用CAD造型软件之间的模型数据接口,实现了STL模型的拓扑重建、实时切片、区域扫描填充、加工仿真、过程控制、人机交互等模块,并从提高数据处理速度的角度对切片算法和扫描填充算法进行了深入研究。根据STL文件几何信息有余、拓扑信息不足的特点,通过对各几何元素先排序、再归并、然后建立邻接边表的策略来为切片赢得时间。为保证切片时对邻接三角形的顺利追踪,将切平面与三角形相交出现的5种位置关系统一成切平面与三角形两条边相交的情形。在扫描算法中,充分利用边连贯性和扫描线连贯性来建立活性边表,以减少求交量和提高排序效率,从而提高扫描线的生成速度。针对带有岛屿的轮廓截面,提出并实现分区直线扫描算法以优化扫描路径。
     通过对现有三维工作台进行改造,建立起激光三维雕刻硬质材料的硬件平台。在研究分析现有的几种计算机控制模式和操作系统实时性的基础上,确定以Windows2000作为软件平台、采用PC+智能控制卡的开放式数控系统作为激光三维雕刻系统的总体控制方案。重点分析控制系统的硬件结构、电机回路及系统性能,并详细阐述了设备驱动程序及控制接口类的设计思想和实现过程。
     建立激光三维雕刻工艺,并利用该系统进行激光三维雕刻。主要以陶瓷作为雕刻材料,研究探索雕刻深度随激光功率、扫描速度、脉冲重复频率的变化规律以及工艺参数对雕刻质量的影响。通过分析激光雕刻的物理过程,揭示激光雕刻过程中多余物质的转移规律。建立雕刻深度数学模型,揭示雕刻深度和激光功率、扫描速度、脉冲重复频率三个主要工艺参数之间的数学关系,为快速获得加工参数数据提供理论上的指导。为便于仿真雕刻深度数学模型,采用平均值估算法替代积分精确计算法来计算数学模型中单个激光光斑区域内的能量。雕刻深度的数学模型为:此外,利用BP人工神经网络构建雕刻深度和工艺参数之间的非线性映射关系,通过神经网络模型将试验获取的有限数据泛化扩展到各参数取值的全局范围,以提高雕刻试验中参数设置的命中率,并为激光三维雕刻建立优化工艺参数数据库。
     从原理、设备及工艺等方面分析激光三维雕刻的成形误差,为激光三维雕刻建立完整的误差评价体系。通过分析CAD模型误差、切片误差、扫描机构的运动误差、扫描方式误差、雕刻面粗糙度及断面垂直度误差的形成机理,为提高雕刻精度和质量探索行之有效的途径。通过建立雕刻平面粗糙度理想模型和雕刻断面粗糙度理想模型揭示雕刻参数对表面粗糙度的影响规律,为加工参数的优选提供理论指导。
     以现有瞬间点热源温度场模型和热应力计算方法为基础,根据激光三维雕刻去除材料的特点,通过一系列近似假设,初步建立激光雕刻过程中的温度场和热应力场理论模型,并对其分布和变化情况进行数值仿真。
     本文研究开发的硬质材料激光三维雕刻工艺与装备开辟了一门崭新的激光加工技术,具有快速、柔性、高精度、雕刻成本与模型复杂程度无关等优点,不仅可以雕刻微细图形,也可以雕刻常规方法难以加工的硬脆性材料,在模具、工艺品制作、立体标刻、防伪、MEMS/MEOMS等领域具有广阔的发展空间和应用前景。
As an advanced manufacturing technology, laser machining has already been applied in many fields. Different kinds of laser forming techniques have been developed. Among the existing laser carving techniques, there seems not the laser carving technology that can fabricate three-dimensional (3D) graphics directly on the surface of hard materials. In this dissertation, a new technology, namely 3D laser carving that can fabricate the true 3D graphics on the surface of hard materials was presented, and some concerned fundamental scientific problems such as software development, control system design and carving process exploration of the 3D laser carving system were studied based on the principle of layered manufacturing. Following are the main results on the subject:
     STL (StereoLithography) file was used as the data interface between CAD modeling software and the 3D laser carving software. The concerned software functional modules such as topologic reconstruction, on-line slicing, regional filling, processing simulation, process control and human-machine interaction were developed, and the slicing algorithm and scanning algorithm were studied further with a view to improve the speed of data processing. Due to the redundancy of geometric information and the lack of topological information, the geometric elements of STL model should be sorted and merged firstly, and then the adjacent-side lists were built to gain time for slicing. In order to track the adjacent triangles successfully during slicing STL model , the five intersection relationships among slicing planes and triangle facets were converted into the intersection relationship among slicing plane and two sides of the triangle facet. To reduce the times of intersection and improve the sorting efficiency, the active-side list was established to make full use of the consistency of the side and the scanning line. In view of the profile with islands, the divisional linear scanning algorithm was put forward and implemented to optimize the scanning paths.
