关于花岗石材高光泽度饰面形成机理的基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在饰面花岗石材的加工中,能使石材获得最大增值效果的当首推其饰面最终的磨抛加工,但增值高也意味着技术难度大。花岗石材的高光泽度饰面(>100)磨抛工艺在国外亦仅为日本、意大利等少数几个国家掌握,且其技术关键均属它们各自的专利,对外控制极严。由于不掌握诀窍,目前国内石材的磨抛光泽度只在80上下徘徊,仅相当于国外半成品饰面石材的水平。只要能够设法破解此项技术的关键,将饰面的磨抛光泽度也提高到100以上,则仅此一项即可使国内石材加工业的效益猛翻几倍以上。
     为了打破国外石材加工商的技术封锁和在更高的价值层面上开发我国的石材资源,国内不少高校和科研所已开始着手研究花岗石材饰面的磨抛技术,不过从文献看研究多按常规思路进行,方法亦多雷同。本文不循常径,提出从大量剖析光泽度已达和未达要求的各类花岗石材饰面层的理化结构及其形成机理入手;亦即从剖析经磨抛获得的石材饰面层本身所蕴含的加工信息入手来破解国外的磨抛技术关键。论文希望借助此种逆向反求解密式的研究思路能为国内目前有关花岗石材高光泽度饰面磨抛的工艺研究找到突破口,闯出一条新思路。论文所完成的具有创新意义的工作可以归纳为:
     1.利用扫描电镜、电子探针、X射线衍射和辉光质谱等现代理化测试分析手段,率先完成了对花岗石材高光泽饰面层理化结构的综合测试分析研究工作。论文在测试分析获得的第一手数据资料的基础上,首次明确提出在高光泽度饰面层上其实并无臆想中的由晶态或非晶态新生物相覆盖形成的透明光泽膜存在的新观点,这一新观点对正确认识花岗石材饰面的本质及其形成机理具有重要的启示作用。
     2.完成了有关花岗石材磨抛时表面温度场的理论解析与实验研究工作,理论解析的结果与实验测定的结果吻合良好,两者都证明正常磨抛时石材表面温度不会超过100-150℃。此项研究的意义在于它从根本上否定了以往文献中有关花岗石材的磨抛温度可以高达1000℃以上的主观臆断,从而也从温度的角度佐证说明了磨抛过程本身确实不可能提供生成新生物相所必须的高温氛围条件。
     3.为科学阐明花岗石材高光泽度饰面层的本质结构及其形成机理,设计并完成了对石材饰面形成过程全方位跟踪观测的大型综合性测试实验,实验观测的项目覆盖到饰面磨抛不同阶段上的表面温度、表面形貌、表面结构,表面粗糙度及表面光泽度。此项专门设计的大型实验所取得的最具新意的突破性成果是它清楚揭示了在硬脆性花岗石材的磨抛加工中明显存在有石材的延性去除机制,而且,在磨料粒度次第减小的磨抛作业中,材料的去除机制会自脆性域向延性域转移,此种由点及线及面的延性磨抛作用可使石材表面产生的塑性流变铺展开来,直至最终形成高光泽度的饰面。而
    
     关于花岗石材高光泽度饰面形成机理的基础研究
    在该光泽面以下则是一层厚度在微米量级的因塑性流变致使晶格发生某种程度扭曲
    畸变的加工变质层,亦即花岗石材高光泽度饰面究其本质只是硬脆性石材经过充分的
    延性磨抛作用而获得的一种低粗糙度表面。论文藉实验结果所阐明的石材饰面结构及
    其形成机理对解决国内石材高光泽度饰面磨抛工艺具有重要的指导意义。
     4.论文所完成的关于饰面石材表面光泽度与表面粗糙度关系的专项试验进一步
    确定,随着石材表面粗糙度的降低,光泽度呈单调增加趋势,且在Ram,Zop付当
    于Vg)以后,粗糙度的些微降低,都有可能获得光泽度的显著增加。这无疑提示我
    们,对于某些有条件经磨抛获得低粗糙表面的质地致密的隐晶质花岗石材是容易获得
    高光泽度表面的。论文正是基于这一认识在磨抛国产山西黑石材时控制Ra刀.09pm
    时获得了光泽度超过 100的高光泽度表面。
     5.论文最后提出的以硬脆性材料镜面磨抛的工艺对策来规范和改造现有石材磨
    抛作业的创新构想,为实现花岗石材的高光泽度饰面的工业化生产提供了确实可行的
    新思路。
     论文虽只是关于花岗石材磨抛工艺的一项基础研究,但所完成的创新工作和提
    出的创新构想对提高国内石材加工水平具有重要的指导意义,它的实现可望为国内石
    材加工业带来显著的经济效益。
In the process of stone machining, grinding and polishing which are the main ways to increase the decorative value of stone, are applied in the final stages to obtain high glossiness surface. Recently, there are still many technical problems in the stone grinding and polishing has not been solved. The technology of getting high glossiness surface which the glossiness exceeds 100 is mastered by few countries such as Japan and Italy. Compared to these countries, the granite machined by the domestic factories whose glossiness can only reach about 80,which is just as good as the half-product of foreign decorate stone. The benefits of the domestic stone industry will be increased several times if the key technologies of the high glossiness stone grinding can be developed.
