基于“软性”液—固两相磨粒流的模具结构化表面光整加工的工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
模具制造中存在大量的细小结构化表面,受尺寸形状限制,难以使用工具进行接触式光整加工,为此,提出一种基于“软性”磨粒流的模具结构化表面光整加工新方法,其特色为:1)设计约束模块与结构化表面组合,构成特定形状的磨料流道,利用软性磨粒流弱黏或无黏特点,使其在流道中形成湍流流动,并可流入任何复杂截面流道,与壁面形成良好接触;2)利用湍流中磨粒对壁面的频繁微力微量切削实现光整加工,切削方向的随机性消除了表面纹理的明显方向趋势,有助于实现镜面级加工;3)磨粒在流动中受流道约束,对表面进行反复碰撞,可有效提高加工效率。本文研究的内容主要包括以下几个部分:
     1)本文介绍了“软性”液-固两相磨粒流精密光整加工的研究意义,并概括了国内外该方面的研究现况,提出了基于“软性”液—固两相磨粒流的模具结构化表面光整加工的方法,并分析了其原理。根据原理设计并加工了试验平台和约束模块。
     2)给出了“软性”液—固两相磨粒流加工的控制方程,设计了矩形截面流道,并对矩形截面流道以及管道等进行一系列的Fluent仿真,包括压力场和速度场的仿真,不同矩形截面流道的数值模拟等。
     3)最后在加工完成的试验平台和约束模块上进行了一系列的验证试验,验证了其原理的正确性和该方法的可行性。然后进行了基于正交试验法的九组工艺试验,并对试验数据进行了分析,得到了系统脉冲压力峰值P,抛光时间T,流量qv等3个参数对加工效果的影响曲线。从试验中得到结论,三个因素对试验结果的影响主次顺序为:脉冲压力峰值>抛光时间>设定流量,从试验最优条件组合可以得知,较大脉冲压力峰值P为,较长抛光时间T和较大设定流量qv可以得到较好的加工效果。最后根据试验数据推导出经验公式。
There are a lot of tiny structural surfaces in mould manufacture. They can't be polished by tools because of the little size or the shape. Therefore, a new method of the technologic research of mould structural surface polishing processing based on flexible liquid-solid two phase abrasive flow is brought forward. The characteristic of this method are: 1) The special flow passage is formed from the designed restricted module in combination with the structural surface. Based on the low viscosity or zero viscosity of the flexible abrasive flow, the turbulent flow is formed in the flow passage, and flow into any complicated section flow passage. The walls of the mould is well touched by the flow; 2) The polishing machining based on the frequent low-strength low-speed cutting by the abrasive grain of turbulent flow to the wall of work piece is good for the mirror finishing, because the random of the cutting direction eliminates the direction tendency of surface veins. 3) Abrasive grains are restricted by the flow passage. They hit the surface again and again. The processing efficiency is availability improved. In this paper introduced:
     1) The research meaning of the mould structural surface polishing processing based on flexible liquid-solid two phase abrasive flow is introduced. The research situation at home or abroad is gathered up. And the mould structural surface polishing processing based on flexible liquid-solid two phase abrasive flow is brought forward while the principle of this method is analyzed. Based on the principle, the experiment platform and the restricted module are designed and processed.
     2) Then the control equation is given. Design the rectangle path in the restricted module while a series of Fluent emulation the rectangle paths and the pipes are worked out, including the analyze of the pressure field, the emulation of the speed field and the numerical simulation of different flow passage. The abrasive grains are dynamics analyzed systematic.
     3) Finally, a series of proof experiments are done using the platform and restricted module which shows the principle of this method is right and the polishing processing method is useful. 9 groups of technologic experiments based on the orthogonal experiments method are done. Working on the results of these experiments, the curve charts showing the influences of the top system impulse pressure P, the polishing time T, and the flow rate qv to the processing effect are worked out. The influence level of the 3 elements to the effect of polishing goes to: the top system impulse pressure P> the polishing time T> the flow rate qv. From assembling the best experiment condition shows: the larger top system impulse pressure, the longer polishing time and the bigger flow rate, the better experiment result. The experience formula is worked out.
引文
[1]熊惟皓,郑立允,杨青青.模具表面处理与表面加工[M].化学工业出版社,2007.1.
    [2]陈锡栋.模具精饰加工及表面强化处理技术[M].机械工业出版社,2002.2.