     The hardware platform for 3D laser carving system was established by upgrading an existing 3D working table. Based on the study of several existing computer-controlled modes and the real-time ability of operating system, the open NC systemic architecture of PC + intelligent control cards was used in the control system of 3D laser carving, in which Windows2000 was chosen as the software platform. The hardware architecture of control system, electrical circuit and systemic performance were analyzed specially, in addition, the framework and the calling mechanism of the device driver in Windows2000 were studied and the details of the development of device driver and interface were given.
     The technological process, namely doing laser carving experiments to obtain the optimum parameters related to one single-layer carving depth firstly and then carrying out 3D laser carving based on these data, was laid down for 3D laser carving. Laser carving on Al2O3 ceramic plate with different processing parameters was done to study the effects of laser processing parameters on single-layer carving depth and carving quality, and in the mean time to analyze the physical process of laser carving, and to uncover the removing rules of redundant materials in the course of laser carving. In the experiments on ceramics, the main mechanism that contributes the laser carving mechanisms is that laser beam with high peak power ablate the ceramic surface which induced the pit spallation. By establishing the mathematical model for carving depth, the relationships between carving depth and the main processing parameters such as laser power, scanning speed and repetition rate were disclosed mathematically, which can give the theoretical guidance to rapidly get the process parameter data. In order to simulate the mathematical model conveniently, the laser beam energy within one single laser pulse was calculated by the average estimate method. The mathematical model for carving depth is as follows: In addition, the nonlinear mapping relationship between carving depth and the process parameters was established by ANN (artificial neural network). The BP was trained by using the existing data obtained by laser carving experiments, and the ANN model was built based on the training results. By ANN model, the finite data from experiments can be generalized to the overall range, which effectively improved the optimizing rate of process parameters and was very helpful to build the parameter database for 3D laser carving.
     On the basis of making full analysis of the carving errors in aspect of carving principle, equipment and technology, the complete error-evaluation system was established for 3D laser carving. By analyzing the CAD model error, slicing error, motion error, scanning error, carving surface roughness error, carving vertical error and their forming mechanisms, many effective ways were explored to improve the carving precision and quality. The ideal model for carving surface roughness of horizontal plane is And the ideal model for carving surface roughness of vertical plane is
     According to the characteristics of 3D laser carving, the temperature-field model and the thermal-stress model for 3D laser carving were established and simulated tentatively on the basis of the existing temperature filed model of the instantaneous point heat source, the existing calculation method of thermal stress and a series of assumptions.
     Summing up above mentioned, the technology and equipment of 3D laser carving have created a new laser processing technology with fast, flexible, high efficiency and low cost, as well as the ability to fabricate 3D micro-graphics and carve the hard and/or brittle materials. 3D laser carving technology has a great potential industrial application prospect in the field of mould/die, craft production, 3D mark, security and MEMS/MEOMS.
