用于区间参数多目标优化问题的遗传算法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
区间参数多目标优化问题是普遍存在,且非常重要的不确定优化问题。由于该问题的参数取值为区间,且含有多个目标函数,因此,有效的解决方法非常少见。论文根据不同的实际需求,提出有效解决该问题的3类遗传算法。
     首先,面向多目标优化问题的一般需求,给出一种求取近似Pareto最优解集的遗传算法。该算法通过定义区间占优可信度下界,给出基于该下界的区间多目标优化问题的占优关系,及其相应的Pareto最优解集的性质;利用提出的占优关系,修改NSGA-Ⅱ的快速非被占优解排序方法,开发一种新的解决区间参数多目标优化问题的遗传算法,并从理论上分析该算法的性能;将所提方法应用于6个区间参数多目标优化问题,并与2个典型的优化方法比较,实验结果表明所提方法的优越性。
     然后,根据在实际应用中,决策者往往仅需要一个最满意解(集)的要求,研究2种偏好表示方式下,采用边优化边决策的方法,解决区间多目标优化问题的进化优化方法。通过建立用于区间参数优化问题的偏好多面体理论,提出一种基于偏好多面体的区间多目标交互式遗传算法,该算法定期将部分非被占优解提交给决策者,以最差解为顶点,在目标空间中构建偏好多面体;利用该多面体,进一步区分具有相同序值的进化个体。进一步地,从偏好多面体中提取决策者的偏好方向;基于该偏好方向,设计反映进化个体逼近性能的测度,将具有相同序值、相同偏好的个体排序,开发一种基于偏好方向的区间多目标交互式遗传算法。将上述2种方法应用于4个区间参数2目标优化问题,并与后验方法比较,实验结果表明,2种方法皆优于后验方法,可以得到符合决策者偏好的优化解。此外,利用目标的相对重要性,提出一种交互式遗传算法,以得到一个符合决策者偏好的最满意解集。在该算法中,决策者根据需要,交互式输入代表其偏好的目标间的相对重要性关系;由该关系得到其在目标空间的偏好区域;基于该偏好区域,进一步比较具有相同序值进化个体的性能,指导算法向决策者真正的偏好区域搜索。将所提方法应用于2个区间参数2目标优化问题和2个区间参数3目标优化问题,并与先验方法和后验方法比较,实验结果证实所提方法是有效的,能够找到更多符合决策者偏好的优化解。
     最后,基于对不确定优化问题的特殊要求,提出一种有效解决区间参数很多目标优化问题的集合进化遗传算法。该方法以超体积和不确定度为目标,将原优化问题转化为精确参数2目标优化问题;定义基于集合的Pareto占优关系,并修改NSGA-II的快速非被占优解排序方法;此外,还提出集合进化策略。将所提方法应用于4个区间参数很多目标优化问题,并与已有的方法比较,结果表明,所提方法能够得到收敛性和不确定性均衡的Pareto最优解集。
     所提3类遗传算法不仅为区间参数多目标优化问题的求解提供了切实可行的途径,而且丰富了区间数学的研究内容。
Multi-objective optimization problems (MOPs) with interval parameters are verypopular and important in real-world applications. However, there has been very feweffective method of solving these problems up to date because of their intervalparameters and multiple objectives. According to different actual demands, threekinds of genetic algorithms (GAs) were proposed to solve the above problems in thisdissertation.
     First, a GA for obtaining a Pareto set approximation was given to face thecommon demand of a MOP. In this method, through defining a lower limit ofpossibility degree of interval dominance, the dominance relation of an intervalmulti-objective optimization problem (IMOP) based on the above lower limit and theproperty of the corresponding Pareto set are given; the proposed dominance relation isemployed to modify the fast non-dominated sorting approach in NSGA-II, and a novelGA for an IMOP is then developed. Further, after theoretically analyzing theperformance of the proposed method, it was applied to six IMOPs and compared withtwo typical optimization methods. The experimental results confirm its advantages.
