固着磨料高速研磨机理及工件表面质量的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于精密和超精密加工技术在国防、航空、航天等领域的重要作用,受到了人们的广泛关注,已成为衡量一个国家制造业技术水平的标志。研磨加工作为精密、超精密加工中的一种重要加工方法,也日益受到了重视,国内外的专家学者发明了许多新的研磨加工方法,如电解研磨、ELID在线修整研磨、磁力研磨、无磨料的冰盘研磨、固着磨料研磨等,这些方法都在不同程度上提高了研磨加工的精度和加工质量。尤其是固着磨料高速研磨,不仅提高了加工精度,而且极大地提高了加工效率,降低了加工成本。但由于影响研磨加工过程的因素多,工件表面形成过程非常复杂,因此,尽管人们已经用研磨加工获得了较高的面形精度及较低的表面粗糙度值,但人们对研磨的加工机理研究的还不够深入。随着研磨技术的应用日益广泛,人们也越来越关注其加工后的表面微观形貌、表面残余应力和加工硬化程度等表面质量因素。因此对固着磨料加工机理进行深入研究,以拓展其应用范围具有重要的意义。本文正是在这一背景下进行的。主要进行了以下几个方面的研究:
     本文对固着磨料研磨机理及已加工表面形成过程进行了研究。传统散粒磨料慢速研磨由于磨料在磨具上是随机分布的,所以其与工件之间的相互作用关系是不确定的,因此很难对其进行分析。固着磨料研磨中,磨料与工件之间的相互作用关系具有一定的确定性,本文就是在此基础上,首先分析了研磨过程中磨粒的受力情况,并对磨粒的切削刃做了球冠形假设,以此为依据建立了固着磨料高速研磨的力学模型。
     对固着磨料高速研磨工件已加工表面理论粗糙度进行了探讨,并对工件已加工表面粗糙度、微观形貌与研磨加工中各工艺参数之间的关系进行了研究。研究表明,不同的研磨参数对这两项指标有一定的影响。其中磨料粒度对工件表面粗糙度影响较大,研磨速度对其影响较小。实验还表明研磨加工后,工件表面都产生塑性变形,即使是像陶瓷、硬质合金等硬脆性材料,其表面也存在一定的塑性变形。本文对塑性变形产生的原因进行了分析,塑性变形是晶体内位错运动的结果,对于硬脆性材料,晶体内可移动的位错极少,当受到外力作用时,在产生微塑性的同时伴随晶粒的破碎细化。而晶粒细化的结果又会促进塑性变形,进而形成了已加工表面的塑性变形层。
     对工件表面残余应力产生的原因及其变化规律进行了研究。首先从理论上分析了研磨加工过程中残余应力产生的原因,探讨了磨料粒度、研磨压力和研磨速度对工件已加工表面残余应力的影响,通过研究发现,在固着磨料研磨加工中,工件已加工表面残余应力一般是压应力,而且随着磨料粒度、研磨压力、研磨速度的增大,工件表面残余应力增加。
     对固着磨料研磨表面加工硬化现象进行了研究。根据位错理论对研磨中产生加工硬化的原因进行了分析,本文认为研磨后,工件表面的位错增殖及交割是导致加
With its increasing important role in fields of civil-defense, aviation and astronautics, precision and ultra-precision machining wins extensive care, and is one of tokens to mark manufacturing technology level of a country. Being a key machining method among which, lapping is paid more stress on. Experts from home and abroad have invented various lapping processes, such as electrochemical lapping, ELID online dressing lapping, magnetic lapping, ice dish lapping without abrasives and solid abrasive lapping etc., and all these lapping processes improve precision and quality of lapping to a certain degree, especially high-speed lapping with solid abrasive improved machining precision, increased machining efficiency sharply, further more reduced machining cost. But, there exist many factors affecting lapping process and parts' surface forming is very complicated, experts have been not engaged in studying of lapping machining mechanism, although fine roughness of surface and profile precision has been achieved. With the extensive application of lapping technology, people will further care about machmed parts' surface micro topography, surface residual stress and machining hardening etc. surface quality factors. Hence it is crucial to deeply study machining mechanism of solid abrasive in a bid to expend the application range. This is the very background of the paper. This paper relates to the following studies:
    This paper studied solid abrasive lapping mechanism and surface forming process of machined parts. As regards abrasives of traditional lapping randomly scatter on the tooling, the interaction between abrasive and the machined part is uncertain, so it is not easy to analyze. But for solid abrasive lapping, there exists a certain interaction between abrasive and the machined parts. On this basis, this paper firstly makes mechanics analysis of lapping grains in the process of lapping, and assumes the grain is in the form of spherical surface, and set up mechanics model of solid abrasives lapping on this assumption, further more analyzed forces.
