KDP晶体精密切割与磨削工艺的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
KDP(磷酸二氢钾,KH2PO4)晶体具有较大的电光和非线性光学系数、高的激光损伤阈值、低的光学吸收系数、高的光学均匀性和良好的透过波段等特点,成为制造惯性约束核聚变(ICF)装置中唯一可以用作激光倍频和电光开关的关键非线性光学材料。由于KDP晶体具有软且脆、易潮解、各向异性等特性,是目前公认的难加工材料之一。KDP晶体的加工通常包括切割、单点金刚石切削、磨削、磁流变抛光等。当前国内单点金刚石切削、磁流变抛光等超精密加工方式存在诸如小尺度波纹度、塌边、效率较低的特点;大尺寸晶体切割缺乏有效方法,所采用的带锯切割存在工件切口大、边缘易破损等质量问题,甚至大块晶体切割过程意外炸裂等灾难性隐患。探索和研究KDP晶体的精密切割和磨削工艺,对于解决当前制约我国KDP晶体加工过程存在的技术难题具有重要的现实意义和应用价值。
     论文首先针对现有基于钢带锯和电镀金刚石带锯的大尺寸KDP晶体切割工艺存在的问题,开展了金刚石线锯低应力切割KDP晶体方法的试验研究,研究了线锯切割工艺参数对诸如表面粗糙度Ra、平面度、平行度、亚表面损伤等的影响,对比分析了不同工艺方法对KDP晶体切割表面质量及亚表面损伤的影响,探讨了低应力线锯切割KDP晶体材料的去除机理和损伤形式,给出了低应力线锯切割KDP晶体的最大亚表面损伤深度及后续加工余量,提出了一种金刚石线锯低应力精密切割过程实时纠偏方案,实现了390mm切宽5mm厚度KDP晶体的低应力精密切割。
     通过单点划痕试验研究KDP晶体不同晶向表面、亚表面裂纹扩展情况及亚表面损伤深度,得到KDP晶体的各向异性特性对材料加工表面、亚表面的破坏形式以及亚表面损伤深度的影响;通过单颗金刚石磨粒磨削试验,研究不同磨削形式、切深和磨粒速度对KDP晶体材料去除形式的影响。为后续KDP晶体固结磨粒加工(切/磨)工艺参数试验,表面形貌、亚表面损伤分析及去除机理分析提供依据。
     开展了KDP晶体精密磨削加工方法的探索性研究。进行了磨削方式、砂轮性能、磨削参数等对表面质量、亚表面损伤、磨削力、磨削温升的影响的理论分析与试验研究,比较了旋转超声磨削和传统磨削对材料加工质量(粗糙度、表面形貌、亚表面损伤等)的影响规律,分析了材料的各向异性对加工的影响,探讨了KDP晶体磨削的材料去除机理,为今后进一步开展KDP晶体等各向异性材料的高效低损伤表面精密磨削奠定了良好的基础。
KDP(Potassium dihydrogen phosphate, KH2PO4) crystal has big electro-optic and non-linear optical coefficient, high laser damage threshold, low optical absorption coefficient, high optical uniformity and proper transparent wave band. It is the only material that can be used in ICF as laser frequency conversion part and electro-optic switch. However, it is well-known that KDP crystal is one of most difficult to machine materials because it is soft, fragile, hygroscopic and anisotropic. Slicing, single point diamond cutting, grinding and MRF polishing are usual methods in KDP crystal mahining. Currently, domestic precision machining methods such as single point diamond cutting and MRF polishing have disadvantages as follows:small scale waveness, round edge and low efficiency. Besides, big size crystal slicing is in lack of effective method, the currently adoped band saw slicing has problems such as big kerf loss, edge chipping and accidental breaking of big size crystal. Exploration and research on precision slicing and grinding processes of KDP crystal are of important practical meaning and application value to solve the current technical difficulties that restrict our machining of KDP crystal.
     Firstly in this paper, based on the current problems in big size KDP crystal slicing with steel band saw and diamond plated band saw, we experimentally studied low stress slicing method for KDP crystal with diamond wiresaw which mainly focused on the influence of technical parameter on Ra, flatness, parallelism and subsurface damage. Comparison and analysis of the influence of different technical methods on surface quality and subsurface damage of sliced KDP crystal were made and material removal mechanism and damage mode for low stress wiresaw slicing of KDP crystal were discussed. Finally, the maximum subsurface damage of KDP crystal low stress wiresaw slicing and the material needed to be removed for next step machining processes were provided; a method for real time deviation correction during low stress diamond wiresaw precision slicing was developed and the low stress precision slicing of KDP crystal with 390mm slicing width and 5mm thickness was achieved.