     Then, to meet a decision maker (DM)’s demand for a most preferred solution(set), three GAs incorporating a search-cum-decision-making procedure for solvingIMOPs were studied in the context of two kinds of preference presentations. Byconstructing the theory of a preference polyhedron for an optimization problem withinterval parameters, an interactive genetic algorithm (IGA) for an IMOP based onpreference polyhedron was proposed. The algorithm periodically provides a part ofnon-dominated solutions to a DM, and a preference polyhedron, based on whichdifferent evolutionary individuals with the same ranks are distinguished, is createdtaking the worst solution as vertex in the objective space. Further, a preferencedirection is elicited from the above preference polyhedron, and a metric based on thepreference direction, reflecting the approximation performance of an evolutionaryindividual, is designed to rank different individuals with the same ranks andpreferences. Consequently, an IGA for an IMOP based on the preference direction wasdeveloped. Both of the above methods were applied to four interval bi-objectiveoptimization problems, and compared with an a posterior method. The experimentalresults show that both of the methods are superior than the a posterior method, andthe most preferred solution that fits the DM’s preferences can be obtained. Additionally, an IGA was presented to obtain a most preferred solution set meetingthe DM’s preferences by utilizing the relative importance of objectives. In thisalgorithm, the preference informations are interactively input, and the preferenceregion in the objective space is then obtained; based on this region, differentevolutionary individuals with the same ranks are further discriminated, to guide thepopulation to evolve towards the DM’s really preference regions. The proposedmethod was applied to four IMOPs, and compared with an a priori method and an aposterior method. The experimental results confirm its advantages of the proposedalgorithm, and more optimal solutions which fit the DM’s preferences can be derived.
     Finally, to satisfy the special request of uncertain optimization problems, aset-based GA was proposed to effectively solve many-objective optimizationproblems with interval parameters. In this method, the original optimization problemis transformed into a bi-objective one with deterministic parameters by takinghyper-volume and imprecision as two new objectives; a set-based Pareto dominancerelation is defined to modify the fast non-dominated sorting approach in NSGA-II;moreover, set-based evolutionary schemes are suggested. The proposed method wasapplied to four benchmark many-objective optimization problems with intervalparameters and compared with a state-of-the-art method. The experimental resultsindicate that a trade-off Pareto set approximation between convergence anduncertainty can be found by the proposed method.
     Three kinds of GAs proposed in this dissertation not only offer several practicalways to solve IMOPs, but also enrich the researches of interval mathematics.
引文
[1] Brintrup A., Ramsden J., Tiwari A.. Ergonomic chair design by fusing qualitative andquantitative criteria using interactive genetic algorithms [J]. IEEE Transactions onEvolutionary Computation,2008,12(3):343-354.
    [2] Castillo O., Trujillo L., Melin P.. Multiple objective genetic algorithms for path planningoptimization in autonomous mobile robots [J]. Soft Computing,2007,11(3):269-279.
    [3] Gong D. W., Zhang Y., Qi C. L.. Environmental/Economic power dispatch using a hybridmulti-objective optimization algorithm [J]. International Journal of Electrical Power andEnergy Systems,2010,32(6):607-614.
    [4] Oberkampf W. L., Helton J. C., Joslyn C. A., Wojtkiewicz S.F., Ferson S.. Challengeproblems: Uncertainty in system response given uncertain parameters [J]. ReliabilityEngineering and System Safety,2004,85(1-3):11-19.
    [5] Zaman K., Rangavajhala S., McDonald M. P., Mahadevan S.. A probabilistic approach forrepresentation of interval uncertainty [J]. Reliability Engineering and System Safety,2011,96(1):117-130.
    [6] Gen M., Cheng R.W.. Optimal design of system reliability using interval programming andgenetic algorithms [J]. Computers and Industrial Engineering,1996,31(1-2):237-240.
    [7] Luhandjula M. K.. Optimisation under hybrid uncertainty [J]. Fuzzy Sets and Systems,2004,146(2):187-203.