    This paper made a study of theoretical roughness of surface on machined surface by high-speed lapping with solid abrasive, and of the relationship between machined surface roughness, micro-topography and parameters of lapping. The results show that, different lapping parameters have a certain influence to these two factors, among which, grain size has a considerable influence to machined surface roughness, and lapping speed has a smaller influence. And experiment indicate that, machined parts will occur plastic deformation after lapping, even surface of brittle materials such as ceramics and carbide will deform to a certain degree. The paper analyzes the reasons of plastic deformation, the movement of the dislocation in crystal is the important one, for brittle materials the movable proliferations is few, it will occur plastic deformation while crystal particle fragmentation and refining under external forces. And crystal particle refining will result in further plastic deformation, so machined surface will form a plastic deformation layer.
    This paper also made a study of reasons of residual stress on machined surfaces and
引文
1 祝慈寿著.中国工业技术史.重庆:重庆出版社,1995(6)
    2 王鸿生编著.世界科学技术史.北京:中国人民大学出版社,1996(5)
    3 I. Inasaki. Abrasive Machining in the Future. Annals of the CIRP. 1993, 42(2)
    4 V.C. Venkatesh, I. Inasaki, H.K. Toenshof, T. Nakegawa. Observation on Polishing and Ultra-precision Machining of Semiconductor Substrate Materials. Annals of the CIRP. 1995, 44(2): 611-618
    5 M. Touge et al. Removal Rate and Surface Roughness in High-Precision Lapping of Mn-Zn Ferrite. Annals of the CIRP. 1996, 45(1): 307-310
    6 Heado Jeong et al. Integrated Planarization Technique with Consistency in Abrasive Machining for Advanced Semiconductor Chip Fabrication. Annals of the CIRP. 1996, 45(1): 331-333
    7 友田英幸等.合金研磨用加工液开发(第1报).精密工学会志.1997,63(2):243~247
    8 朱春山.刘敏.树脂砂轮研磨钢球专用磨削液的研制.金刚石与磨料磨具工程,2003,(3):72~74
    9 姜洪源.金世伟.古乐.研磨液对陶瓷球耐磨性影响的实验研究.润滑与密封,2001(3):26~29
    10 Y. Sekiguchi, H. Funakubo. Strained surface layers of quartz plates produced by lapping and polishing and their influence on quartz resonator performance. Journal of Materials Science. 15,(12):. 3066-3070
    11 高宏刚等.亚纳米量级光滑表面的超精密抛光.仪器仪表学报,1997,18(1):75-79
    12 Yang Jinadong et al. Effect of abrasive size on machined workpiece surface in solid abrasive lapping, SPIE, 2000. 4231(11): 527~530
    13 David F. Edwards and P. Paul Hed, Optical Element Manufacturing(1). Applied Optics. 1987, 26(21)
    14 张洪旺等.表面机械研磨诱导AISI 304不锈钢表层纳米化Ⅰ.组织与性能.金属学报,2003,39(4):342~346
    15 张洪旺等.表面机械研磨诱导AISI 304不锈钢表层纳米化Ⅱ.晶粒细化机理.金属学报,2003,39(4):347~350
    16 胡奈赛.陶瓷材料加工残余应力的测定.第4届全国材料工程学会年会论文集.天津:天津大学出版社,1995.