     In order to obtain the influence of anisotropy on surface and subsurface damage and its depth, single point scratching test was done to study the development of surface and subsurface cracks and the depth of SSD (subsurface damage) of different crystal orientation. Single diamond grit grinding test was done to study the influence of different grinding mode, depth of cut and grit speed on the material removal mode of KDP crystal, which can provide theoretical basis for technical parameter experiment, surface profile and subsurface damage analysis of the next step fixed abrasive machining (slicing/grinding).
     Precision grinding process of KDP crystal was explored which included the theoretical analysis and experimental research of influence of grinding mode, wheel performance and grinding parameter on surface quality, subsurface damage, grinding force and temperature. The comparison of rotary ultrasonic grinding and traditional grinding was carried out concentrating on workpiece machining quality (Ra, surface profile and subsurface damage etc.). The influence of material anisotropy on machining was analyzed and the material removal mechanism of KDP crystal grinding was discussed. The work establishes good foundation for future efficient and low damage surface precision grinding of anisotropic material such as KDP crystal.
引文
1. Voronkova, E.M., B.N. Grechushnikov, G.I. Distler, et al. Optical Materials for Infrared Technique [M], Moscow:Nauka,1965.
    2. 李仲谨等.无机精细化学品[M],北京:化学工业出版社,2005.
    3. 王坤鹏,房昌水,张建秀等,KDP(KD*P)晶体结构研究进展[J].人工晶体学报,2004.33(2):262-265.
    4. 谢英明,李新政,郑滨等,KDP(KH2PO4)晶体材料的研究进展[J].河北工业科技,2006.23(6):377-379.
    5. 仲维卓,于锡铃,罗豪甦等,KDP晶体生长基元与形成机理[J].中国科学(E辑),1998.28(4):320-324.
    6. 张克从.近代晶体学基础(上)[M],北京:科学出版社,1987.
    7. Kumaresan, P., S.M. Babu, and P.M. Anbarasan, Effect of irradiation of swift heavy ions on dyes-doped KDP crystals for laser applications[J]. Journal of Crystal Growth,2008.310(7-9):1999-2004.
    8. Ye, L.w., Z.d. Li, G.b. Su, et al., Study on the optical properties of rapidly grown KDP crystals[J]. Optics Communications,2007.275:399-403.
    9. 王波,房昌水,王圣来等,KDP/DKDP晶体生长的研究进展[J].人工晶体学报,2007.36(2):247-252.
    10. 苏根博,曾金波,贺友平等,大截面KDP晶体在激光核聚变研究中的应用[J].硅酸盐学报,1997.25(6):717-719.
    11. 钟维烈.铁电体物理学[M],北京:北京科学出版社,1996.
    12. 王之江.现代光学技术应用手册[M],北京:机械工业出版社,2010.
    13. George, H.M., I.M. Edward, and R.W. Craig, The National Ignition Facility:enabling fusion ignition for the 21st century. [J]. Nuclear Fusion,2004.44:S228-S238.
    14. 叶青,法国惯性约束聚变计划概述[J].激光与光电子学进展,2000.415:4-6.
    15. Fedder, R.H., P. Geraghty, S. Locke, et al., NIF Pockels Cell and Frequency Conversion Crystals[J]. Proceedings of SPIE,2004.534:121-126.
    16. 杨力.先进光学制造技术[M],北京:科学出版社,2001.
    17. 朱健强,神光Ⅱ高功率激光实验装置研制[J].中国科学院院刊,2005.20(1):42-44.
    18. 范滇元,贺贤士,惯性约束聚变能源与激光驱动器[J].大自然探索,1999.18(1):31-35.
    19. 王淦昌,激光惯性约束核聚变(ICF)最新进展简述[J].核科学与工程,1997.17(3):266-269.
    20. 康仁科,田业冰,郭东明等,大直径硅片超精密磨削技术的研究与应用现状[J].金刚石与磨料磨具工程,2003.4:13-18.
    21. 高伟,刘镇昌,超硬磨料在硬脆材料切割中的应用[J].金刚石与磨料磨具工程,2001.123:26-29.