    [8]刘宝碇,赵瑞清,王纲.不确定规划及应用[M].北京:清华大学出版社,2003.
    [9]程志强,戴连奎,孙优贤.区间参数不确定系统优化的可行性分析[J].自动化学报,2004,30(3):455-459.
    [10] Jordi C.. A stochastic programming approach to cash management in banking [J]. EuropeanJournal of Operational Research,2009,192(3):963-974.
    [11] Fleten S., Kristoffersen T. K., Short-term hydropower production planning by stochasticprogramming [J]. Computers&Operations Research,2008,35(8):2656-2671.
    [12] Wang K. J., Wang S. M., Chen J. C.. A resource portfolio planning model usingsampling-based stochastic programming and genetic algorithm [J]. European Journal ofOperational Research,2008,184(1):327-340.
    [13] Wang H. F., Wang M. L.. A fuzzy multi-objective linear programming [J]. Fuzzy sets andSystems1997,86(1):61-72.
    [14] Yano H, Sakawa M.. A fuzzy approach to hierarchical multi-objective programmingproblems and its application to an industrial pollution control problem [J]. Fuzzy Sets andSystems,2009,160(22):3309-3322.
    [15] Kumar M., Arndt D., Kreuzfeld S., Thurow K., Stoll N., Stoll R.. Fuzzy techniques forsubjective workload-score modeling under uncertainties [J]. IEEE Transactions on Systems,Man, and Cybernetics, Part B: Cybernetics,2008,38(6):1449-1464.
    [16] Wu H. C.. On interval-valued nonlinear programming problems [J]. Journal ofMathematical Analysis and Applications,2008,338(1):299-316.
    [17] Wu H. C.. The Karush-Kuhn-Tucker optimality conditions in multi-objective programmingproblems with interval-valued objective functions [J]. European Journal of OperationalResearch,2009,196(1):49-60.
    [18] Chanas S., Kuchta D.. Multi-objective programming in optimization of the intervalobjective functions-A generalized approach [J]. European Journal of Operational Research,1996,94(3):594-598.
    [19] Liu S. T., Wang R. T.. A numerical solution method to interval quadratic programming [J].Applied Mathematics and Computation,2007,189(2):1274-1281.
    [20] Li W., Tian X. L.. Numerical solution method for general interval quadratic programming[J]. Applied Mathematics and Computation,2008,202(2):589-595.
    [21]蒋峥,戴连奎,吴铁军.区间非线性规划问题的确定化描述及其递阶求解[J].系统工程理论与实践,2005,(1):110-116.
    [22] Jiang C., Han X., Guan F. J., Li Y. H.. An uncertain structural optimization method based onnonlinear interval number programming and interval analysis method [J]. EngineeringStructures,2007,29(11):3168-3177.
    [23] Gong D. W., Qin N. N., Sun X. Y.. Evolutionary algorithms for optimization problems withuncertainties and hybrid indices [J]. Information Sciences,2011,181(19):4124-4138.
    [24] Limbourg P., Aponte D. E. S.. An optimizaiton algorithm for imprecise multi-objectiveproblem function [C]. Proc of IEEE International Conference on Evolutionary Computation.New York: IEEE Press,2005:459-466.
    [25] Gong D. W., Qin N. N., Sun X. Y.. Evolutionary optimization algorithm for multi-objectiveoptimization problems with interval parameters [C]. Proc of5th IEEE InternationalConference on Bio-Inspired Computing: Theories and Applications. New York: IEEE Press,2010:411-420.
    [26] Eskandari H., Geiger C. D., Bird R.. Handling uncertainty in evolutionary multi-objectiveoptimazation: SPGA [C]. Proc of IEEE Congress on Evolutionary Computation. New York:IEEE Press,2007:4130-4137.
    [27] Liu S. T.. Using geometric programming to profit maximization with interval coefficientsand quantity discount [J]. Applied Mathematics and Computation,2009,209(2):259-265.