    [3]Brinksmeier E.Polishing of structured molds[C].CIRP Annals-Manufacturing Technology,2004,53(1)247-250.
    [4]Brinksmeier E.Finishing of structured surfaces by abrasive polishing[J].Precision Engineering,2006,30(3):325-336.
    [5]Cai G Q,lu Y S,Cai R,et al.Analysis on lapping and polishing pressure distribution[C].Annals of the CIRP.1998,47(1):235-238.
    [6]Weule H,S E W.Automation of the surface finishing in the manufacturing of dies and[C].Annals of the CIRP.1990,39(1):299-303.
    [7]Liu H T.To speed up robotic mold polishing by hard tools[C].Proceedings of the IEEE international conference on Industrial Technology.1996,10:513-516.
    [8]丁金福,李伟,虞付进等.模具自由曲面抛光过程的分析与研究[J].模具工业.2006,32(9):66-70.
    [9]周永泰.中国模具工业的现状与发展[J].航空制造技术.2007(12):37-39.
    [10]Tom Kohut,Surface finishing with abrasive flaw machining[J],SME technical paper.1989:35-43.
    [11]H.E.Williams,K.P.Hajurkar.Stochastic modeling and analysis of abrasive flaw machining[J].Trans.ASME Eng.Ind.1992,114:74-81.
    [12]T.k.Loveless,k.E.Williams,K.P.kajurker.A study of the effects of abrasive flow machining on various machined surfaces[J],Journal of Materials Processing Technology.1994,47:133-151.
    [13]V.K.Jain,S.G.Adsul.Experimental investigations into abrasive flow machining(AFM)[J].International Journal of Machine Tools & Manufacture,2000,40:1003-1021.
    [14]方慧,郭培基.液体喷射抛光材料去除机理的研究[J].光学技术,2004,Vol.30,p.248-250.
    [15]Wm I Kordonski.Adaptive Structures Based on Magnetorheological Fluids[C],Proc 3rd Int.Conf.,Adaptive Struct.San Diego,1992.
    [16]Prokhorov I V,Kordonski W I.New high-precision magnetorheological instruments-based method of polishing optics[J].QSA OF&T Workshop Digest,1992,24:134-135.
    [17]Kordonski W I,Jacobs S D.Magnetorheological finishing[J].International Journal of Modem Physics B,1995,10:2837-2848.
    [18]张学成,戴一帆,李圣怡.磁射流抛光中磁场的分析与设计[J].航空精密制造技术,2006,42(1):12-15.
    [19]T.Ku riyagawa,M.Saeki,K.Syoji.Electrorheological fluid-assisted ultra-precision polishing for small three-dimensional parts[J].Journal of the International Societies for Precision Engineering and Nanotechnology,2002,26:370-380.
    [20]赵雪松,高洪.精密模具超声电解复合抛光试验研究[J].农业机械学报,2004,Vol.35,p.188-190.
    [21]章伟,陈澄洲,张发英.电解、磨粒、超声复合加工技术及其加工表面粗糙度的预测方法[J].工具技术,1998,Vol.32,p.20-23.
    [22]Ji Zhao,Jianming Zhan,Rencheng din,Minzhong Tao.An oblique ultrasonic polishing method by robot for free-form surfaces[J].International Journal of Machine Tools & Manufacture,2000,40:795-808.
    [23]张雷,袁楚明,陈幼平等.模具曲面机器人抛光工艺过程的建模与仿真[J].华中科技大学学报,Vol.29,p.50-52.
    [24]张永俊,罗进生,刘志宏.机器人机械电解抛光曲面运动仿真[J].现代机械,2001,No.3,p.27-29.
    [25]高波,谢大纲,姚英学等.气囊式工具抛光新技术[J].光学技术,2004,Vol.30,p.333-335.
    [26]高波,姚英学,谢大纲等.气囊式工具的研制及特性测试[J].现代制造工程,2004,No.10,p.52-54.
    [27]Shiming Ji,Qiaoling Yuan,Li Zhang et al.Study of the removing depth of the polishing surface based on a novel spinning-inflated-ballonet polishing tool[J].Materials Science Forum,2006,Vol.532-533:452-455.
    [28]Shiming Ji,Mingsheng Jin,Li Zhang et al.Design of spinning-inflated-gasbag polishing tool and its automated system for free-form mould[J].WSEAS Transactions on Systems,2006,Vol.5:1448-1454.
