硼氧及硼金团簇结构与性质的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
借助理论方法预测新颖团簇的结构和性质是计算化学的主要任务之一。理论计算在促进团簇化学自身发展的同时,也可以为实验合成新型材料提供新的探索方向。20世纪80年代,等瓣相似性(Isolobal Analogy)理论的提出极大地促进了原子簇化学的发展。论文围绕BO、BS自由基及Au原子与H原子的等瓣相似性,对新颖硼氧团簇、硼硫团簇及硼金团簇的结构和性质进行了系统探讨,研究结果对硼团簇发展具有重要意义。
     本论文采用密度泛函理论和波函数方法对硼氧、硼硫、硼金及铝金团簇的阴离子和中性分子的几何结构、电子结构、成键特征、热稳定性进行了理论研究,并计算了阴离子基态结构的电子剥离能,为其光电子能谱实验表征提供依据。主要研究内容及结论如下:
     1富硼硼氧团簇(B5O4-/0)结构和性质的理论研究
     用DFT-B3LYP和MP2(Full)方法对硼氧团簇B5O4-/0的几何结构和电子结构进行了系统研究。计算结果表明B5O4-阴离子的基态结构是一个完美的正四面体(B(BO)4-),每个BO自由基以端基方式与中心B原子形成σ键,其成键方式与BH4-类似,进一步证明了BO/H的等瓣相似性。而B5O4中性分子的基态结构则接近于平面构型,对称性为Cs,其中含三个端基-BO,一个-O-桥氧。当TdB5O4-失去一个电子时,其中一个BO基团在分子内部发生转移形成CsB5O4中性分子。计算表明TdB5O4-阴离子的垂直单电子剥离能很高(VDE=7.32-7.85 eV),在2000cm-1处有-B=O基团的伸缩振动特征峰。在B5O4-团簇基态结构基础上,进一步引入碱金属Li+反离子生成中性“盐”B5O4Li。计算结构参数、偶极矩值等证明B5O4-是稳定的结构单元,以“超原子”形式存在于中性盐分子中。本工作提供了以B5O4-为结构单元形成硼羰基晶体材料的可能性。
     2富氧硼氧团簇(B204-/0、B30440、B3O5-/0和B306-/0)结构和稳定性的理论研究
     在DFT-B3LYP和CCSD(T)//B3LYP水平上首次对富氧的硼氧团簇B2O4-/0、B3O4-/0、B3O5-/0、B3O6-/0的结构和稳定性进行了理论探索。研究结果表明,富氧团簇阴离子和中性分子的基态结构存在较大差别,BO3三角形结构单元、-BO端基及-O-氧桥在这些结构中共存并相互竞争。富氧微团簇倾向于形成BO3三角形平面结构单元,这一趋势与硼氧化物的最稳定块体结构-B2O3玻璃体的结构特点相一致。对富氧硼氧团簇的研究结果有待实验验证。
     3硼硫团簇(B4S20/-/2-和B5S40/-)结构和稳定性的理论研究
     采用DFT-B3LYP和CCSD(T)//B3LYP方法对B2(BS)20/-/2-和B(BS)40/-的几何结构和电子性质进行了研究。计算结果表明B2(BS)2-([S=B-B≡B-B=S]-)(D∞h,2Πu)和B2(BS)22-([S=B-B≡B-B=S]2-)(D∞h,1∑g+)的基态结构均为完美的线性结构,即以含有多重键的BB单元(B≡B或者B≡B)为中心,两端各与一个BS基团连接;而TdB(BS)4-阴离子的基态是完美的正四面体构型,四个BS自由基以端基方式与B中心形成等价的四个σ键。这些结构分别与相应的D∞h B2H2-、D∞h B2H22-及Td BH4-硼氢化物类似,表明BS/H也具有等瓣相似性。然而,B4S2和B5S4中性分子结构与其阴离子差别很大:B4S2中性分子基态结构呈平面扇形(含两个相邻的-S-桥硫);B5S4中性分子基态结构类似于风筝(B3三角形基团连两个-BS端基和两个桥硫-S-)。另外,计算了D∞hB2(BS)2-和TdB(BS)4-的电子剥离能和对称性伸缩振动频率,为其实验表征提供依据。本文初步探讨了在实验上合成含有B≡B三重键的B2(BS)2Li2和以B-为四面体中心的B(BS)4Li两种无机盐的可能性。
     4硼金(B2Aun-/0(n=1,2,3,5))及铝金(Al2Aun-/0(n=1,3,5))团簇的结构及性质研究
     采用DFT-B3LYP、MP2和CCSD(T)方法首次预测了缺电子体系B2Aun-/0(n=1,3,5)及其混合团簇B2HmAun-(m+n=3,5)的几何和电子结构,证明桥金(Bridging Gold)存在于C2v,B2Au-(1A1)、C2B2Au3-(1A)、C2v B2Au3(2B1)、C2v,B2Au5-(1A1)和CsB2Au5(2A")体系的基态结构中,即这些体系中均含有一个B-Au-B三中心二电子键(3c-2e)。在B2HmAun-(m+n=3,5)混合团簇中,通过对异构体稳定性的比较发现B-Au-B桥键比B-H-B桥键更稳定。对B-Au-B三中心二电子键的轨道组成分析表明Au 6s轨道对Au杂化轨道的贡献为92%-96%,5d轨道的贡献为8%-4%。同时,用密度泛函方法对Al2Aun-/0(n=1,3,5)团簇做了对比研究,发现虽然铝金团簇中也能形成Al-Au-Al桥键,然而各体系的基态结构与B2Aun差别较大。在Al-Au-Al键的轨道组成中,Au的6s轨道占Au杂化轨道的98%以上,5d轨道的贡献不到2%。本文还计算了阴离子的ADE和VDE值。
     其次,采用类似的方法对B2Au20/-/2-在不同价态下的几何结构和电子性质进行了研究,发现这三个体系的基态结构都包含多重键的BB单元,分别以直线Au-B=B-Au和链状[Au-B=B-Au]-和[Au-B≡B-Au]2-的形式存在。
One of the main tasks of computational chemistry is to predict the structures and properties of novel clusters. Computational chemistry also provides new directions for synthetical chemistry and material science. The proposal of isolobal analogy by Hoffmann in 1981 has promoted the development of cluster chemistry since then. This thesis focuses on the isolobal analogies between-BO,-BS, Au atom and H atom based on intensive theoretical investigations on the binary boron oxide, boron sulfur, and boron gold clusters which are of great significance for the development of boron clusters.