    Many researches on granite grinding and polishing have been done in several university and research institutes. But most of former research works follow the conventional way and the research methods are almost the same. In this paper, a new idea is pointed out. The physical and chemical characteristics, microstructure and the formation mechanisms of the many kinds of stone glossiness surfaces are studied. Some useful information can be obtained after the studies. This paper wants to find sally ports, by this converse method, to improve the level of the technology research in the domestic stone industry. The fundamental investigations of this paper are carried out:
    1. Comprehensive analysis including the physical and chemical characteristics and microstructure of high glossiness granite surfaces are analyzed by employed the SEM, electron probes, XRD and glow mass spectrogram. On the basis of the firsthand data, it is show clearly that there aren't the gloss film, with amorphous or microcrystal forms after grinding and polishing processes on the granite glossiness surface.
    2. The temperatures on the machining contact zone were studied theoretically and experimentally when diamond disks grind granite with the vertical spindle surface grinding. The theoretical results well correspond with the experimental results. Both the theoretical results and experimental results are shown that the average surface temperature on the contact zone are below 100-150C in the normal grinding. The studies negated the view which the temperature at the machining contact zone is above 1000C assumed by past research. So it also proved that the temperature in the grinding zone is not enough to form a new phase on the granite surface.
    3. In order to discover the formation mechanisms of the high glossiness granite surface; a comprehensive experiment is designed to observe the formation process of the
    
    
    glossiness surface. Temperature, surface morphologies, surface structure, surface roughness and surface glossiness at each separated stage ranging from sawing to polishing are monitored. The achievements of experiments show clearly that there are obvious traces of ductile flowing on the granite machined surfaces, although the granite is hardness and brittleness material. The formation mechanisms change from the brittleness removal to the ductile removal, with the decreasing of diamond grit size in the grinding and polishing processes. The material removal method is ductile removal and the ductile flowing spreads to a larger scale from the point to line to the whole surface, and the high glossiness surface is formed at last. There are damaged layer of few microns under the glossiness surface, which the crystal lattices are distorted for the ductile flow. It means that the high glossiness surface of the granite is a low roughness surface, which is formed under the condition of the ductile removal. The formatio
    n mechanisms revealed in this paper, are very important to improve the stone grinding and polishing technologies in the domestic stone industry.