    [28] Majumder L., Rao S. S.. Interval-based optimization of aircraft wings under landing loads[J]. Computers and Structures,2009,87(3-4):225-235.
    [29] Zhao Z. H., Han X., Jiang C., Zhou X. X.. A nonlinear interval-based optimization methodwith local-densifying approximation technique [J]. Structure Multidisplinary Optimization,2010,42(4):559-573.
    [30]蒋峥.区间参数不确定系统优化方法及其在汽油调和中的应用研究[D].杭州:浙江大学,2005.
    [31]巩敦卫,郝国生,周勇,郭一楠.交互式遗传算法原理及其应用[M].北京:国防工业出版社,2007.
    [32] Schaffer J. D.. Multiple objective optimization with vector evaluated genetic algorithms [C].Proc of1st International Conference on Genetic Algorithms. New Jersey: LawrenceErlbaum Press,1987:93-100.
    [33] Zitzler E., Laumanns M., Thiele L.. SPEA2: Improving the strength pareto evolutionaryalgorithm [R]. Zurich: Swiss Federal Institute of Technology,2001.
    [34] Deb K., Pratap A., Agarwal S., Mrystivan T.. A fast and elitist multi-objective geneticalgorithm: NSGA–II [J]. IEEE Transactions on Evolutionary Computation,2002,6(2):182-197.
    [35] Luque M., Miettinen K., Eskelinen P., Ruiz F.. Incorporating preference information ininteractive reference point [J]. Omega,2009,37(2):450-462.
    [36] Miettinen K., Eskelinen P., Ruiz F., Luque M.. NAUTILUS method: An interactivetechnique in multi-objective optimization based on the nadir point [J]. European Journal ofOperational Research,2010,206(2):426-434.
    [37] Luque M., Ruiz F., Steuer R. E.. Modified interactive Chebyshev algorithm (MICA) forconvex multi-objective programming [J]. European Journal of Operational Research,2010,204(3):557-564.
    [38]张华军,赵金,王瑞.最大化个人偏好的多目标优化进化算法[J].信息与控制,2010,39(2):212-217.
    [39] Chen Z. H., Zhuang Z. Q., Huang F. H., Lee J. S.. User-preference-oriented multi-objectiveoptimization algorithm [C]. Proc of2010International Computer Symposium. New York:IEEE Press,2010:1045-1049.
    [40] Chaudhuri S., Deb K.. An interactive evolutionary multi-objective optimization anddecision making procedure [J]. Applied Soft Computing,2010,10(2):496-511.
    [41] Deb K., Kumar A.. Interactive evolutionary multi-objective optimization anddecision-making using reference direction method [R]. Kanpur: Indian Institute ofTechnology,2007.
    [42] Rachmawati L., Srinivasan D.. Incorporating the notion of relative importance of objectivesin evolutionary multi-objective optimization [J]. IEEE Transactions on EvolutionaryComputation,2010,14(4):530-546.
    [43] Said L. B., Bechikh S., Ghédira K.. The r-Dominance: A new dominance relation forinteractive evolutionary multi-criteria decision making [J]. IEEE Transactions onEvolutionary Computation,2010,14(5):801-818.
    [44] Krettek J., Braun J., Hoffmann F., Bertram T., Ewald T., Schubert H. G., Lausch H..Interactive evolutionary multi-objective optimization for hydraulic valve controllerparameters [C]. Proc of IEEE/ASME International Conference on Advanced IntelligentMechatronics. New York: IEEE Press,2009:816-821.
    [45] Battiti R., Passerini A.. Brain–computer evolutionary multiobjective optimization: A geneticalgorithm adapting to the decision maker [J]. IEEE Transactions on EvolutionaryComputation,2010,14(5):671-687.
    [46] Deb K., Sinha A., Korhonen P., Wallenius J.. An interactive evolutionary multi-objectiveoptimization method based on progressively approximated value functions [R]. Kanpur:Indian Institute of Technology,2009.