     A systematic density functional theory and wave function theory investigation on the geometrical structure, electronic structure, bonding character and thermodynamic stabilities of B-O, B-S, B-Au and Al-Au clusters has been performed in this thesis. The adiabatic and vertical detachment energies of the concerned anions have been calculated to facilitate their future experimental characterizations. The main contents and results are as follows:
     1 Theoretical Investigations on Structures and Properties of Boron-rich Boron-Oxide clusters (B5O4-/0)
     A density functional theory and wave function theory investigation on the geometrical and electronic structures of B5O40/- clusters has been performed. B5O4- anion proves to possess a perfect tetrahedral ground state of Td B(BO)4- (1A1) analogous to BH4- with four equivalent-BO terminals around the B center, while B5O4 neutral favors a slightly off-planed Cs B(BO)4 (2A') which contains three-BO terminals and one-O-bridge. An intramolecular BO radical transfer occurs from Td B(BO)4 to Cs B(BO)4 when one electron is detached from the anion. The one-electron detachment energies of the B(BO)4- anion and the characteristic stretching vibrational frequencies of-B=O groups at about 2000 cm-1 have been calculated to facilitate future experimental characterization of these clusters. A neutral B(BO)4-Li+ ion-pair is formed when a countercation Li+ is incorporated. Tetrahedral B5O4- is a stable structure unit as evidence by the calculated structural parameters and dipole moment. Therefore, B5O4-, which behaves like a superatom, can be used as a building block to construct new solid state materials.
     2 Theoretical Investigations on Structures and Stabilities of Oxygen-rich Boron-Oxide clusters (B2O4-/0, B3O4-/0, B3O5-/0 and B3O6-/0)
     The structures and stabilities of the oxygen-rich B2O4-/0, B3O4-/0, B3O5-/0, and B3O6-/0 binary clusters have been investigated for the first time at both DFT-B3LYP and CCSD(T)//B3LYP levels. The ground-state structures of the anions and their neutrals appear to be much different, with the triangular BO3 unit, terminal-BO, and bridging-O-coexisting and competing with one another. The preference of BO3 planar triangles in O-rich microclusters agrees with the structural character of the glassy B2O3 which represents the most stable boron oxide in the bulk. The results obtained for O-rich boron clusters invite experimental confirmations.
     3 Theoretical Investigations on Structures and Stabilities of Boron-Sulfur clusters (B4S20/-/2- and B5S40/-)
     A density functional theory investigation on the geometrical and electronic properties of B4S20/-/2-(B2(BS)20/-/2-) and B5S40/- (B(BS)40/-) clusters has been performed in this work. Both the doublet B2(BS)2-([S=B-B(?)B-B=S]-) (D∞h,2Πu) and singlet B2(BS)22- ([S=B-B=B-B=S]2-) (S∞h,1Σg+) proved to have perfect linear ground-state structures containing a multiply bonded BB core (B(?)B or B=B) terminated with two BS groups, while Td B(BS)4- turned out to possess a perfect tetrahedral B center directly corrected to four BS groups, similar to the corresponding boron hydride molecules of D∞h B2H2-, D∞h B2H22-, and Td BH4-, respectively. B4S2 and B5S4 neutrals, however, appeared to be much different:they favor a planar fan-shaped C2v B4S2 (a di-S-bridged B4 rhombus) and a planar kite-like C2v B5S4 (a di-S-bridged B3 triangle bonded to two BS groups), respectively. One-electron detachment energies and symmetrical stretching vibrational frequencies are calculated for D∞h B2(BS)2- and Td B(BS)4- monoanions to facilitate their future characterizations. Neutral salts of B2(BS)2Li2 with a elusive B=B triple bond and B(BS)4Li containing a tetrahedral B- center are predicted possible to be targeted in future experiments.
     4 Theoretical Investigations on Structures and properties of Boron-Gold clusters (B2Aun-/0 (n=1,2,3,5)) and Aluminum-Gold clusters (Al2Aun-/0 (n=1,3,5))
     A systematic density functional theory and wave function theory investigation on the geometrical and electronic structures of the electron-deficient diboron aurides B2Aun-/0 (n=1,3,5) and their mixed analogues B2HmAun-(m+n=3,5) has been performed in this chapter. Ab initio theoretical evidences strongly suggest that bridging gold atoms exist in the ground states of C2v B2Au-(1A1), C2 B2Au3-(1A), C2v B2Au3(2B1), C2v B2Au5-(1A1), and Cs B2Au5(2A") which all prove to possess a B-Au-B three-center-two-electron (3c-2e) bond. For B2HmAun- (m+n=3,5) mixed anions, bridging B-Au-B units appear to be favored in energy over bridging B-H-B, as demonstrated by the fact that the Au-bridged C2v B2H2Au- (1A1), Cs B2HAu2- (1A'), and C, B2HAu4- (1A) lie clearly lower than their H-bridged counterparts Cs B2H2Au-(1A'), C2 B2HAu2-(1A), and C2v B2HAu4- (1A1), respectively. Orbital analyses indicate that Au 6s makes about 92-96% contribution to the Au-based orbitals in these B-Au-B 3c-2e interactions, while Au 5d contributes 8-4%. The adiabatic and vertical detachment energies of the concerned anions have been calculated to facilitate their future experimental characterizations. We have done a compare research on Al2Aun-/0 (n=1,3,5) clusters at DFT-B3LYP, finding that although there is bridging Al-Au-Al units in AlAu clusters, the ground state structures are different from B-Au systems. Au 6s makes more than 98% contribution to the Au-based hybridized orbitals, while Au 5d contributes less than 2%.
     The geometrical and electronic structures of B2Au20/-/2- have also been explored. Their ground states proved to cantain a multiply bonded BB core, in the forms of linear Au-B=B-Au and chained[Au-B三B-Au]- and [Au-B≡B-Au]2-.