    4. The experiment for examining the stone surface glossiness and surface roughness further shows that the stone surface glossiness is monotone increasing as the decrease of the surface roughness. When the surface roughness
引文
1.谭金华.充满活力的石材行业.石材,2001,8:4-6
    2.邵国有.硅酸盐岩相学.武汉工业大学出版社,1991:52-64
    3.杨杰,严荣荫,陈厚伦,潭世同.中国石材.中国建材工业出版社,1994
    4.J.C.耶格,N.G.W,库克.岩石力学基础.地质出版社,1983
    5.乐昌硕.岩石学,地质出版社,1984
    6.希禾,舒士韬,戴增惠,袁蓟生.饰面石材开采与加.中国建筑工业出版社,1986,6
    7.李享德.岩石磨削抛光机理及工艺研究:[博士学位论文].大连理工大学,1990,7
    8.王成勇,魏昕,陈启波,谭哲丽.磨具组成成份对花岗岩抛光效果的影响.磨料磨具与磨削,1995,2(86):11-13
    9.赵万康,王珉,左敦稳.新型花岗石抛光磨具的性能研究.金刚石与磨料磨具工程,1996,2(92):31-33
    10.邓碧岳,张春娴.菱苦土磨具及其在石材工业中的应用.磨料磨具与磨削,1989.3(51):9-14
    11.潘海鸿,温筱茜,曹硕生.花岗石磨具配方、性能及工艺参数的研究.磨料磨具与磨削,1994.1(79):7-11
    12.朱目成,王雅萍.石材研磨磨块的试验优化设计.金刚石与磨料磨具工程,1995.4(88):13-16
    13.李享德,刘培德,孙宝元.加工石材用菱苦土磨具的配比选择及磨损机理.磨料磨具与磨削,1990.6(60):8-13
    14.金有道,笪艺伍.高光泽花岗石板面磨抛新工艺试验研究.武汉工业大学学报,1992.14(3):77-83
    15.岳崇杰译,用金刚石磨块磨削和抛光硬质石材(译自《Industrial DiamondReview》Vol.44No.503) 磨料磨具与磨削.1986,5(35):23-25
    16. Phil Davis, Nigel Pearce. Diamond tooling reduces polishing costs. IDR 95/2
    17. D.N.Wright, C.Rouse. Stone polishing-measurement of surface finish.IDR 93/1
    18. G.Schwan.Economic polishing of granite.IDR 98/1
    19.邓碧岳,张春娴.花岗石磨削及所用的磨料磨具的选择.磨料磨具与磨削,1988.2(44):6-8
    20.张科.石材金刚石磨具形状和排布方式对磨加工性能的影响.磨料磨具与磨削,1992.5(71)
    21.王心善,王振民.花岗石墓碑石加工用金刚石磨盘的粒度选择及合理应用.金刚石与磨料磨具工程,1996.4(94):6-8
    22.左宏森.新型金刚石磨块在研磨机上的应用与分析.金刚石与磨料磨具工程,2000.2(116)
    23.谭哲丽,王成勇.抛光条件对花岗石抛光效果的影响.金刚石与磨料磨具工程,1997.2(98):19-22
    24.刘华联,胡华南,张发英.蛇纹石抛光工艺的研究.金刚石与磨料磨具工程,2000.2(116):24-26
    
    
    25.金有道,毛秀英,陈强.石材加工磨块粒雅合理间隔及适宜抛前粗糙度.磨料磨具与磨削,1994.1(79):5-6
    26. P.S.Midha,R.D Channon,M.Montakhab.An Investigation into the Optimisafion of Stone Processing Using Diamond Tools. Proc. of Intertech 2001, Canada
    27.孙大千,曹书云.天然岩石材料磨削加工抛光层的初探.机械工程学报,1993,1(29):1-5
    28.殷玲,刘忠.大理石抛光表层变质层的研究.磨料磨具与磨削,1993,2(74):21-22
    29.谢晋,杨凯华,刘银,田牧纯一.花岗石表面光泽膜生成机理及抛光工具和工艺.金刚石与磨料磨具工程,1998,1(103):20-24
    30.王成勇,刘培德,刘培元.大理石磨削表面形成机理研究.磨料磨具与磨削,1987,2(38):6-10
    31.袁蓟生,郭柏林.手大理石抛光层形成机理研究.武汉工业大学学报,1988,2:211-218
    32.焦其伟,李享德,孙宝元,刘培德.用磨石抛光石板材温度的测量.石材,1989,6:6-10.