引文
[1]曹明翠,郑启光,陈祖涛等.激光热加工.武汉:华中理工大学出版社, 1995: 123-352
    [2]任旭升,檀慧明,钱龙生.半导体泵浦固体激光器在激光加工中的应用.光机电信息, 2005, 22(11): 1-4
    [3]王玉英.工业用固体激光器的现状.光机电信息, 2004, 21(9): 21-23
    [4]王玉英.飞秒光纤激光器的发展及其工业应用.光机电信息, 2006, 23(2): 29-35
    [5]刘晓东,胡兵,何云贵等.激光雕刻的数学模型及快速算法研究.计算机辅助设计与图形学学报, 1999, 11(2): 151-153
    [6]陈苗海.中国激光加工产业现状和发展前景.激光与红外, 2004, 34(1): 73-77
    [7]谢军,段正澄,史玉生.用于SLS快速成形制造中振镜式激光扫描系统的关键技术.制造业自动化, 2004, 26(4): 9-12
    [8]叶柏林,杨海,赵学明.高速扫描器伺服电机控制设计.应用激光, 2005, 25(1): 38-40
    [9]胡居广,李学金,张百钢等.转镜-振镜扫描的非线性及非对称性研究.光电工程, 2004, 31(3): 26-28
    [10]雷建设,黄肇明,郭振华等.单片机控制的激光雕刻机.激光技术, 2001, 25(2): 140-142
    [11]廖洪海,胡兵,应花山等.基于USB接口控制的激光打标控制器的设计.激光应用, 2005, 26(6): 77-78
    [12] M. Weck et al. Task-oriented design and improvement of laser machine tools. Industrial Laser Handbook, 1990: 252-261
    [13] K.M. Davis, K. Miura, N. Sugimoto et al. Writing waveguides in glass with a femtosecond laser. Opt. Lett., 1996, 21: 1729-1731
    [14] E.N. Glezer, M. Milosavljevic, L. Huang et al. Three-dimensional optical storage inside transparent materials. Opt. Lett., 1996, 21: 2023-2025
    [15] Ya Cheng, Koji Sugioka, Katsumi Midorikawa et al. Three-dimensionalmicro-optical components embedded in photosensitive glass by a femtosecond laser. Opt. Lett., 2003, 28: 1144-1146
    [16] E.S.Wu, J.H. Strickler, W.R. Harrel et al. Two-photon lithography for microelectronic application. SPIE, 1992, 1674: 776-782
    [17] J. Serbin, A. Egbert, A. Ostendorf et al. Femtosecond laser-induced two-photon polymerization of inorganic-organic hybrid materials for applications in photonics.Opt.Lett., 2003, 28(5): 301-303
    [18] Tomokazu Sano, Masato Yanai, Etsuji Ohmur, et al. Femtosecond laser fabrication of microspike-arrays on tungsten surface. Applied Surface Science, 2005, 247(1-4): 340-346
    [19]袁大军,周拥军,蒋中伟等.双光子激光三维微细加工及信息存储技术.微纳电子技术, 2003, 7-8: 173-176
    [20] Youmei Lu, Fuyuki Hasegawa, Takamichi Goto, et al. Highly sensitive measurement in two-photon absorption cross-section and investigation of the mechanism of two-photon-induced polymerization. Journal of Luminescence, 2004, 110(1-2): 1-10
    [21] G.M. Maria.über Elementarakte mit zwei Quantensprüngen. Ann. Phys. Lpz, 1931, 9: 273-295
    [22] W. Kaiser, C.G. Barre. Two-photon Excitation in CaF2: Eu2+. Phys. Rev. Lett., 1961,229 (7): 229-231
    [23] D.A. Parthenopoulos, P.M. Rentzepis. Three-dimensional optical storage memory. Science, 1989, 245: 843-845
    [24] A.S. Dvornikov, P.M. Rentzepis. Two-photon three-dimensional optical storage memory. Adv.Chem., 1994, 240: 161-178
    [25] B.H. Cumpston, S.P. Ananthavel, S. Barlowf et al. Two-photon polymerization initiators for three-dimensional optical storage and microfabrication. Nature, 1999, 398: 51-54