引文
[1]刘然,薛向欣,等.硼及其硼化物的应用现状与研究进展[J].材料导报,2006,20:1-4.
    [2]李要辉,梁开明.硼及其硼化物在材料研究中应用进展辽宁建材,2006,6:35-38.
    [3]Lipscomb W L, Bebjamin W A. Boron Hydrides. New York,1963.
    [4]Meutterties E L. Boron Hydride Chemistry Academic, New York,1975.
    [5]Cotton F A, Wilkinson G, Murillo C A, Bochmann M. Advanced Inorganic Chemistry 6th edn, Wiley, New York,1999.
    [6]Smith K. Boron's molecular gymnastics [J]. Nature,1990,348:115-116.
    [7]Jemmis E D, BalakrishnarajanM M, Pancharatna P D. Electronic requirements for macropolyhedral boranes [J]. Chem Rev,2002,102:93-144.
    [8]Proceedings of the 13th international symposium on boron, borides, and related compounds(ISBB'99) [J]. J Solid State Chem,2000,154:1-32.
    [9]Perkins C L, Trenary M, Tanaka T. Direct observation of (B12)(B12)12 supericosahedra as the basic structural element in YB66 [J]. Phys Rev Lett,1996,77:4772-4775.
    [10]Hubert H. Icosahedral packing of B12 icosahedra in boron suboxide (B6O) [J]. Nature, 1998,391:376-378.
    [11]Boustani I. Systematic LSD investigation on cationic boron clusters-Bn+(n=2-14) [J]. Int J Quantum Chem,1994,52:1081-1111.
    [12]Boustani I. Structure and stability of small boron clusters. A density functional theoretical study [J]. Chem Phys Lett,1995,240:135-140.
    [13]Ricca A, Bauschlicher C W. The structure and stablity of Bn+ clusters [J]. Chem Phys, 1996,208:233-242.
    [14]Boustani I. Systematic ab inotio investigation of bare boron clusters:determination of the geometrical and electronic structures of Bn(n=2-14) [J]. Phys Rev B,1997,55: 16426-16438.
    [15]Gu F L, Yang X, Tang A C, Jiao H, Schleyer P R. Structure and stability of B13+
    cluster [J]. J Comput Chem,1998,19:203-214.
    [16]Fowler J E, Ugalde J M. The curiously stable B13+ cluster and its neutral and anionic counterparts:the advantages of planarity [J]. J Phys Chem A,2000,104:397-403.
    [17]Zhai H J, Boggavarapu K, Li J, Wang Lai sheng. Hydrocarbon analogues of boron clusters-planarity:aromaticity and antiaromaticity [J]. Nature,2003,2:827-833.
    [18]Bartow D. Systematization and structures of the boron hydrides [J]. Adv V Chem Ser, 1961,5:32-35
    [19]Hermanek S. Chem Rev, Boron Chemistry Introduction,1992,92:p175.
    [20]Stock A. Hydrides of Boron and Silicon, Cornell University press, Ithaca, New York, 1933.
    [21]Schlesinger H I, Burg A B.Hydrides of boron. Ⅰ. an efficient new method of preparing diborane; new reactions for preparing bromoo-diborane and the stabler pentAaborane b5h9 [J]. J Am Chem Soc 1931,53:4321-4332.
    [22]Schlesinger H I, Sanderson R T, Burg J. Metallo Borohydrides.Ⅰ. Aluminum Borohydride [J]. J Am Chem Soc,1940,62:3421-3425.
    [23]Burg A B, Schlesinger H I. Metallo Borohydrides. Ⅱ. Beryllium Borohydride [J]. J Am Chem Soc,1940,62:3425-3429.
    [24]Schlesinger H I, Brown H C. Metallo Borohydrides. Ⅲ Lithium Borohydride [J]. J Am Chem Soc,1940,62:3429-3435.
    [25]Schlesinger H I, Brown, H C. New Developments in the Chemistry of Diborane and the Borohydrides. I General Summary [J]. J Am Chem Soc,1953,75:186-190.
    [26]Schlesinger H I, Brown H C. Uranium(Ⅳ) Borohydridel [J]. J Am Chem Soc,1953, 75:219-221.
    [27]Greenwood N N, Earnshaw A. Chemistry of the Elements, Pergamon Press, London, 1984.
    [28]Tang S Q, Ding H X.硼氢化合物作为固体推进剂高燃速调节剂的最新进展。Prop. Technol.1983,2,35-51.
    [29]Longuet-Higgins H C. Some Studies in Molecular Orbital Theory Ⅲ. Substitution in Aromatic and Heteroaromatic Systems [J]. J Chem Phys,1949,46:283-291.
    [30]Lipscomb W N. The Boranes and Their Relatives [J]. Science,1977,196:1047-1055.
    [31]Shapiro I, Good C D, Williams R E. The Carborane Series:BnC2Hn+2.I B3C2H5 [J]. J Am Chem Soc,1962,84:3837-3840.
    [32]Williams R E, Greenwood N N. Early Carboranes and their Structural Legacy [J]. Adv Organomet Chem,1994,36:1-55.
    [33]Mcginnety J A. Reactions of decaborane with adducts of aluminium and gallium hydride [J]. Chem Commun (London),1965,331-335.
    [34]Hawthorne M F, Young D C, Wegner P A. Carbametallic Boron Hydride Derivatives. I. Apparent Analogs of Ferrocene and Ferricinium Ion [J]. J Am Chem Soc,1965,87: 1818-1819.
    [35]Williams R E. Carboranes and boranes; polyhedra and polyhedral fragments[J]. Inorg Chem,1971,10:210-214.
    [36]Williams R E. Coordination Number Pattern Recognition Theory of Carborane Structure [J].Adv Inorg Chem Radiochem,1976,18:67-142.
    [37]Wade K J. The structural significance of the number of skeletal bonding electron-pairs in carboranes, the higher boranes and borane anions, and various transition-metal carbonyl cluster compounds [J]. Chem Soc D:Chem Commun,1971, 792-794.