    [29]张峰,潘守甫,张学军.磁流变抛光材料去除的研究[J]_光学技术.2001,Vol.27,p.522-525.
    [30]程灏波,冯之敬,王英伟.超光滑光学表面的磁性类Bingham流体确定性抛光[J].科学通报,2005,50(1):84-91.
    [31]康桂文,张飞虎.精密磁流变抛光机床的研制[J].制造技术与机床,2005,(7):47-49.
    [32]彭小强,戴一帆,李圣怡.磁流变抛光中的磁场与磁流变液缎带成型分析[J].高技术通讯,2004,(4):58-60.
    [33]张学成,戴一帆,李圣怡.磁射流抛光中磁场的分析与设计[J].航空精密制造技术,2006,42(1):12-15.
    [34]毕非凡,阎秋生.电流变液性能分析及用于微器件精细加工的基础研究[J].金刚石与磨料磨具工程,2005,146(3):49-53.
    [35]汤勇,周德明,杨钢.磨料流光整加工性研究[J].华南理工大学学报(自然科学版),2001,29(9): 17-19.
    [36]汤勇,周德明,夏伟.磨料流加工壁面滑动特性的研究[J].华南理工大学学报(自然科学版),2001,29(1):34-36.
    [37]聂先桥,杨建明.磨料流加工磨焖流动边界条件的确定[J].机械制造,2001,39(10):9-11.
    [38]方慧,郭培基.液体喷射抛光时各工艺参数对材料去除量的影响[J].光学技术,2004,Vol.30,p.440-442.
    [39]李长河,修世超,李琦等.磨料喷射光整加工机理及在机械领域中的应用[J].机械制造,2004,42(8):18-21.
    [40]Kurobe T.,Yarnada Y.,Yarnarnoto K.,Miura T.High speed slurry flow finishing of inner wall of stainless steel capillary[J].Int.J.Japan Soc.Prec.Eng.,1998,32(1):39-40.
    [41]T.Kurobe,Y.Yamada,K.Yamamoto.Development of high speed slurry flow finishing of the inner wall of stainless steel capillary[J].Journal of the International Societies for Precision Engineering and Nanotechnology,2001,25:100-106.
    [42]王昊利,王元,刘江.平板微通道表面粗糙度对流场影响的摄动分析[J].西安交通大学学报,2005,39(5):540-543.
    [43]刘小兵,程良骏.固液两相湍流和颗粒磨损的数值模拟[J].水利学报,1996,(11):20-27.
    [44]刘小兵,梁柱,程良骏.高浓度固液混合流的湍流模型[J].水利水运科学研究,1996,(1):15-23.
    [45]刘小兵,程良骏.湍流边界层中固体颗粒运动的数值模拟[J].上海力学,1996,17(1):54-60.
    [46]刘小兵,程良骏.湍流边界层中固体小颗粒湍流运动的Lagrangian模型[J].应用数学和力学,1997,18(3):277-284.
    [47]崔桂香,张兆顺.圆管湍流的近壁涡结构[J].空气动力学学报,2000,增刊:10-14.
    [48]D Moreton,R Durnford.Three-dimensional tool compensation for a three-axis turning center[J].Int.J.Adv.Manuf.Technol.1999(15):649-654.
    [49]H.h.Tsai,H.Hocheng.Monitoring strategy of thermal-induced convex deformation of workpiece in surface grinding[J].Adv.Manuf.Technol.2001(17):710-714.
    [50]Guillot A E.Accuracy enhancement of multi-axis CNC machines through on-line neuro compensation [J].Intelligent Manuf.2000,11(6):535-545.
    [51]H.k.Tonshoff B K A C R.Process monitoring in grinding using micromagnetic techniques[J].Adv.Manuf.Technol.1999(15):694-698.
    [52]Jain V K,Adsul S G.Experimental Investigations into Abrasive Flow Machining(AFM)[J].International Journal of Machine Tools & Manufacture,2000,40(7):1003-1021.
    [53]刘小兵,程良骏.固液两相流中的k-ε双方程湍流模式[J].应用数学和力学,1996,17(6),497-505.
    [54]杨建明,聂先桥.磨料流在工件孔腔中的流动特性分析[J].淮海工学院学报,Vol.9,No.2,2000:7-13.
    [55]谭援强,李艺,Sheng Yong.磨粒流加工的固液两相流模型及压力特性模拟[J].中国机械工程,2008,4(2):439-441.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700