    [26] W. Denk, J.H. Stricler, W.W. Webb. Two-photon laser scanning fluorescence microscopy. Science, 1990, 248: 73-76
    [27] S. kawata, H.B. Sun, T. Tanaka et al. Finer features for functional microdevices. Nature, 2001, 412 (16): 697-698
    [28] H.Y. Zheng, David Rosseinsky, G.C. Lim. Laser-evoked coloration in polymers. Applied Surface Science, 2005, 245(1-4): 191-195
    [29] A. Kaldos, H.J. Pieper, E. Wolf, M. Krause. Laser machining in die making—a modern rapid tooling process. Journal of Materials Processing Technology, 2004, 155-156: 1815-1820
    [30]王运赣.快速成形技术.武汉:华中理工大学出版社, 1999: 1-96
    [31]黄文华,原林,唐雷等.数字化虚拟人体研究的国内外发展概况.解剖学研究, 2003, 25(2): 153-154
    [32]原林,黄文华,唐雷等.数字化虚拟中国人女性一号数据图像处理.中国临床解剖学杂志, 2003,21(3): 193-196
    [33] S.J. Owen, D.R. White, T.J.Tautges. Facet-based surfaces for 3D mesh generation. Proceedings of 11th International Meshing Roundtable, 2002, 297-312
    [34] A.P. West, S.P. Sambu, D.W. Rosen. A process planning method for improving build performance in stereolithography. Computer-Aided Design, 2001, 33(1): 65-79
    [35] Hong-Tzong Yau, Chuan-Chu Kuo, Chih-Hsiung Yeh. Extension of surface reconstruction algorithm to the global stitching and repairing of STL models. Computer-Aided Design, 2003, 35(5): 477-486
    [36] E. Béchet, J.C. Cuilliere, F. Trochu. Generation of a finite element MESH from stereolithgraphy (STL) files. Computer-Aided Design, 2002, 34(1): 1-17
    [37] R. Jamieson, H. Hacker. Direct slicing of CAD models for rapid prototyping. Rapid Prototyping Journal, 1995, 1(2): 4-12
    [38] A.Y.C. Nee, J.Y.H. Fuh, T. Miyazawa. On the improvement of the stereolithography (SL) process. Journal of Materials Processing Technology, 2001, 113(1-3): 262-268
    [39] B. Starly, A. Lau, W. Sun et al. Direct slicing of STEP based NURBS models for layered manufacturing. Computer-Aided Design, 2005, 37(4): 387-397
    [40]陈绪兵,叶献方,黄树槐.快速成形领域中的直接切片研究.中国机械工程, 2002, 13(7): 605-607
    [41] Pulak Mohan Pandey, N. Venkata Reddy, Sanjay G. Dhande. Slicing procedures in layered manufacturing: a review. Rapid Prototyping Journal, 2003, 9(5): 274-288
    [42] G. Prischow, Ch. Daniel, G. Junghans et al. Open system controllers—a challenge forthe future of machine tool industry. Annals of the CIRP, 1993, 42(1): 449-452
    [43] Y. Altintas, W.K. Munasinghe. A hierarchical open-architecture CNC system for machine tools. Annals of the CIRP, 1994, 43(1): 349-354
    [44] J. Park, Z.J. Pasek, Y. Shan et al. An open architecture real-time controller for machining processes. Proceedings of the 27th CIRP ISMS, 1995, 51-58: 27-34