    [38]Wade K. Structural and Bonding Patterns in Cluster Chemistry [J]. Adv Inorg Chem Radiochem 1976,18:1-66.
    [39]Mingos D M. Polyhedral skeletal electron pair approach [J]. Acc Chem Res,1984,17: 311-319.
    [40]Rudolph R W, Pretzer W R. Hueckel-type rules and the systematization of borane and heteroborane chemistry [J]. Inorg Chem,1972,11:1974-1978.
    [41]Rudolph R W Boranes and heteroboranes:a paradigm for the electron requirements of clusters? [J]. Acc Chem Res,1976,9:446-452.
    [42]Lu J X. Proceedings of the Chinese Chemical Society (1978), Science Press, Beijing, 1981.
    [43]Tang A Q, Li Q S, Wu R Z. On The Structual Rule of Boranes [J].Acta Chim Sinica, 1984,42:427-433 (in Chinese).
    [44]Chen Z D, Xu G X. Structural Rules of Clusters and Related Molecules Ⅲ. Electronic Structure of Boranes, Carboranes, Cubane and Prismane [J]. Acta Chim. Sinica,1984,42:514 (in Chinese).
    [45]Zhang Q E, Lin L T, Wang Q N, Lai G T. Theoretical Method of Polyhedral Molecular Orbital Ⅲ Skeletal Bonding MOs of Structural Polyhedron [J]. Xiamen Univ (Nat Sci),1981,20:226-230.
    [46]朱龙根,游效曾,任彤,曾似慧。一些硼烷分子的自然杂化轨道研究。科学通报,1987,33:277-280.
    [47]Hoffmann R. Building Bridges Between Inorganic and Organic Chemistry [J]. Angew Chem Int Ed Engl,1982,21:711-724.
    [48]Bruce G, John O O. Synthetically useful reactions with metal boride and aluminide catalysts Synthetically useful reactions with metal boride and aluminide catalysts [J]. Chem Rev,1986,86:763-780
    [49]Gribble GW. Sodium borohydride in carboxylic acid media:a phenomenal reduction system. Chem Soc Rev [J],1998,27:395-404.
    [50]Carey F A, Sundberg R J Auths(著).WANG J T(王积涛)Transl(译).Advanced Organic Chemistry (Part B)(高等有机化学(B卷))[M] Beijing(北京):Higher Education Press(高等教育出版社),1986.
    [51]Ege S N. Organic Chemistry,3rd [M]. Lexington:D C Health and Company,1994, p510.
    [52]Chary K P, Rohan G H, Iyengar D S. A Novel and Efficient Deoxygenation of Hetero Cyclic N-Oxides Using ZrCl4/NaBH4 [J]. Chem Lett [J],1999,12:1339-1349.
    [53]Liu W Y, u Q H,Ma Y X. Silica gel promoted solvent-free synthesis of arylcarbinols and ferrocenylcarbinols [J].Org Prep ProccedInt,2000,32 (6):596-601.
    [54]Akisanya J, anks T N, Garman R N. Reaction of (1-azabuta-1,3-diene) tricarbonyliron(0) complexes with sodium borohydride under microwave conditions. J Organomet Chem [J],2000,603:240-243.
    [55]Woodward L A, Roberts H L. Raman effect of the borohydride ion in liquid ammonia [J].J Am Chem Soc,1956,1170-1172.
    [56]Taylor R C, Schultz D R, Emery A R. Raman Spectroscopy in Liquid Ammonia Solutions. The Spectrum of the Borohydride Ion and Evidence for the Constitution of the Diammoniate of Diborane [J]. J Am Chem Soc,1958,80:27-30.
    [57]Francisco J S, Williams I H. Structural and spectral consequences of ion pairing.4. Theoretical study of alkali metal tetrafluoroborates (M+BF4-; M=lithium, sodium, potassium, and rubidium) [J]. J Phys Chem,1990,94:8522-8529.
    [58]Pan D A, Zhao C D and Zheng Z X. The Structure of Matter [J]. Beijing:People's Education Press,1982.
    [59]Dunbar RC. Ion-molecule chemistry of diborane by ion cyclotron resonance [J]. J Am Chem Soc,1968,90:5676-5682.
    [60]Ruscic B, Schwarz M and Berkowitz J. Structure and bonding in the B2H5 radical and cation [J]. J Chem Phys,1989,91:4183-4188.
    [61]Larry A C, Pople J A. Theroretical study of B2H3+, B2H2+,B2H+. [J]. J Chem Phys, 1999,91:4809-4812.
    [62]Krempp M, Damrauer R and Depuy C H. Gas-phase ion chemistry of boron hydride anions [J]. J Am Chem Soc,1994,116:3629-3630.
    [63]Chen G J and Ma X K. Chemical Bonds in B2H6 [J]. Chemistry,1998,6:61-63.
    [64]Liu J, Aeschleman J, Rajan L M, Che C, Ge Q. in Materials Issues in A Hydrogen Economy, Ed. By Jena P.; Kandalam A.; Sun Q. World Scientific Publishing Co Ptc Ltd, Singapore,2009.
    [65]Hanley L, Anderson S L. Oxidation of small boron cluster ions (B+1-13) by oxygen [J]. J Chem Phys,1988,89:2848-2860.
    [66]Jhi S H, Kwon Y K, Bradley K, Gabriel J C. Hydrogen storage by physisorption: beyond carbon [J]. Solid State Communications,2004,129:769-773.
    [67]Burkholder T R, Andrews L. Reactions of boron atoms with molecular oxygen. Infrared spectra of BO, BO2, B2O2, B2O3, and BO2- in solid argon [J]. J Chem Phys, 1991,95:8698-8709.
    [68]Doyle R J. High-molecular-weight boron oxides in the gas phase [J]. J Am Chem Soc, 1988,110:4120-4126.
    [69]Hintz P A, Ruatta S A, Anderson S L. Interaction of boron cluster ions with water: Single collision dynamics and sequential etching [J]. J Chem Phys,1990,92:292-303.
    [70]Hintz P A, Ruatta S A, Anderson S L. Reactions of boron cluster ions (B+n, n=2-24) with N2O:NO versus NN bond activation as a function of size [J]. J Chem Phys,1991, 94:6446-6458.