    33. S.Kohli, C Guo, S.Malkin. Energy Partition to the Workpiece for Grinding with Aluminum Oxide and CBN Abrasive Wheels. Transactions of the ASME. 1995,117,May: 160-168
    34. J.E.Morgan,J.A.Scott.Temperature Measurement When Diamond Grinding Ceramics. IDR2/92:65-69
    35.李伯民,赵波等.实用磨削技术.机械工业出版社,1996
    36.徐鸿钧,徐西鹏,林涛,张幼桢.断续磨削时工件表层温度场解析.机械工程学报,1994,30(1):30-36
    37. Milton C. Shaw. Principles of Abrasive Processing. Bookcraft (Bath) Ltd Midsomer Norton, Avon,1996
    38.傅玉灿.进一步开发高效磨削潜力的基础研究:[博士学位论文].南京航空航天大学,1999,6
    39.徐西鹏,S.Malkin.金刚石砂轮与花岗石摩擦界面能量传输特征的试验研究.摩擦学学报,2000,21(1)
    40.候镇冰,何绍杰,李恕先.固体热传导.上海科学技术出版社,1984
    41. Ramanath S,Shaw M C.Abrasive grain temperature at the beginning of a cut in fine grinding,ASME Journal of Engineering for Industry.1988, 110:15-18.
    42. Okamura K, Tsukamoto S. What is ideal grinding wheel. Annals of the CIRP, 1978,27(1):211-215
    43.朱峰,崔恒泰,树脂结合剂CBN砂轮表面状态对磨削表面粗糙度的影响,磨床与磨削,1994,(3):45-47
    44. Chattopadhyay A K et al. Improved monolayer CBN wheel for load free grinding. Machine Tools and Manufacture, 1992,32(4):571-581
    45. Shuhei Ohno; Nobuhide Itoh; Hitoshi Ohmori; Grinding characteristics of SiC ceramics on ELID Grinding.砥粒加工为会志, 2001,45(3):143-145
    46. Teruko Kato; Hitoshi Ohmori. Relationship between surface roughness and friction properties of SiC film finished with ELID-grinding.砥粒加工为会志, 2000,44,(3):132-137
    47. I.Inasaki. Grinding of hard and brittle materials. Annals of the CIRP, 1987,36(2):463-471
    
    
    48. Inacio Regiani,Carlos Alberto Fortulan, Benedito de Moraes Purquerio. Abrasive machining of advanced ceramics. (IDR) 2000(1):37-42
    49.松尾哲夫.最近高速高能率研削加工技术.机械上工具,1995.39(12):93-100
    50.蔡光起,宋贵亮,刘文志.超高速磨削工艺技术.机械工艺师,1995(19):3—37
    51.任敬心,康仁科,史兴宽.难加工材料的磨削.国防工业出版社,1999,2
    52. X.P Xu,Y. Li, S.Malkin. Forces and Energy in Circular Sawing and Grinding of Granite. Transaction of the A SME: Journal of Manufacturing Science and Engineering, 2001,123(1): 13-22
    53. J.C.Jaeger. Moving sources of heat and temperature at sliding contacts. Proc. of the Royal Society of New South Wales. 1942,76:203-204
    54. C.Guo, S.Malkin. Heat Transfer in Grinding. Journal of Materials Processing & Manufacturing Science. 1 (1): 16-27
    55. Nee A.Y.C, Tay A.O. On the Measurement of Surface Grinding Temperature.International Journal of Machine Tool Design & Research.1981,21.:279-291
    56. W.B.Rowe, S.C.E.Black, B.Mills,H.S.Qi, M.N.Morgan. Experimental Investigation of Heat Transfer in Grinding. Annals of the CIRP. 1995,44(1):329-332
    57. N.K.Kim,C.Guo,S.Malkin. Heat Flux Distribution and Energy Partition in Creep-Feed Grinding.Annals of the CIRP. 1997,46(1):227-242