    [45] M.F. Proctor, J.S. Albus.Open-architecture controller. IEEE Spectrum, 1997,34(6): 60-64
    [46] Hideo Matsuka. Japanese PC-based open control system for manufacturing equipment. Int.J.Papan Soc.Prec.Eng. 1996, 30(3): 204-209
    [47]魏仁选.基于软件芯片的开放式数控系统研究与实践: [博士学位论文].武汉:华中科技大学图书馆, 2000
    [48]廖效果,朱启逑.数字控制机床.武汉:华中理工大学出版社,1992: 1-166
    [49]彭平生.数控系统现状及其发展趋势.装备机械, 2004, 35(3): 13-23
    [50] X.W. Xu, S.T. Newman. Making CNC machine tools more open, interoperable and intelligent—a review of the technologies. Computers in Industry, 2006,57(2): 141-152
    [51] Tomoatsu Shibata, Masaharu Yano, Fumio Kodama. Empirical analysis of evolution of product architecture Fanuc numerical controllers from 1962 to 1997. Research Policy, 2005,34(1): 13-31
    [52]étienne Fortin, Jean-Fran?ois Chatelain, Louis Rivest. An innovative software architecture to improve information flow from CAM to CNC. Computers & Industrial Engineering, 2004,46(4): 655-667
    [53]袁根福,曾晓雁.大理石的激光铣削加工试验研究.中国激光, 2003, 30(3): 275-278
    [54]袁根福,曾晓雁. Al2O3陶瓷激光铣削试验研究.中国激光, 2003, 30(5): 467-470
    [55]袁根福,曾晓雁.单晶硅的激光铣削试验研究.激光技术, 2003, 27(5): 460-462
    [56]袁根福,曾晓雁.硬质合金激光铣削加工试验研究.应用激光, 2002, 22(2): 217-219
    [57] Jean-Philippe Desbiens, Patrice Masson. ArF excimer laser micromachining of Pyrex, SiC and PZT for rapid prototyping of MEMS components. Sensors and Actuators A:Physical, 2007, 136(2): 554-563
    [58]苑伟政.硅的准分子激光直写刻蚀微细加工特性研究.机械工程学报, 2000, 3(1): 147-152
    [59] C. Johnston, P. R. Chalker, I. M. Buckley-Golder, et al. Diamond device delineation via excimer laser patterning. Diamond and Related Materials, 1993, 2(5-7): 829-834
    [60] S. Pissadakis, L. Reekie, M. Hempstead, M. N. Zervas, J. S. Wilkinson. Relief gratings on Er/Yb-doped borosilicate glasses and waveguides by excimer laser ablation. Applied Surface Science, 2000,153(4): 200-210
    [61] P. E. Dyer, R. J. Farley, R. Giedl, D. M. Karnakis. Excimer laser ablation of polymers and glasses for grating fabrication. Applied Surface Science, 1996, 96-98: 537-549
    [62] [日]中井贞雄编著.激光工程.北京:科学出版社, 2002: 99-120
    [63]陈世鸿,朱福喜,黄水松等编著.软件工程原理及应用.武汉:武汉大学出版社, 2000: 15-46
    [64]曾晓华,刘静华,阎光荣.基于STL数据模型的刀具轨迹生成.工程图学学报, 2002, 23(1): 8-14
    [65] Yuhua Song, Yongnian Yan, Renji Zhang, et al. Three dimensional non-linear coupled thermo-mechanical FEM analysis of the dimensional accuracy for casting dies in rapid tooling. Finite Elements in Analysis and Design, 2001,38(1): 79-91
    [66]刘杰,莫健华,黄树槐.金属板材无模成形加工轨迹的研究.计算机辅助设计与图形学学报, 2003, 15(12): 1502-1503
    [67] M. Wu, J. Tinschert, M. Augthun, et al. Application of laser measuring, numerical simulation and rapid prototyping to titanium dental castings. Dental Materials, 2001,17(2): 102-108