    [71]Peiris D, Lapicki A, Anderson S L, Napora R, Linder D, Page M. Boron Oxide Oligomer Collision-Induced Dissociation:Thermochemistry, Structure, and
    Implications for Boron Combustion [J]. J Phys Chem A,1997,101:9935-9941.
    [72]Lapicki A, Peiris D M, Anderson S L. Reactions of Boron Oxide and BnOmH+ Cluster Ions with Water [J]. J Phys Chem A,1999,103:226-234.
    [73]Tanimoto M, Saito S, Hirota E. Microwave spectrum of the boron monoxide radical, BO [J]. J Chem Phys,1986,84:1210-1214.
    [74]Maki A G, Burkholder J B, Sinha A, Howard C J. Fourier transform infrared spectroscopy of the BO2 radical [J]. J Mol Spectrosc,1988,130:238-248.
    [75](a) Mullikin R S. The Isotope Effect in Band Spectra, II:The Spectrum of Boron Monoxide [J]. Phys ReV,1925,25:259-294. (b) Scheib W Z. Vibrational Frequencies and Force Constants for Isotopic Species of the Borohydride Ion Having Tetrahedral Symmetry [J]. Phys,1930,60:74-108. (c) Dunn T M, Hanson L. Laser-induced fluorescence of the BO and BO2 free radicals [J]. Can J Phys,1969,47:1657-1659.
    [76](a) Coxon J A, Foster S C, Bowman W C, Frank C, Paul D L. Millimeter and submillimeter wave spectra of HNO2 (cis), HNO2 (trans), and HNO3 [J]. J Mol Spectrosc,1981,88:431-433. (b) Coxon J A, Foster S C, Naxakis S. Rotational Analysis of the A2Π→X2Σ+ visible band system of boron monoxide, BO [J]. J Mol Spectrosc,1984,105:465-479.
    [77]Melen F, Dubois I, Bredohl H. The A-X and B-X transitions of BO [J]. J Phys B, 1985,18:2423-2432.
    [78]Green G J, Gole J L. Contrasting chemiluminescent metal oxide formation:In the single collision reactions of boron with O2, NO2, N2O, O3 and ClO2 [J]. Chem Phys Lett,1980,69:45-49.
    [79]Gole J L, Ohllson B, Green G. Ultrafast energy transfer and population buildup among strongly coupled and curve crossing regions of the boron oxide A2Π and X2Σ+ states [J]. Chem Phys,2001,273:59-72.
    [80]Bullitt M K, Paladugu R R, DeHaven J, Davidovits P. Boron atom reactions with the epoxides:vibrational distributions in the product boron oxide (BO) (A2.PI.) state [J]. J Phys Chem,1984,88:4542-4547.
    [81]Russell D K, Kroll M, Beaudet R A. Analysis of the laser-excited fluorescence spectra of BO2 [J]. J Chem Phys,1977,66:1999-2008.
    [82]Kawaguchi K, Hirota E. Diode laser spectroscopy of the BO2 radical:The κ2Σ← 2Π3/2 transition of the v2 fundamental band [J]. J Mol Spectrosc,1986,116:450-457.
    [83]Adam A G, Merer A J, Steunenberg D M. Photon echo measurements in liquids: Numerical calculations with model systems [J]. J Chem Phys,1990,92:2848-2859.
    [84]Ruscic B M, Curtiss L A, Berkowitz J. Photoelectron spectrum and structure of B2O2 [J]. J Chem Phys,1984,80:3962-3968.
    [85]Wenthold P G, Kim J B, Jonas K L, Lineberger W C. An Experimental and Computational Study of the Electron Affinity of Boron Oxide [J]. J Phys Chem A, 1997,101:4472-4474.
    [86]Huber K P, Herzberg G. Constants of Diatomic Molecules; Van Nostrand Reinhold: New York,1979
    [87]Chase M W, Davies C A, Downey J, Jr R, Frurip D J, McDonald R A, Syverud A N. High Temperature Mass Spectrometric Studies of the Bond Energies [J]. J Phys Chem Ref Data,1985,14, Suppl 1 (JANAF Tables).
    [88]Srivastava R D, Uy O M, Farber M. Theoretical computation of the electronic affinity of the BO [J]. Trans Faraday Soc,1971,67:2941-2944.
    [89]Herzberg G. Electronic Spectra of Polyatomic Molecules; Van Nostrand Reinhold: New York,1976.
    [90]Chow J R, Beaudet R A, Schulz W, Weyer K, Walther H. The photoexcitation spectrum of the (0,0,0) A 2Πu←(1,0,0)X 2Πg band of BO2 [J]. Chem Phys,1990, 140:307-316.
    [91]Andrews L, Burkholder T R. Infrared spectra of boron atom-water molecule reaction products trapped in solid argon [J]. J Phys Chem,1991,95:8554-8560.
    [92]Devore T C, Woodward J R, Gole J L. Oxidation of small boron agglomerates: formation of and chemiluminescent emission from boron oxide (BBO) [J]. J Phys Chem,1988,92:6919-6923.
    [93]Ingraham M G, Porter R F, Chupka W A. Mass Spectrometric Study of Gaseous Species in the B-B2O3 System [J]. J Chem Phys,1956,25:498-501.
    [94]White D, Walsh P, Mann D E. Infrared Emission Spectra of B2O3 (g) and B2O2(g) [J]. J Chem Phys,1958,28:508-509.
    [95]Botschwina P. A PNO-CI and CEPA investigation of unstable boron-nitrogen and boron-oxygen compounds [J]. Chem Phys,1978,28:231-241.
    [96]Marshall P, O'Connor P B, Chan W T, Kristof P V, Goddard J D. In Gas-Phase Metal Reactions, Fontijn, A, Ed, Elsevier, Amsterdam,1992.
    [97]Nemukhin A V, Almlof J, Heiberg A. Potential curves of BO and LiO calculated with the complete active space SCF (CASSCF) method [J]. Chem Phys,1981,57:197-206.