    17 Spur G. Grinding of Non-Oxide Ceramics Using Diamond Grinding Wheels. Britain: Oxford Science Press, 1990.
    18 Udea K.A J. Integral Approach to Material Removal Mechanisms in Micro Cutting of Ceramics. Annals of the CIRP, 1991, 40(1): 61~64
    19 任敬心,康仁科.工程陶瓷磨削的微观研究.磨料磨具与磨削,1993(6):12~16
    20 杨海.关于工程陶瓷磨削和磨削温度的研究.磨床与磨削.1993(4):35~39
    21 何泽夏.陶瓷材料应力腐蚀特性的测试与分析.硅酸盐学报,1993(5):15~20
    22 Toshiroh KARAKI-DOY et al. High Grade Precision Polishing Technique by a New Polishing Machine for Chalcone Crystals. Int. J. Japan Soc. Prec. Eng.. 1995,. 29(3): 217-221
    23 蔡鑫泉.硅片研磨与磨削加工.磨床与磨削.1993,(1):43~46
    24 Takao NAKAMURA et al. Mirror Polishing of Silicon Wafers(3rd Report). Int. J. Japan Soc. Prec. Eng.. 1994, 28(1): 11~16
    25 Zhao Ji et al. A New Method of Automatic Polishing on Curved Aluminum Alloy Surfaces at Constant Pressure. Int. J. Mach. Tools Manufacture. 1995. 35(12),
    26 Zhao Ji et al. Study on automatic polishing injection mold, Journal of the Society of Grinding Engineers. 1995, 39(4)
    27 Wiktor Rupp, Vadim Plotsker. Vacuum activated polishing laps produce smooth aspheric surfaces. Applied optics, 1993, 32(7): 1048-1050
    28 Y.P. Changet al. An Investigation of the AE Signals in the Lapping Process. Annals of the CIRP 1996, 45(1): 331~334
    29 李宗智.超声振动研磨的研究.金刚石与磨料磨具工程.1995(5):42~43
    30 谈文亮.超精加工对零件耐磨性影响的实验.机械制造.1985(9):10~1231 王珉,陈晓震,潘良贤.磁性流体研磨加工机理.机械工程学报.1992,28(6):38~43
    32 金洙吉等.磁流体研磨法研磨陶瓷球的试验研究.哈尔滨工业大学学报.1995,27(3):130~134
    33 徐立军.王文.杨诚.磁力研磨加工技术综述,组合机床与自动化加工技术,2003,(1):41~43
    34 李学全等.磁力研磨技术,机械设计与制造工程,2000,29(1):53~54
    35 李益民,杨曙光,孙允臣等.磁力研磨去阀芯毛刺的方法.机械工艺师.1991,(4):26~27
    36 李益民,高云峰.用磁力研磨去除零件功能棱边毛刺.新技术新工艺.1991,(5):20~22
    37 潘晶、刘新才、徐志锋等.非导磁不锈钢管材内外表面的磁力研磨,航空精密制造技术,2003 39(1):17~19
    38 庄建平.姜俊华.徐志锋等.粘结Fe+SiC磁性磨料的研究.机械工程材料.2001,25(5):26~28
    39 蔡光起、史家顺、孟祥志等.虚轴机床磁力研磨刀具轨迹点的空间插补,东北大学学报(自然科学版),2003,24(3):260~263
    40 何雅全,吴明根.超精密加工技术基础.北京:航空航天部第303研究所,1993
    41 王彤,刘晋春.电解研磨复合镜面加工.哈尔滨科学技术大学学报.1995,19(6):6~9
    42 陈幼松.电解电火花复合研磨加工法.新技术新工艺.1989,(3):19~20
    43 文贵林等.电解磨料复合加工镜面的新工艺.新技术新工艺.1993.(1):16~18
    44 Nobuhide ITOH et al. Finishing Characteristics of ELID-lap Grinding Using Ultra Fine Grain Lapping Wheel. Int. J. Japan Soc. Prec. Eng.. 1996, 30(4), 12~15
    45 蔡立.金属结合剂在金刚石丸片精磨中的影响.光学技术.1984(5)
    46 长春光机学院733科研组.高速精磨工艺的实验研究.仪器制造.1977,(1):7~12
    47 查立豫.平面光学零件加工中的相对线速度分布.仪器制造.1983,(3):6~8