    [47] Sinha A., Deb K., Korhonen P., Wallenius J.. Progressively interactive evolutionarymulti-objective optimization method using generalized polynomial value functions [C].Proc of IEEE Congress on Evolutionary Computation. New York: IEEE Press,2010:1-8.
    [48] Korhonen P., Wallenius J., Zionts S.. Solving the discrete multiple criteria problem usingconvex cones [J]. Management Science,1984,30:1336-1345.
    [49] Fowler J. W., Gel E. S., Koksalan M. M., Korhonen P., Marquis J. L., Wallenius J..Interactive evolutionary multi-objective optimization for quasi-concave preferencefunctions [J]. European Journal of Operational Research,2010,206(2):417-425.
    [50] Sinha A., Deb K., Korhonen P., Wallenius J.. An interactive evolutionary multi-objectiveoptimization method based on polyhedral cones [C]. Proc of4th International Conferenceon Learning and Intelligent Optimization, Berlin: Springer Verlag Press,2010:318-332.
    [51]徐泽水,达利庆.区间数的排序方法研究[J].系统工程,2001,19(6):94-96.
    [52] Moore R. E., Kearfott R. B., Cloud M. J.. Introduction to interval analysis [M]. Philadelphia:SIAM Press,2009.
    [53] Rockafellar R. T.. Convex analysis [M]. New Jersey: Princeton University Press,1970.
    [54] Konak A., Coit D. W., Smith A. E.. Multi-objective optimization using genetic algorithms:A tutorial [J]. Reliability Engineering and System Safety,2006,91(9):992-1007.
    [55]公茂果,焦李成,杨咚咚,马文萍.进化多目标优化算法研究[J].软件学报,2009,20(2):271-289.
    [56]郑金华.多目标进化算法及其应用[M].北京:科学出版社,2007.
    [57] Fonseca C. M., Fleming P. J.. Genetic algorithm for multi-objective optimization:formulation, discussion and generation [C]. Proc of IEEE Colloquium on GenerticAlgorithms for Control Systems Engineering. New York: IEEE Press,1993,416-423.
    [58] Srinivas N., Deb K.. Multi-objective optimization using non-dominated sorting in geneticalgorithms [J]. Evolutionary Computation,1994,2(3):221-248.
    [59] Zitzler E., Thiele L.. Multi-objective evolutionary algorithms: A comparative case study andthe strength Pareto approach [J]. IEEE Transactions on Evolutionary Computation,1999,3(4):257-271.
    [60] Knowels J. D., Corne D. W.. Approximating the non-donminated front using the Paretoarchived evolution strategy [J]. Evolutionary Computation,2000,8(2):149-172.
    [61] Corne D. W., Knowels J. D., Oates M. J.. The Pareto-envelope based selection algorithm formulti-objective optimization [C]. Proc of6th International Conference on Parallel ProblemSolving from Nature. Berlin: Springer Verlag Press,2000:869-878.
    [62] Corne D. W., Jerram N. R., Knowles J. D., Oates M. J.. PESA-II: Region-based selection inevolutionary multi-objective optimization [C]. Proc of Genetic and EvolutionaryComputation Conference. New York: ACM Press,2001:283-290.
    [63] Beume N., Naujoks B., Emmerich M.. SMS-EMOA: Multi-objective selection based ondominated hypervolume [J]. European Journal of Operational Research,2007,181(3):1653-1669.
    [64] Shi C., Yan Z. Y., Shi Z. Z., Zhang L.. A fast multi-objective evolutionary algorithm basedon a tree structure [J]. Applied Soft Computing,2010,10(2):468-480.
    [65] Bui L. T., Abbass H. A., Barlow M., Bender A.. Robustness against the decision-maker’sattitude to risk in problems with conflicting objectives [J]. IEEE Transctions onEvolutionary Computation,2012,16(1):1-19.
    [66] Ulrich T., Bader J., Zitzler E.. Integrating decision space diversity into hypervolume-basedmulti-objective search [C]. Proc of Genetic and Evolutionary Computation Conference.New York: ACM Press,2010:455-462.