    [98]Soto M R. Rate Constant Determinations for HBO+F Channels from ab Initio Reaction Path Calculations [J]. J Phys Chem,1995,99:6540-6547.
    [99]Barone V. Inclusion of Hartree-Fock exchange in the density functional approach. Benchmark computations for diatomic molecules containing H, B, C, N, O, and F atoms [J]. Chem Phys Lett,1994,226:392-398.
    [100]Mota F, Novoa J J, Ramirez A C. Theoretical computation of the electronic affinity of the BO and BO2 molecules [J]. J Mol Struct (Theochem) 1988,166:153-158.
    [101]Xiong Y, Zhang Z, Zhou S. Theoretical Calculation of the Electron Affinity of BO Molecule [J]. Yunnan Daxue Xuebo, Ziran Kexueban,1993,15:285-290.
    [102]Rienstra J C, Schaefer H F. Revision of the experimental electron affinity of BO [J]. J Chem Phys,1997,106:8278-8279.
    [103]Jursic B S, Mol J. Gaussian, complete basis set, and density functional theory methods evaluation of the electron affinity for BO, B, and O [J]. Struct (Theochem), 1999,467:1-6.
    [104]Lorenz M, Agreiter J, Smith A M, Bondybey V E. Electronic structure of diatomic boron nitride [J]. J Chem Phys,1996,104,3143-3146.
    [105]Saraswathy V, Diamond J J, Segal G A. Theoretical calculation of the lowest electronic excited states of boron dioxide (BO2) [J]. J Phys Chem,1983,87:718-726.
    [106]Brommer M, Rosmus P. Fermi polyads and rovibronic spectrum of the Χ2Πg state of BO [J]. J Chem Phys,1993,98:7746-7756.
    [107]Ortiz J V. Electron propagator theory of BO2 and BO2- electronic structure [J]. J Chem Phys,1993,99:6727-6731.
    [108]Clyne M A, Heaven M C, Tellinghuisen J. Theoretical treatment of the spontaneous predissociation of Br2, B3Π(0u+) [J]. J Chem Phys,1982,76:5341-5349.
    [109]Zakrzewski V G, Boldyrev A I. The upper ionization potentials of F-, LiF2-, BeF3-, BO2-, AlO2-,and NO3- ions calculated by Green's function method [J]. J Chem Phys, 1990,93:657-660.
    [110]DeKock R L, Barbachyn M R. Electronic structure and molecular topology of boron and aluminum [J]. J Inorg Nucl Chem,1981,43:2645-2654.
    [111]Nemukhin A V, Weinhold F. Boron oxides:Ab initio studies with natural bond orbital analysis [J]. J Chem Phys,1993,98:1329-1335.
    [112]Drummond M L, Meunier V, Sumpter B G. Structure and Stability of Small Boron and Boron Oxide Clusters [J]. J Phys Chem A,2007,111:6539-6551.
    [113]Nguyen M T, Matus M H, Ngan V T, Grant D J, Dixon D A. Thermochemistry and Electronic Structure of Small Boron and Boron Oxide Clusters and Their Anions [J]. J Phys Chem A,2009,113:4895-4909.
    [114]Li S D, Miao C Q, Guo J C, Ren G M. Carbon Boronyls:Species with Higher Viable Possibility Than Boron Carbonyls at the Density Functional Theory [J]. J Comp Chem,2005,26:799-802.
    [115]Ren G M, Li S D, Miao C Q. Sandwich-Type Transition Metal Complexes [(CBO)n]2M with Carbon Boronyl Ligands (CBO)n (n=4-6) [J]. J Mol Struct (THEOCHEM),2006,770:193-197.
    [116]Zhai H J, Wang L M, Li S D, Wang L S. Vibrationally-Resolved Photoelectron Spectroscopy of BO- and BO2-:A Joint Experimental and Theoretical Study [J]. J Phys Chem A,2007,111:1030-1035.
    [117]Zhai H J, Li S D, Wang L S. Boronyls as Key Structural Units in Boron Oxide Clusters:B(BO)2- and B(BO)3- [J]. J Am Chem Soc,2007,129:9254-9255.
    [118]Li S D, Zhai H J, Wang L S. J. Am. B2(BO)22--Diboronyl Diborene:A Linear Molecule with A Triple Boron-Boron Bond [J]. J Am Chem Soc,2008,130: 2753-2579.
    [119]For general reviews see:(a) Pyykko P. Theoretical Chemistry of Gold [J]. Angew Chem, Int Ed,2004,43:4412-4456. (b) Schwarz H. Relativistic Effects in Gas-Phase Ion Chemistry:An Experimentalist's View [J]. Angew Chem, Int Ed.2003,42: 4442-4454.(c) Schwerdtfeger P. Gold Goes Nano-From Small Clusters to Low-Dimensional Assemblies [J]. Angew Chem, Int Ed,2003,42:1892-1895.
    [120]Lauher J W, Wald K. Synthesis and structure of triphenylphosphinegold dodecacarbonyltricobaltiron ([FeCo3(CO)12AuPPh3]):a trimetallic trigonal-bipyramidal cluster. Gold derivatives as structural analogs of hydrides [J]. J
    Am Chem Soc,1981,103:7648-7650.
    [121]Hall K P, Mingos D M P. International Tables for X-ray Crystallography [J]. Prog Inorg Chem,1984,32:237-325.
    [122]Burdett J K, Eisensten O, Schweizer W B. Are Strong Gold-Gold Interactions Possible in Main Group XnA(AuPR3)m Molecules? [J]. Inorg Chem,1994,33: 3261-3268.
    [123]Kiran B, Li X, Zhai H J, Cui L F, Wang L S. SiAu4:Aurosilane [J]. Angew Chem, Int Ed,2004,43:2125-2129.
    [124](a) Li X, Kiran B, Wang L S. Gold as Hydrogen. An Experimental and Theoretical Study of the Structures and Bonding in Disilicon Gold Clusters Si2Aun- and Si2Aun (n = 2 and 4) and Comparisons to Si2H2 and Si2H4 [J]. J Phys Chem A,2005,109: 4366-4374. (b) Kiran B, Li X, Zhai H J, Wang L S. Gold as hydrogen. Structural and electronic properties and chemical bonding in Si3Au3+/0/- and comparisons to Si3H3+/0/-[J]. J Chem Phys,2006,125:133204-1-7.