    58. B.Zhu, C.Guo, J.E.Sunderland, S.Malkin. Energy Partition to the Workpiece for Grinding of Ceramics. Annals of the CIRP. 1995,44(1):267-271
    59. Xipeng Xu, S. Malkin. Comparison of Methods to Measure Grinding Temperatures. Transactions of the ASME:Journal of Manufacturing Science and Engineering. 2001,123(1)
    60.黄辉,徐西鹏等.金刚石锯片锯切花岗石过程中的温度分析.金刚石与磨枓磨具工程(增刊),1997
    61.黄辉.金刚石圆锯片锯切花岗石过程锯切弧区载荷和温度特征研究:[硕十学位论文)].华侨大学,1998,7
    62. H.W. Zheng, H.Gao. A General Thermal Model for Grinding with Slotted or Segmented Wheel.Annals of the CIRP. 1994,43(1)
    63. Lin B, Zhang H.L. Theoretical analysis of temperature field in surface grinding with cup wheel. Key Engineering materials. 2001,202-302:93-98
    64.李享德,刘培德等,岩石抛光方法的合理选择及抛光机理初探.磨料磨八与磨削,1989,6(54)
    65.任敬心,华定安.磨削原理.西北工业大学出版社,1988,6
    66.臼井英治.切削磨削加工学.机械工业出版社,1982,12
    67. Mamoru Nakayama, Katsuhisa Kudo, Tooru sakakibara, Haruki Nomura. Polishing of Stone. IDR 92/5:250-253
    68. M.Krebs K.D.Reinhardt.Surface machining of natural and artificial stone.Industrial Diamond Review (IDR) 99/3:238-240
    
    
    69. Martin Jennings. Diamond grinding and polishing of marble and concrete floors. Industrial Diamond Review (IDR) 99/4:43-47
    70. Huang Hui, SHEN Jian-yun, Xu. Xi-peng, XU Hong-Jun. Analysis of the Polished Surface Layer on the Glossy Granite Machined by Diamond Abrasives. Key Engineering Materials. 2001,202-203:333-338
    71. Huang Hui, Xu.Xi-peng, XU Hong-Jun. Mechanisms for the Formation of Glossy Workpiece Surfaces in Grinding and Polishing of Natural Stones. 10th International Conference on Precision Engineering (ICPE) Japan,2001: 451-455.
    72.徐西鹏,黄辉,于怡青,李远.锯切过程中金刚石与花岗石间的摩擦效应.摩擦学学报,1999,19(4):304-310.
    73. Ramanath S,Shaw M C. Abrasive grain temperature at the beginning of a cut in fine grinding.ASME Journal of Engineering for Industry, 1988, 110:15-18.
    74.王西彬,任敬心.金刚石磨粒几何形状及砂轮浓度对砂轮磨削特性影响的研究.磨料磨具与磨削,1994,5(83):5-9
    75.李远,黄辉,于怡青,徐西鹏.切磨过程中花岗石材料去除机理研究.矿物学报,200121(3):401—405
    76.郭柏林.石材抛光磨擦点瞬时温度计算.石材,1989,6:11-16
    77.谢晋,杨凯华,刘一波,徐汝绎,张庆勇.花岗石的研磨磨头及加工特性.金刚石与磨料磨具工程,1996,96(6):15-17
    78.席巧玲译.用金刚石磨块磨削和抛光硬质石材.磨料磨具与磨削,1986,5(35):23—25
    79.邵国有,杨中喜,周长民,陈亚明,戴宝刚.花岗石矿物组成与抛光难易程度.石材,1999,11:26-31
    80.杨中喜,邵国有,陈亚明,周长民.影响花岗石石材磨削抛光的岩石学因素.石材,1999,5:10-13
    81.袁公昱.人造金刚石合成与金刚石工具制造.中南工业大学出版社,1992,12
    82.杨世铭,陶文铨.传热学.高等教育出版社,1999,9
    83.衢州化工厂编.温度测量仪表.石油化学工业出版社,1978,3
    84.张幼桢.金属切削理论.航空工业出版社,1988,6
    85.于怡青,李远,徐西鹏.建材加工用孕镶金刚石工具的磨损与控制.同济大学大学,2001,29(9):1072-1076
    86.方啸虎.超硬材料基础与材料.中国建材工业出版社,1998,4
    87.方啸虎.超硬材料科学与技术(上,下卷).中国建材工业出版社,1998,4
    88.郭志猛,宋月清,陈宏霞,贾成厂.超硬材料与工具.冶金工业出版社,1996,12

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700