    [68] [日]野口宏著.拓扑学的基础和方法.北京:科学出版社,1986: 25-47
    [69]管镭,孟宪琦,魏生民. Delaunary三角网格化算法及实现.西北工业大学学报, 1996, 14(1): 138-142
    [70] P.L. George, E. Seveno. The advancing-front mesh generation method. International Journal for Numerical Methods in Engineering, 1994, 37(21): 3605-3619
    [71]陈剑虹,田杰谟,刘振凯等.由断层测量数据直接生成STL文件的方法.机械科学与技术, 2003, 22(6): 882-884
    [72]殷人昆编著.数据结构.北京:清华大学出版社, 2001: 1-19
    [73]张李超,韩明,黄树槐.基于裂缝跟踪技术的STL文件容错切片.锻压机械, 2002, 37(2): 52-54
    [74]刘伟军,张嘉易.快速成形容错切片中线段集合自适应连接方法.中国机械工程, 2004, 15(22): 1975-1978
    [75] Y.Y. Chiu, Y.S. Liao, S.C. Lee. Slicing strategies to obtain accuracy of feature relation in rapidly prototyped parts. International Journal of Machine Tools and Manufacture, 2004, 44(7-8): 797-806
    [76] Jiing-Yih Lai, Hou-Chuan Lai. Repairing triangular meshes for reverse engineering applications. Advances in Engineering Software, 2006, 37(10): 667-683
    [77] Hong-Tzong Yau, Chuan-Chu Kuo, Chih-Hsiung Yeh. Extension of surface reconstruction algorithm to the global stitching and repairing of STL models. Computer-Aided Design, 2003,35(5): 477-486
    [78] Bahram Asiabanpour, Behrokh Khoshnevis. Machine path generation for the SLS process. Robotics and Computer-Integrated Manufacturing, 2004,20(3): 167-175
    [79] J. Yang, H.Z. Bin, X.B. Zhang, Z.Y. Liu. Fractal scanning path generation and control system for selective laser sintering (SLS). International Journal of Machine Tools and Manufacture, 2003, 43(3): 293-300
    [80]刘征宇,宾鸿赞,张小波等.生长型制造中分形扫描路径对温度场的影响.华中理工大学学报, 1998, 26(8): 32-34
    [81]王军杰,郭九生,洪军等.激光快速成形加工中扫描方式与成形精度的研究与实验.中国机械工程, 1997, 8(5): 54-55
    [82]张人佶,单忠德,隋光华等.粉末材料的SLS工艺激光扫描过程研究.应用激光, 1999, 19(5): 299-302
    [83]刘斌,张征,孙延明等.快速成形系统中OFFSET型填充算法.华南理工大学(自然科学版), 2001, 29(3): 64-66
    [84] Y.F. Zhang, Y.S. Wong, H.T. Loh, Y.F. Wu. An adaptive slicing approach to modelling cloud data for rapid prototyping. Journal of Materials Processing Technology, 2003, 140(1-3): 105-109
    [85]孙家广等编著.计算机图形学(第三版).北京:清华大学出版社, 1998: 396-398
    [86]白建军,朱亚平,梁辉等编著. OpenGL三维图形设计与制作.北京:人民邮电出版社, 1999: 11-96
    [87]刘长明,杨工明编著. Visual C++实践与提高多媒体篇.北京:中国铁道出版社, 2001: 67-95
    [88]马正元,朱岩峰,邹世革.虚拟制造系统中的数控加工仿真.沈阳工业大学学报, 2002, 24(6): 451-453
    [89] S.Q. Liu, S.K. Ong, Y.P. Chen, A.Y.C. Nee. Real-time, dynamic level-of-detail management for three-axis NC milling simulation. Computer-Aided Design, 2006, 38(4): 378-391
    [90] Tobias Surmann, Dirk Enk. Simulation of milling tool vibration trajectories along changing engagement conditions. International Journal of Machine Tools and Manufacture, 2007, 49(7): 1442-1448
    [91]黄新燕,杨来,张承阳.基于Web的数控加工仿真技术.机床与液压, 2005, 34(11): 172-175