    [125]Zhai H J, Wang L S, Zubarev D Y, Boldyrev A I. Gold Apes Hydrogen. The Structure and Bonding in the Planar B7Au2- and B7Au2 Clusters [J]. J Phys Chem A, 2006,110:1689-1693.
    [126]Zubarev D Y, Li J, Wang L S, Boldyrev A I. Theoretical Probing of Deltahedral closo-AuroBoranes BxAux2- (x= 5-12) [J]. Inorg Chem,2006,45:5269-5271.
    [127]熊家炯主编.材料设计.天津:天津大学出版社,2000.
    [128]中国科学院.科学发展报告.北京:科学出版社,1999.
    [129]徐光宪,黎乐民.量子化学(上).北京:科学出版社,1984.
    [130]Flurry R F. Jr Quantum Chemistry-An introduction. Prentice-Hall, Inc. London, 1983.
    [131]Barden C J, Schaefer H F. Ⅲ Quantum Chemistry in the 21st century. Pure and Applied Chemistry,2000,72:1405-1423.
    [134]Frisch M J, et al, Gaussian 03, revision, A1; Gaussian, Inc.:Pittsburgh, PA,2003.
    [135](a) Hehre W J, Schleyer L R, Retal P V. Ab Initio Molecular Orbitial Theory John Wiley& Sons, Inc,1986. (b) McQuarrie D A, Quantum Chemistry University Science Books:Mill Vally CA 1983.
    [136](a)唐敖庆,杨忠志,李前树,量子化学,北京,科学出版社,1982.(b)徐光宪, 黎乐民,王德民,量子化学基本原理和从头计算法,北京,科学出版社,1985.
    [137]Pople J A, Seeger R, Krishnan R。 Variational Configuration Interaction Methods and Comparison with Perturbation Theory [J], Int J Quant Chem,1977,11:149-152.
    [138]Foresman J B, Head-Gordon M, Pople J A, Frisch M J, Toward a Systematic Molecular Orbital Theory for Excited States [J]. J Phys Chem,1992,96:135-139.
    [139]Krishnan R, Schlegel H B, Pople J A. Derivate Studies in Configuration Interaction Theory [J]. J Chem Phys,1980,72:4654-4660.
    [140]Brooks B R, Laidig W D, Saxe P, Goddard J D, Yamaguchi Y, Schaefer H F. Analytic Gradient from Correlated Wave Functions via the Two-Particle Density Matrix and the Unitary Group Approach [J]. J Chem Phys,1980,72:4652-4654.
    [141]Salter E A, Trucks G W, Bartlett R J. Analytic Energy Derivatives in Many-Body Methods [J]. J Chem Phys,1989,90:1752-1754.
    [142]Raghavachari K, People J A. Specificity and molecular mechanism of abortificient action of prostaglandins [J]. Int J Quant Chem,1981,20:167-178.
    [143]Pople J A, Head-Gordon M, Raghavachar K I, Quadratic Configuration Interaction. A General Technique for Determining Electron Correlation Energies [J]. J Chem Phys,1987,87:5968-5970.
    [144]Cioslowski J, A New Robust Algorithm for Fully Automated Determination of Attactor Interaction Lines in Moleclues [J]. Chem Phys Lett,1994,219:151-155.
    [145]Schlegel H B, Robb M A. MCSCF Gradient Optimization of theH2CO→H2+CO Transition Structure [J]. Chem Phys Lett.1982,93:43-47.
    [146]Eade R H E, Robb M A. Direct Minimization in MCSCF Theory [J]. Chem Phys Lett,1981,83:362-364.
    [147]Hegarty D, Robb M A. Application of Unitary Group Methods to Configuration Interaction Calculations [J]. Mol Phys,1979,38:1795-1799.
    [148]Johnson B G, Frisch M J. An implementation of analytic second derivatives of the gradient-corrected density functional energy [J]. J Chem Phys,1994,100:7429-7432.
    [149]Labanowski J K, Andzelm J W. Density Functional Methods in Chemistry [J]. Springer-Verlag:New York,1991.
    [150]Fukui K. Variational Principles in a Chemical Reaction [J]. Int. J Quantum Chem 1981,15:633-636.
    [151]Fukui K, Tachibana A. Yamashita K, Toward Chemodynamics [J]. Int J Quantum Chem,1981,15:621-630.
    [152]Kendall R A, Dunning T H, Harrison R J. Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions [J]. J Chem Phys,1992,96: 6796-6806.
    [153](a) Becke A D. Density-functional thermochemistry. Ⅲ. The role of exact exchange [J]. J Chem Phys,1993,98:5648-5652. (b) Lee C, Yang W, Parr R G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density [J]. Phys ReV B,1988,37:785-789.
    [154]Hohenberg P, Kohn W. Inhomogeneous Electron Gas [J]. Phys Rev B,1964,136: 864-867.
    [155]Kohn W, Sham L J. Self-Consistent Equations Including Exchange and Correlation Effects [J]. Phys Rev A,1965,140:1133-1136.
    [156]Frisch M J, et al, Gaussian 03, revision, A1; Gaussian, Inc.:Pittsburgh, PA,2003.
    [157]Lu H G. In GXYZ Ver 1.0, A Random Cartesian Coordinates Generating Program; Shanxi University:Taiyuan,2008.
    [158]Foster J P and Weinhold F. Natrual hybrid orbitals, J Am Chem Soc,1980,102: 7211-7221.
    [159]Weinhold F, Carpenter J E. The Structure of Small Molecules and Ions Plenum, 1988.
    [160](a) Ortiz J V, Zakrzewski V G, Dolgounirchev O. In Conceptual Perspecti Ves in Quantum Chemistry, Calais J L, Kryachko E Ed. Kluwer Academic,1997. (b) Ortiz J V. Toward an Exact One-Electron Picture of Chemical Bonding [J]. Adv Quantum Chem,1999,35:33-52.