    [67] Deb K., Thiele L., Laumanns M., Zitzler E.. Scalable multi-objective optimization testproblems [C]. Proc of IEEE Congress on Evolutionary Computation. New York: IEEEPress,2002:825-830.
    [68] Zio E., Baraldi P., Pedroni N.. Optimal power system generation scheduling bymulti-objective genetic algorithms with preferences [J]. Reliability Engineering and SystemSafety,2009,94(2):432-444.
    [69] Nadia N., Marcus V. C. S., Luiza M. M.. Preference-based multi-objective evolutionaryalgorithms for power-aware application mapping on NoC palatforms [J]. Expert Systemswith Applications,2012,39(3):2771-2782.
    [70] Lee D. H., Kim K. J., Koksalan M.. A posterior preference articulation approach tomultiresponse surface optimization [J]. European Journal of Operational Research,2011,210(2):301-309.
    [71] Branke J., Deb K., Miettinen K., Slowinski R.. Multi-Objective Optimization-Interactiveand Evolutionary Approaches [M]. Berlin: Springer Verlag Press,2008.
    [72] Coello C. C. A.. Handling preferences in evolutionary multi-objective optimization: Asurvey [C]. Proc of IEEE Congress on Evolutionary Computation. New York: IEEE Press,2000:30-37.
    [73] Rachmawati L., Srinivasan D.. Preference incorporation in multi-objective evolutionaryalgorithms: A survey [C]. Proc of IEEE Congress on Evolutionary Computation. New York:IEEE Press,2006:962-968.
    [74] Deb K., Koksalan M.. Guest editorial: Special issue on preference-based multi-objectiveevolutionary algorithms [J]. IEEE Transactions on Evolutionary Computation,2010,14(5):669-670.
    [75] Singh H. K., Isaacs A., Ray T.. A Pareto corner search evolutionary algorithm anddimensionality reduction in many-objective optimization problems [J]. IEEE Transactionson Evolutionary Computation,2011,15(4):539-556.
    [76] Reed P. M., Kollat J. B.. Save now, play later? multi-period many-objective groundwatermonitoring design given systematic model errors and uncertainty [J]. Advances in WaterResources,2012,35(1):55-68.
    [77] Lei D. M., Wang T.. An effective neighborhood search algorithm for scheduling a flow shopof batch processing machines [J]. Computer and Industrial Engineering,2011,61(3):739-743.
    [78] Figueira J. R., Tavares G., Wiecek M. M.. Labelling algorithms for multiple objectiveinteger knapsack problems [J]. Computer&Operations Research,2010,37(4):700-711.
    [79] Ursem R. K., Justesen P. D.. Multi-objective distinct candidates optimization: Locating afew highly different solutions in a circuit component sizing problem [J]. Applied SoftComputing,2012,12(1):255-265.
    [80] Ishibuchi H., Tsukamoto N., Nojima Y.. Evolutionary many-objective optimization: A shortreview [C]. Proc of IEEE Congress on Evolutionary Computation. New York: IEEE Press,2008:2419-2426.
    [81] Zou X. F., Chen Y, Liu M. Z., kang L.S.. A new evolutionary algorithm for solvingmany-objective optimization problems [J]. IEEE Transactions on Systems, Man, andCybernetics, Part B: Cybernetics,2008,38(5):1402-1412.
    [82] Carvalho A. B., Pozo A.. Analyzing the control of dominance area of solutions in particleswarm optimization for many-objective [C]. Proc of10th International Conference onHybrid Intelligent Systems. Berlin: Springer Verlag Press,2010:103-108.
    [83] Sato H., Aguirre H. E., Tanaka K.. Self-controlling dominance area of solutions inevolutionary many-objective optimization [C]. Proc of8th International Conference onSimulated Evolution and Learning. Berlin: Springer Verlag Press,2010:455-465.
    [84] Kukkonen S., Lampinen J.. Ranking-dominance and many-objective optimization [C]. Procof IEEE Congress on Evolutionary Computation. New York: IEEE Press,2007:3983-3990.