    48 查立豫.平面光学零件加工中的压强分布.仪器制造.1984(1)
    49 曹天宁等.光学零件制造工艺.北京:机械工业出版社,1981
    50 裴庆魁.调偏心小摆幅平面金刚石精磨工艺.光学机械.1986,(4):27~32
    51 裴庆魁等.平面高速精磨中的均匀磨削.光学机械.1991,(4):27~31
    52 林锦文.加工光学玻璃的金刚石超精磨片.磨料磨具与磨削.1988,(3)
    53 章黎明.固着磨料与光学高效加工.光学技术.1987,(1)
    54 王翠娣.固着磨料用于高速抛光工艺探讨.光学技术.1988,(4):43~45
    55 王锴.影响平面高速精磨的工艺因素.光学技术.1990,(1)
    56 辛企明,黎斌.金属的光学抛光.光学技术.1991,(5):22~26
    57 J. Ikeno et al. Nanometer Grinding Using Ultrafine Abrasive Pellets Manufacture of Pellets Applying Electrophoretic Deposition. Annals of the CIRP 1990, 39,(1),: 341~344
    58 Zhaowei Zhong, V.C. Venkatesh. Semi-Ductile Grinding and Polishing of Ophthalmic Aspheric and Spherics. Annals of the CIRP 1995, 44(1), 339~342
    59 长春光机学院733科研组.高速精磨中金刚石磨具的磨耗分析.光学工艺,1976,(3):2~6
    60 王长兴等.平面高速精磨磨具分析设计计算.长春光机学院学报,1978,创刊号:46~54
    61 长春光机学院733科研组.平面高速精磨磨具分析计算.长春光机学院学报.1979.(1)
    62 李懋和等.平面光学研磨的轨迹方程与运动方程.长春光机学院学报,1979,(2):72~89
    63 刘桂玲.球面光学研磨的相对轨迹方程.长春光机学院学报,1982,(2):59~72
    64 刘绍东.定摆均匀磨削中的力学原理和均匀磨耗.长春光机学院学报,1982,(2)
    65 杨建东.同着磨料超精密高速研磨的理论与实验研究[博上学位论文].长春:吉林工业大学,1998:25~51
    66 杨建东.田春林.固着磨料研磨技术.北京:国防工业出版社.2003:39~70
    67 高宏.表面三维形貌非接触测量的现状.固体润滑.1990,(1):18~26
    68 兪汉清.表面粗糙度及测量.北京:中国标准出版社.1987:145~149
    69 苏蕴昌,刘国田.工件表面的现代光学测量方法.计量测试学术交流会论文集.天津.1987:345-349
    70 河野嗣男.用激光测量评价超精密表面特性.国外计量.1987,(2):34~37
    71 E. Brinksmeier, et al, Residual Stress Measurement and Causes in Machining Process, Annals of the??CIRP、1982 31(2),
    72 靳九成,赵传国.磨削变质层及表面改性,长沙:湖南大学出版社,1988(5)
    73 H. Dolle, et al, Residual Stress in Ground Steels, Metallurgical Transaction, 1990, 11(1)
    74 A. Israeli and R. Papiar, Residual Stress Profile in Machined Parts, J. of Testing and Evaluation, 1981, 9(6)
    75 Wang Hongzhi, Cao Lian, Guo Jingkun. Analysis of the Residual Stress in AL203-Sic Nanocomposites. Science in China, 1999, 29(3): 200~205
    76 Walls D J. Residual Stresses in Machined Ceramic Surfaces. J. Am. Ceram. Soc, 1985, 69(1): 44~47
    77 Cheng W. Measurement of Residual Stresses near the Surface Using the Compliance Method. Trans of the ASME, 1991, 113: 199~204
    78 Kirchner H P. Residual Stresses in Hot-Pressed Si3N4 Grooved by Single-Point Grinding. J. Am. Ceram. Soc, 1982, 65(1): 55~60
    79 Edwin R. Fuller. Theory of Fatigue for Bristle Flaws Originating From Residual Stress Concentrations. J. Am. Ceram. Soc, 1983, 66(5): 314~319