    [92]钟庆,黄树槐. Windows95环境下零计算机测控系统.工业控制计算机, 2000, 13 (3): 41-43
    [93]李学干,苏东庄.计算机系统结构.西安:西安电子科技大学出版社, 1998: 7-15
    [94]胡晓东,丁玉成,卢秉恒.基于Windows98的激光快速成形机控制系统.光电工程, 2001, 28(3): 57-61
    [95]叶献方,钟庆,徐中毅等. EPP协议多功能控制板设计与应用.石油仪器, 2002, 16(1): 18-21
    [96] David A. Solomon. Windows NT技术内幕(第二版).北京:清华大学出版社, 1999: 16-32
    [97]杨芙清.软件工程技术发展思索.软件学报, 2005, 16(1): 1-7
    [98]周之英.现代软件工程.北京:科学出版社, 2000: 20-37
    [99]张奕,裘雪红. Windows NT平台下高精度软定时器的实现.微型机与应用, 2001,20(4): 13-15
    [100] J. W. Floroiu, T. C. Ionescu, R. Ruppelt, et al. Using NDIS intermediate drivers for extending the protocol stack. A case study. Computer Communications, 2001,24(7-8): 703-715
    [101] [美]Chris Cant. Windows WDM设备驱动程序开发指南.孙义等译.北京:机械工业出版社, 2000: 1-65
    [102]倪文.矿物材料学导论.北京:科学出版社, 1999: 123-125
    [103] [美]W.克希耐尔.固体激光工程.孙文等译.北京:科学出版社, 2002: 419-442
    [104] S. G.Hansen, T.E. Robiaille. Formation of polymer films by pulsed laser evaporation. Appl. Phys. Lett, 1988, 52(1): 81-83
    [105] G.G. Blanchet, C.R. Fisherjr, C.L. Jacksonet. Laser ablation and the production of polymer films. Science, 1993, 262(5134): 719-721
    [106] W. Perrie, A. Rushton, M. Gill et al. Femtosecond laser micro structuring of alumina ceramic. Applied Surface Science, 2005, 248(1-4): 213-217
    [107]张珊,康少英.激光加工陶瓷的试验研究.应用激光, 1994, 14(6): 253-256
    [108]秦勇,王霖,吴春丽等.大理石的超声波加工试验研究.新技术新工艺, 2001, 2: 17-18
    [109] Prasad Kaitkay, Shuting Lei. Experimental study of rock cutting under external hydrostatic pressure. Journal of Materials Processing Technology, 2005, 159 (2): 206-213
    [110] [苏]雷卡林.材料的激光加工.王绍水等译.北京:科学出版社, 1982: 168-182
    [111]朱企业等编著.激光精密加工.北京:机械工业出版社,1990: 71-146
    [112] D.E. Rumelhart, J.L. McClelland. Parallel Distributed Processing: Explorations in the microstructure of cognition. Cambridge MA: MIT press, 1986: 216-271
    [113]谢庆生,尹健,罗延科编著.机械工程中的神经网络方法.北京:机械工业出版社, 2003: 236-269
    [114] A. Philip Plumb, Raymond C. Rowe, Peter York, Martin Brown. Optimisation of the predictive ability of artificial neural network (ANN) models: A comparison of three ANN programs and four classes of training algorithm. European Journal of Pharmaceutical Sciences, 2005,25(4-5): 395-405
    [115]闻新,周露,王丹力等. MATLAB神经网络应用设计.北京:科学出版社, 2000: 73-101
    [116]吴松青.表面粗糙度应用指南.北京:机械工业出版社, 1990: 21-34
    [117]周炳琨,高以智,陈倜嵘等.激光原理(第四版).北京:国防工业出版社, 2000:74-88
    [118]郑启光,辜建辉.激光与物质相互作用.武汉:华中理工大学出版社, 1996: 18-57
    [119]王家金.激光加工技术.北京:中国机械出版社, 1992: 23-48
    [120]杨世铭,陶文铨.传热学(第三版).北京:高等教育出版社, 1998: 56-83
    [121]张洪济.热传导.北京:高等教育出版社, 1992: 15-48
    [122]李力钧.现代激光加工及其装备.北京:北京理工大学出版社, 1993: 107-160
    [123] [日]竹内洋一郎.热应力.郭廷玮,李安定译.北京:科学出版社, 1977: 46-63

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700