    22. Clark, W.I., A.J. Shih, C.W. Hardin, et al., Fixed abrasive diamond wire machining-part Ⅰ: process monitoring and wire tension force[J]. International Journal of Machine Tools & Manufacture,2003. 43:523-532.
    23. K.Ishikawa, H.Suwabe, K.Kanayam, et al., Study on machining characteristics of wire tool with electrodeposited diamond grains[J]. Transactions of Japan Society of Mechanical Engineers,1994.60(573): 1815-1820.
    24. M.Fujisawa and T.Oku, Precision sawing with wiresaw[J]. Annals of the CIRP,1983.32(1): 87-90.
    25. Clark, W.I., A.J. Shih, R.L. Lemaster, et al., Fixed abrasive diamond wire machining-part Ⅱ: experiment design and results[J]. International Journal of Machine Tools & Manufacture,2003.43: 533-542.
    26. Hardin, C.W., J. Qu, and A.J. Shih., Fixed abrasive diamond wire saw slicing of single-crysta silicon carbide wafers[J]. Materials and Manufacturing Processes,2004.19(2):355-367.
    27.联邦德国Hecker und Koch公司.用金刚石线锯切割的机床[J]. Blech. Rohre profile,1989.36(4):348.
    28.高伟.环形电镀金刚石线锯的制造及其切割技术与机理的研究[D].山东:山东大学,2002.
    29.孟剑峰,孟磊,韩云鹏,环形金刚石线锯加工参数优化[J].金刚石与磨料磨具工程,2008(5):35-38.
    30. Bifano, T.G., T.A. Dow, and R.O. Scattergood, Ductile-regime grinding: A new technology for machining brittle materials[J]. ASME,1998.78:113-120.
    31. Katagiri, M. and Y. Namba, Optical surface generation of KDP inorganic nonlinear optical crystals by ultraprecision surface grinding[J]. The Japan Society for Precision Engineer,1999.65(6): 888-892.
    32. Namba, Y., Ultraprecision Grinding of Optical Materials for High Power Lasers[J]. Proceedings of SPIE,1998.3244:320-330.
    33. Namba, Y. and M. Katagiri, Ultraprecision Grinding of Potassium Dihydrogen Phosphate Crystals for Getting Optical Surfaces[J]. Proceeding of SPIE,1999.3578:692-693.
    34. Namba, Y., M. Katagiri, and M. Nakatsuka, Single point diamond turning of KDP inorganic nonlinear crystal for laser fusion[J]. The Japan Society for Precision Engineer,1998.64(10):1487-1491.
    35. Fuchs, B.A., P.P. Hed, and P.C. Baker, Fine Diamond Turning of KDP Crystals[J]. Applied Optics,1986.25(11):1733-1735.
    36. Kozlowski, M.R., I. Thomas, G. Edwards, et al., Influence of diamond turning and surface cleaning processes on the degradation of KDP crystal surfaces[J]. Proceedings of SPIE,1991.1561:59-69.
    37. Xu, Q. and J. Wang, Analysis of the influence of vacuum chucking on the distortion of the KDP crystal[J]. Proceedings of SPIE,2000.4231:464-468.
    38. Xu, Q., J. Wang, W. Li, et al., Defects of KDP crystal fabricated by single-point diamond turning[J]. Proceedings of SPIE,1999.3862:236-239.
    39.王景贺,陈明君,董申等,KDP晶体单点金刚石切削脆塑转变机理的研究[J].光电工程,2005.32(7):67-70.
    40.董申,张新洲,王景贺,KDP晶体超精密切削各向异性的理论研究[J].工具技术,2005.39(1):19-22.
    41.王景贺,王洪祥,毕昕等,KDP晶体单点金刚石切削表面粗糙度预测及实验研究[J].光学技术,2006.32(2):267-269.
    42. Ramaswamy, V. and M.D. Divino, An apparatus for polishing water soluble crystals[J]. The Review of Scientific Instruments,1972.43(9):1294-1296.
    43. Fuchs, B.A., Polishing KDP and other soft water-soluble crystals[J]. Applied Optics,1979.18(8): 1125.
    44. Chatterjee, S., Simple technique for polishing optical components made from KDP group of crystals[J]. Journal of Optics,2005.34(2):93-101.