    [85] Aguirre H. E., Tanaka K.. A hybrid scalarization and adaptive ε-ranking strategy formany-objective optimization [C]. Proc of11th International Conference on Parallel ProblemSolving from Nature. Berlin: Springer Verlag Press,2011:11-20.
    [86] Zhou C., Zheng J. H., Li K., Lv H.. Objective reduction based on the least square methodfor large-dimensional multi-objective optimization problem [C]. Proc of5th InternationalConference on Natural Computation. Berlin: Springer Verlag Press,2009:350-354.
    [87] Murata T., Taki A.. Examination of the performance of objective reduction usingcorrelation-based weighted-sum for many objective knapsack problems [C]. Proc of10thInternational Conference on Hybrid Intelligent Systems. Berlin: Springer Verlag Press,2010:175-180.
    [88] Brockhoff D., Zitzler E.. Improving hypervolume-based multiobjective evolutionaryalgorithms by using objective reduction methods [C]. Proc of IEEE Congress onEvolutionary Computation. New York: IEEE Press,2007:2086-2093.
    [89] Lygoe R. J., Cary M., Fleming P. J.. A many-objective optimisation decision-makingprocess applied to automotive diesel engine calibration [C]. Proc of10th InternationalConference on Hybrid Intelligent Systems. Berlin: Springer Verlag Press,2010:638-646.
    [90] Sato H., Aguirre H. E., Tanaka K.. Pareto partial dominance MOEA and hybrid archivingstrategy included CDAS in many-objective optimization [C]. Proc of IEEE Congress onEvolutionary Computation. New York: IEEE Press,2010:3720-3727.
    [91] Ishibuchi H., Tsukamoto N., Nojima Y.. Empirical analysis of using weighted sum fitnessfunctions in NSGA-II for many-objective0/1knapsack problems [C]. Proc of11thInternational Conference on Computer Modelling and Simulation. Berlin: Springer VerlagPress,2009:71-76.
    [92] Lindroth P., Patriksson M., Str mberg A. B.. Approximating the Pareto optimal set using areduced set of objective functions [J]. European Journal of Operational Research,2010,207(3):1519-1534.
    [93] Lo’Pez J. A., Aguirre H. E., Tanaka K., Coello C. C. A.. Objective space partitioning usingconflict information for many-objective optimization [C]. Proc of11th InternationalConference on Parallel Problem Solving from Nature. Berlin: Springer Verlag Press,2011:657-666.
    [94] Lotov A. V., Bushenkov V. A., Lamenev G. K.. Interactive Decision Maps: Approximationand Visualization of Pareto Frontier [M]. NewYork: Kluwer Academic Publishers,2004.
    [95] Tenebaum J. B., Silva V., Langford J. C.. A global geometric framework for nonlineardimensionality reduction [J]. Science,2000,290(22):2319-2323.
    [96] Brockoff D. Zitzler E.. Are all objective necessary? on dimensionality reduction inevolutionary multi-objective optimization [C]. Proc of6th International Conference onParallel Problem Solving from Nature. Berlin: Springer Verlag Press,2006:533-542.
    [97] Fry B..Visualizing Data: Exploring and Explaining Data with the Processing Enviroment
    [M]. Sebastopol: O’Reilly Press,2007.
    [98] Obayashi S., Sasaki D.. Visualization and data mining of Pareto solutions usingself-organizing map [C]. Proc of2nd International Conference on EvolutionaryMulti-Criterion Optimization. Berlin: Springer Verlag Press,2003:796-809.
    [99] Pryke A., Mostaghim S., Nazemi A.. Heatmap visualization of population basedmulti-objective algorithms [C]. Proc of4th International Conference on EvolutionaryMulti-Criterion Optimization. Berlin: Springer Verlag Press,2007:361-375.
    [100] Sengupta A., Pal T. K.. On comparing interval numbers [J]. European Journal ofOperational Research,2000,127(1):28-43.