    80 Marshall D B. Flaw Characteristics in Dynamic Fatigue: The Influence of Residual Contact Stresses. Am. Ceram. Soc, 1980, 63(10): 532~536
    81 J. Frisch et al, Residual Grinding Stresses in Mild Steel, Trans. of ASME, 1991, 73: 337
    82 R.D. Halverstadt, Analysis of Stresses in Ground Surfaces of High Temperature Alloys, Trans. of ASME, 1988
    83 A. B. Sadat et al, Residual stresses in Turned AISI 4340 Steel, Experiment Mechanics, 1987, 3: 80
    84 H.k. Tonshoff et al, Determination of the mechanical and Thermal Influences on Machined Surfaces by Microhardness and Residual Stresses Analysis, CIRP, 1980, 29(2)
    85 C.R. Liu et al, Variables Governing Patterns of Mechanical Residual Stress in a Machined Surface, J. of Engineer, For Ind.(ASME), 1982, 104
    86 R. Glocker, Material Proofing Mit Rontgenstrahlen, Springer Verlag, 1991
    87 E. Brinksmeier et al, Nondestructive Testing for Evaluating Surface Integrity, CIRP, 1984, 33(2): 489
    88 朱伟等.超声波法测定残余应力的原理及其应用.计量与测试技术,2001.(6):25~26
    89 Krautkramer, J. et al, Ultrasonic testing of materials,3rd. ed., Springer, Berlin, 1983
    90 陈芙蓉,霍立兴,张玉凤.非破坏性测量焊接残余应力方法的应用现状,焊接技术,2001,30(3):37~39
    91 大渕庆史,带川利之.砥粒切削过程有限要素.精密工学会志,2000,66(9):1467~1471
    92 松井正己.统计的手法研削仕上面粗解析.机械研究,2000(4) 458~462
    93 吉田武司,庄司克雄,厨川常元.研削仕上面生成及延性性举动影响.机械研究,2000(2):132~137
    94 李伯民,赵波.实用磨削技术.北京:机械工业出版社,1996
    95 谭美田.金属切削微观研究.上海:上海科学技术出版社,1988
    96 仇启源,庞思勤.现代金属切削技术.北京:机械工业出版社,1992
    97 Shaw. M. C. New Developments in Grinding. U. S. A., Carnegie-Mellon Univ. Carnegie Pr., 1972
    98 吴松青.表面粗糙度应用指南.北京:机械工业出版社,1990
    99 H.达格纳尔著,李冰,邸静译.表面纹理探索.北京:机械工业出版社,1987
    100 Mizutani K. Cutting Process of Ceramic. Industry Material, 1984, 33(10): 15~17
    101 杨海.关于工程陶瓷磨削和磨削温度的研究.磨床与磨削.1993(4):35~37
    102 田欣利.于爱兵.林彬.陶瓷磨削残余应力对表面性能的影响.机械科学与技术,2002.21(4):615~616
    103 田欣利.于爱兵.林彬.陶瓷磨削温度对表面残余应力的影响.中国机械工程,2002.13(18):1600~1601
    104 田欣利.于爱兵.林彬.陶瓷磨削表面残余应力测试方法的研究.机械科学与技术,2001.20(5):730~731
    105 张定铨.残余应力对金属疲劳强度的影响.理化检验.物理分册.2002,38(6):231~235106 [日]米谷茂.残余应力的产生和对策.朱荆璞,邵会孟译.北京:机械工业出版社,1983
    107 张定铨,何家文.材料中残余应力的X射线衍射分析和作用.西安:西安交通大学出版社,1999:10~11
    108 胡华南.已加工表面残余应力的理论预测及控制.华南理工大学学报,1993(2)
    109 徐进、陈秉均,控制表面残余应力的强冷切削试验研究,机械制造,2002,40(5):13~14
    110 吴晓丹.端齿盘研磨表面完整性分析,机械设计与制造,2001,(3):67~68
    111 陈绍春.陈希杰.张钊等.氮碳锰对介稳奥氏体锰钢加工硬化性能的影响.特殊钢,2003,24(2):21~23
    112 冯端等.金属物理学第一卷,结构与缺陷.北京:科学出版社,1998:248~328
    113 石德珂.材料科学基础.北京:机械工业出版社,1999

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700