    45. Arrasmith, S.R., I.A. Kozhinova, L.L. Gregg, et al., Details of the polishing spot in Magnetorheological Finishing(MRF)[J]. SPIE,1999.3782:92-99.
    46. Wang, Z.K., Slicing Equipments Development Status on IC Industry[J]. Equipment for Electronic Products Manufacturing,2003.31(1):21-23.
    47. Buttner, A., I.D. sawing-diameters increase[J]. Industrial Diamond Review,1985.45:77-79.
    48. Pei, Z.J., S. Kassir, M. Bhagavat, et al., An experimental investigation into soft-pad grinding of wire-sawn silicon wafers[J]. International Journal of Machine Tools & Manufacture,2004.44:299-306.
    49. Zhang, B., W.T. Liu, X.D. Hu, et al., Application and development of wire sawing technology[J]. SUPERHARD MATERIAL ENGINEERING,2008.20(1):45-48.
    50. Zhang, R., F. Huai, and S. Yin. Sawing direction positioning system for a woodworking bandsaw. US 20050103176A1,2005-05-19.
    51. Eklund, U., Soderhamn, and Sweden. Band sawing machine having means to apply corrective twist to the blade. US Patent 4336731,1982-06-29.
    52. 袁哲俊,王先逵.精密和超精密加工技术[M]:机械工业出版社,1999.
    53. Ashida, K., N. Morita, and Y. Yoshida, Study on nano-machining process using mechanism of a friction force microscope[J]. JSME International Journal Series C.,2001.44(1):244-253.
    54. Bulsaraa, V.H. and S. Chandrasekarb, Direct Observation of Contact Damage Around Scratches in Brittle Solids[J]. Proceedings of SPIE,1997.3060:76-88.
    55. Masayoshi, N., S. Tsunetaka, and E. Toshiro, Evaluation of surface and subsurface cracks on nano-scale machined brittle materials by scanning force microscope and scanning laser microscope[J]. Surface and Coatings Technology,2003.169-170(2):743-747.
    56. Keith, P., Brittle to ductile transition in machining[J]. Key Engineering Materials,2003.233-234: 59-70.
    57. Zhou, M., B.K.A. Ngoi, Z.W. Zhong, et al., Brittle-ductile transition in diamond cutting of silicon single crystals[J]. Materials and Manufacturing Processes,2001.16(4):447-460.
    58. Lawn, B.R. and M.V. Swain, Microfracture beneath point indentations in brittle solids[J]. Journal of Material Science,1975.10(1):113-122.
    59. Guin, C.H., M.D. Katrich, A.I. Savinkov, et al., Plastic Strain and Dislocation Structure of the KDP Group Crystals[J]. Kristall und Technik,1980.15(4):479-488.
    60. T.G. Bifano, T.A. Dow, and R.O. Scattergood, Ductile Regime Grinding:A New Technology for Machining Brittle Materials[J]. Transactions of the ASME,Journal of Engineering for Industry,1991. 113(2):184-189.
    61. Malkin,S.磨削技术理论与应用[M],沈阳:东北大学出版社,2002.
    62. Malkin, S. Grinding Technology:Theory and Application of Machining with Abrasives[M], New York:John Wiley&Sons,1989.
    63. Malkin, S. and J.E. Ritter, Grinding Mechanism and Strength Degradation for Ceramics[J]. Transactions of the ASME,Journal of Engineering for Industry,1989.111(2):167-173.
    64. 李伯民,赵波.现代磨削技术[M],北京:机械工业出版社,2003.
    65. Li, J. and J.C.M. Li, Temperature distribution in workpiece during scratching and grinding[J]. Materials Science and Engineering A,2005.409 108-119.
    66. Hwang, J., S. Kompella, S. Chandrasekar, et al., Measurement of Temperature Field in Surface Grinding Using Infra-Red (IR) Imaging System[J]. ASME J. Tribol.,2003.125:377-383.
    67. Sakagami, T., V. Madhavan, G. Harish, et al., Full-Field IR Measurement of Subsurface Grinding Temperatures[J]. Proc. SPIE,1998.3361:234-245.
    68. Ueda, T., Measurement of Grinding Temperature Using Infrared Radiation Pyrometer With Optical Fiber[J]. ASME J. Eng. Ind.,1986.108:241-247.
    69. Ueda, K.Y. and T. Sugita, Measurement of Grinding Temperature of Ceramics Using Infrared Radiation Pyrometer With Optical Fiber[J]. ASME J. Eng. Ind.,1992.114:317-321.