    [101] Zitzler E., Thiele L., Laumanns M., Fonseca C. M., Fonseca V. G.. Performance assessmentof multi-objective optimizers: An analysis and review [J]. IEEE Transactions onEvolutionay Computation,2003,7(2):117-132.
    [102] Knowles J., Corne D.. On metrics for comparing nondominated sets [C]. Proc of IEEECongress on Evolutionary Computation. New York: IEEE Press,2002:711-716.
    [103] Zitzler E., Thiele L.. Multi-objective optimization using evolutionary algorithms-Acomparative case study [C]. Proc of5th International Conference on Parallel ProblemSolving from Nature. Berlin: Springer Verlag,1998:292-301.
    [104] Emmerich M., Beume N., Naujoks B.. An EMO algorithm using the hypervolume measureas selection criterion [C]. Proc of3rd International Conference on EvolutionaryMulti-Criterion Optimization. Berlin: Springer Verlag Press,2005:62-76.
    [105] Bader J., Brockhoff D., Welten S., Zitzler E.. On using populations of sets in multi-objectiveoptimization [C]. Proc of5th International Conference on Evolutionary Multi-CriterionOptimization. Berlin: Springer Verlag Press,2009:140-154.
    [106] Zitzler E., Thiele L., Bader J., On set-based multiobjective optimization [J]. IEEETransactions on Evolutionary Computation,2010,14(1):58-79.
    [107] Berghammer R., Friedrich T., Neumann F.. Set-based multi-objective optimization,indicators, and deteriorative cycles [C]. Proc of Genetic and Evolutionary ComputationConference. New York: ACM Press,2011:1-8.
    [108]兰继斌,刘芳.区间数可能度的二维定义[J].数学的实践与认识,2007,37(24):119-123.
    [109]冯向前.区间数不确定多属性决策方法研究[D].南京:南京航空航天大学,2007.
    [110] While L., Hingston P., Barone L., Huband S.. A faster algorithm for calculatinghypervolume [J]. IEEE Transactions on Evolutionary Computation,2006,10(1):29-38.
    [111] Bader J., Zitzler E.. HypE: An algorithm for fast hypervolume-based many-objectiveoptimization [J]. Evolutionary Computation,2011,19(1):45-76.
    [112] Chiang A. C., Wainwright K.. Fundamental Methods of Mathematical Economics (FourthEdition)[M]. New York: McGraw-Hill Press,2005.
    [113] Takagi H.. Interactive evolutionary computation: Fusion of the capabilities of ECoptimization and human evaluation [C]. Proc of IEEE. New York: IEEE Press,2001:1275-1296.
    [114] Miettinen K., Makela M. M., Kaario K.. Experiments with classification-based scalarizingfunctions in interactive multiobjective optimization [J]. European Journal of OperationalResearch,2006,175(2):931-947.
    [115] Narula S. C., Kirilov L., Vassilev V.. Reference direction approach for solving multipleobjective nonlinear programming problems [J]. IEEE Transactions on System, Man, andCybernetics,1994,24(5):804-806.
    [116] Geoffrion A., Dyer J., Feinberg A.. An interactive approach for multicriterion optimizationwith an application to the operations of an academic department [J]. Management Science,1972,19:357-368.
    [117] Sun J., Gong D. W., Sun X. Y.. Solving interval multi-objective optimization problemsusing evolutionary algorithms with preference polyhedron [C]. Proc of Genetic andEvolutionary Computation Conference. New York: ACM Press,2011:729-736.
    [118]周勇,巩敦卫,张勇.混合性能指标优化问题的进化优化方法及应用[J].控制与决策,2007,22(3):352-356.
    [119] Zitzler E.. Evolutionary algorithms for multiobjective optimization: Methods andapplications [D]. Zurich: Swiss Federal Institute of Technology,1999.
    [120] Konak A., Coit D. W., Smith A. E..Multi-objective optimization using genetic algorithms:A tutorial [J]. Reliability Engineering and System Safety,2006,91(9):992-1007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700