    70. Curry, A.C., A.J. Shih, R.O. Scattergood, et al., Grinding Temperature Measurements in Mgo PSZ Using Infrared Spectrometry[J]. J. Am. Ceram. Soc.,2003.86:333-341.
    71. Rowe, W.B., S.C.E. Black, and B. Mills, Temperature Control in CBN Grinding[J]. Int. J. Adv. Manuf. Technol.,1996.12:387-392.
    72. Xu, X., Y. Yu, and H. Huang, Mechanisms of Abrasive Wear in the Grinding of Titanium (TC4) and Nickel (K417) Alloys[J]. Wear,2003.255:1421-1426.
    73. Huang, H. and X.P. Xu, Interfacial Interactions Between Diamond Disk and Granite During Vertical Spindle Grinding[J]. Wear,2004.256:623-629.
    74. Batako, A.D., W.B. Rowe, and M.N. Morgan, Temperature Measurement in High Efficiency Deep Grinding[J]. Int. J. Mach. Tools Manuf.,2005.45:1231-1245.
    75. Lefebvre, A., P. Vieville, P. Lipinski, et al., Numerical Analysis of Grinding Temperature Measurement by the Foil/Workpiece Thermocouple Method[J]. Int. J. Mach. Tools Manuf.,2006.46: 1716-1726.
    76. Littman, W.E. and J. Wulff, The Influence of the Grinding Process on the Structure of Hardened Steel[J]. Trans. Am. Soc. Met.,1955.47:692-714.
    77. Kohli, S.P., C. Guo, and S. Malkin, Energy Partition for Grinding With Aluminum Oxide and CBN Abrasive Wheels[J]. ASME J. Eng. Ind.,1995.117:160-168.
    78. Guo, C., Y. Wu, V. Varghese, et al., Temperatures and Energy Partition for Grinding With Vitrified CBN Wheels[J]. CIRP Ann.,1999.48:247-250.
    79. Upadhyaya, R.P. and S. Malkin, Thermal Aspects of Grinding With Electroplated CBN Wheels[J]. ASME J. Manuf. Sci. Eng.,2004.126:107-114.
    80. Kim, H.J., N.K. Kim, and J.S. Kwak, Heat Flux Distribution Model by Sequential Algorithm of Inverse Heat Transfer for Determining Workpiece Temperature in Creep Feed Grinding[J]. Int. J. Mach. Tools Manuf.,2006.46:2086-2093.
    81. Xu, X.P. and S. Malkin, Comparison of Methods to Measure Grinding Temperatures[J]. ASME J. Manuf. Sci. Eng.,2001.123:191-195.
    82.臼井英治.切削磨削加工学[M],北京:机械工业出版社,1982.
    83. Jaeger, J.C., Moving sources of heat and the temperature at sliding contact[J]. Proc. Roy. Soc. NSW,1972.76203-224.
    84. Grigoriev, I.S. and E.Z. Meilikhov. Physical Quantities. Handbook, ed[M], Moscow: Energoatomizdat,1991.
    85.王霖,秦勇,刘镇昌等,磨削温度场的研究现状与发展趋势[J].工具技术,2002.36(6):7-10.
    86.侯镇冰,何绍杰,李恕先等.固体热传导[M],上海:上海科学技术出版社,1984.
    87. Cuo, C. and S. Malkin, Heat transfer in grinding[J]. Journal of materials processing and manufacturing science,1992.1:16-27.
    88. Matsui, S. and T. Horiuchi, Parallelism improvement of ground silicon wafers[J]. Journal of Engineering for industry,1991(113):25-28.
    89. Matsui, S., An experimental study on the grinding of silicon wafer-the wafer rotation grinding method (1st report). [J]. Bull. Japan Soc. Prec. Eng.,1988.22(4):295-300.
    90. 张银霞.单晶硅片超精密磨削加工表面层损伤的研究[D].大连:大连理工大学,2006.
    91. Pei, Z.J. Rotary ultrasonic machining of ceramics:characterization and extensions[D]. Urbana: University of Illinois at Urbana-Champaign,1995.
    92. Pei, Z.J., N. Khann, and P.M. Ferrira, Rotary ultrasonic machining of structure ceramics-a review[J]. Ceramic Engineering and Science Proceedings,1995.16(259):259-278.
    93. LEGGE, P., Ultrasonic Drilling of Ceramics[J]. Industrial Diamond Review,1964.24(278): 20-24.
    94. Cleave, D.V., Ultrasonic gets bigger jobs in machining and welding[J]. Iron Age,1976.13: 69-72.
    95. CHURI, N.J., Z.C. Li, Z.J. PEI, et al. Rotary ultrasonic machining of titanium alloy:a feasibility study[C]. Proc.2005 ASME International Mechanical Engineering Congress and Exposition (IMECE). 2005. Orlando, FL.
    96.曾伟民.旋转超声钻削先进陶瓷的基础研究[D].厦门:华侨大学,2006.
    97. CHURI, N.J., Z.J. PEI, and C. TREADWELL, Rotary ultrasonic machining of titanium alloy: effects of machining variables[J]. Mach. Sci. Tech,2006.10(3):301-321.
    98. CHURI, N.J., Z.J. PEI, and C. TREADWELL, Rotary ultrasonic machining of titanium alloy (ti-6al-4v):effects of tool variables[J]. Int. J. of Precision Technology,2007.1(1):85-96.
    99. Zeng, W.M., Z.C. Li, N.J. CHURI, et al. Experimental investigation into rotary ultrasonic machining of alumina[C].2004 ASME International Mechanical Engineering Congress and Exposition. 2004. Anaheim. California.
    100.杨鑫宏,韩杰才,脆性光学材料的超声磨削实验研究[J].光学技术,2007.33(1):65-67.
    101. Prabhakar, D. Machining advanced ceramic materials using rotary ultrasonic machining process[D]. Illinois: University of Illinois at Urbana-Champaign,1992.
    102. Graff, K.F., Ultrasonic machining[J]. Ultrasonics,1975.13(3):103-109.
    103.倪皓,宫虎,房丰洲,旋转超声加工硬脆性材料中边缘破损的研究[J].航空精密制造技术,2009.45(5):8-10.
    104. Li, Z.C., Y. Jiao, T. Deines, et al., Rotary ultrasonic machining of ceramic matrix composites: feasibility study and designed experiments[J]. International Journal of Machine Tool and Manufacture, 2005.45(12-13):1402-1411.
    105. Zeng, W.M., Z.C. Li, Z.J. Pei, et al. Experimental Investigation into Rotary Ultrasonic Machining of Alumina. in CD-ROM Proceedings of the International Mechanical Engineering Congress and Exposition 2004 (IMECE 2004).2004. Anaheim, CA.
    106. Li, Z.C., Z.J. Pei, W.M. Zeng, et al., Preliminary Experimental Study of Rotary Ultrasonic Machining on Zirconia Toughened Alumina[J]. Transactions of the North American Manufacturing Research Institution of SME,2005.33:89-96.
    107.Jiao, Y., P. Hu, Z.J. Pei, et al., Rotary ultrasonic machining of ceramics:Design of experiments[J]. International Journal of Manufacturing Technology and Management 2005.7(2-4):192-206.
    108. Churi, N.J., Z.J. Pei, and C. Treadwell, Rotary ultrasonic machining of titanium alloy:Effects of machining variables[J]. Machining Science and Technology,2006.10(3):301-321.
    109. Churi, N.J., Z.J. Pei, and C. Treadwell, Rotary ultrasonic machining of titanium alloy (Ti-6A1-4V):Effects of tool variables[J]. International Journal of Precision Technology,2007.1(1):85-96.
    110. Kailer A., G.Y., Nickel K.G., Phase Transformations of Silicon Caused by Contact Loading[J]. J. Appl. Phys,1997.81:3057-3063.
    111.成清校.单晶硅片超精密磨削减薄技术试验研究[D].大连:大连理工大学,2009.
    112.党兰焕,贺敬良,王学军等,基于DOE优化光学玻璃晶片边缘磨削工艺[J].半导体技术,2010.35(3):228-232.
    113. Shen, J., S. Liu, K. Yi, et al., Subsurface damage in optical substrates[J]. Optik,2005.116: 288-294.
    114. Feit, M.D. and A.M. Rubenchik, Influence of subsurface cracks on laser induced surface damage[J]. Proceedings of SPIE,2004.5273:264-271.
    115.李改灵,吴宇列,王卓等,光学材料亚表面损伤深度破坏性测量技术的实验研究[J].航空精密制造技术,2006.42(6):19-22.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700