    [161]Mishima O, Tanaka J, Yamaoko S, Fukunaga O. High-Temperature Cubic Boron Nitride P-N Junction Diode Made at High Pressure. Science,1987,238:181-183.
    [162]Eremets M I, Struzhikin V V, Nao H, Hemley R J. Superconductivity in Boron [J]. Science,2001,293:272-274.
    [163]Ciuparu D, Klie R F, Zhu Y, Pfefferle L. Synthesis of Pure Boron Single-Wall Nanotubes [J]. J Phys Chem B,2004,108:3967-3969.
    [164]李要辉,梁开明.硼及其硼化物在材料研究中应用进展[A].辽宁建材,2006,5: 35-38.
    [165]Burkholder T R, Andrews L. Reactions of boron atoms with molecular oxygen. Infrared spectra of BO, BO2, B2O2, B2O3, and BO2- in solid argon [J]. J Chem Phys, 1991,95:8697-8709.
    [166]Gong Y, Zhou M. Matrix Isolation Infrared Spectroscopic and Theoretical Study of the Hydrolysis of Boron Dioxide in Solid Argon [J]. J Phys Chem A,2008,112: 5670-5675.
    [167]Smolanoff J, Lapicki A, Kline N, Anderson S L. Effects of Composition, Structure, and H Atom Addition on the Chemistry of Boron Oxide Cluster Ions with HF [J]. J Phys Chem,1995,99:16276-16283.
    [168]Li S D, Zhai H J, Wang L S. B2(BO)22-— Diboronyl Diborene:A Linear Molecule with A Triple Boron-Boron Bond [J]. J Am Chem Soc,2008,130:2573-2579.
    [169]Zubarev D Y, Boldyrev A I, Li J, Zhai H J, Wang L S. On the chemical bonding of gold in auro-boron oxide clusters AunBO- (n=1-3) [J]. J Phys Chem A,2007,111: 1648-1658.
    [170]Yao W Z, Guo J C, Lu H G, Li S D. Td B(BO)4-:A Tetrahedral Boron Oxide Cluster Analogous to Boron Hydride Td BH4-[J]. J Phys Chem A,2009,113:2561-2564.
    [171]Alexandrova A N, Boldyrev A I. Search for the Lin0/+1/-1(n=5-7) Lowest-Energy Structures Using the ab Initio Gradient Embedded Genetic Algorithm (GEGA). Elucidation of the Chemical Bonding in the Lithium Clusters [J]. J Chem Theory Comput,2005,1:566-580.
    [172](a) Head-Gordon M, Pople J A, Frisch M J. The ground-state infrared spectrum of 85RbH and 87RbH [J]. Chem Phys Lett,1988,153:503-506. (b) Head-Gordon M, Head-Gordon T. Analytic MP2 frequencies without fifth-order storage. Theory and application to bifurcated hydrogen bonds in the water hexamer [J]. Chem Phys Lett, 1994,220:122-128.
    [173]Scuseria G E, Schaefer H F.Is coupled cluster singles and doubles (CCSD) more computationally intensive than quadratic configuration interaction (QCISD)? [J]. J Chem Phys,1989,90:3700-3703.
    [174]Purvis G D, Bartlett R J., A full coupled-cluster singles and doubles model:The inclusion of disconnected triples [J]. J Chem Phys,1982,76:1910-1918.
    [175]Das U, Raghavachari K, Jarrold C C. Addition of water to Al5O4- determined by anion photoelectron spectroscopy and quantum chemical calculations [J]. J Chem Phys, 2005,122:014313-014320.
    [176]唐鼎元,仲维卓,三硼酸锂晶体的生长形态,Chinese J. Struct. Chem.1996,15: 227-230.
    [177]Vajeeston P, Ravindram P, Kjekshus A, Fjellvag H., Strutural stability of alkali boron tetrahydrides ABH4 (A=Li, Na, K, Rb, Cs) from first principle calculation [J], J.Alloys Compd.,1997,1:253-254.
    [178]Das U, Raghavachari K., Al5O4:A Superatom with potential for New materials Design [J], J. Chem. Theory Comput.2008,4:2011-2019.
    [179]Leeuw F H D, Vanwache R, Dymanus A., Radio-Frequency Spectra of NaCl by the Molecular-Beam Electric Resonance Method [J]. J Chem Phys,1970,53: 981-984.
    [180]Sommer A, Walsh P N, White D J. Mass Spectrometric and Infrared Emission Investigation of the Vapor Species in the B-S System at Elevated Temperatures [J]. J Chem Phys,1960,33:296-297.
    [181]Greene F T, Gilles P W. New Classes of High Molecular Weight Boron Sulfides [J]. J Am Chem Soc,1962,84:3598-3599.
    [182]Greene F, Gilles P W. High Molecular Weight Boron Sulfides. Ⅱ. Identification, Relative Intensities, Appearance Potentials, and Origins of the Ions [J]. J Am Chem Soc,1964,86:3964-3969.
    [183]Chen H Y, Gilles P W. High molecular weight boron sulfides. V. Vaporization behavior of the boron-sulfur system [J]. J Am Chem Soc,1970,92:2309-2312.
    [184]Chen H Y, Gilles P W. High molecular weight boron sulfides. VIII. Vapor pressures of B2S3(g) and B4S6(g) over stoichiometric B2S3 [J]. J Phys Chem,1972,76: 2035-2038.
    [185]Bruna P J, Grein F. Electron-Spin Magnetic Moment (g Factor) of Χ2Σ+ Diatomic Radicals MX(±) with Nine Valence Electrons (M= Be, B, Mg, Al; X= N, O, F, P, S, Cl). An ab Initio Study [J]. J Phys Chem A,2001,105:3328-3339.
    [186]Tanimoto M, Saito S, Yamamoto S. Microwave spectrum of the boron monosulfide radical BS [J]. J Chem Phys,88,1988,2296-2299.
    [187]Huber K P, Herzberg G. Molecular Spectra and Molecular Structure, VI. Constants of Diatomic Molecules. Van Nostrand:New York 1979.
    [188]He S G, Evans C J, Clouthier D J. A study of the molecular structure and Renner-Teller effect in the 2Πu-(?)2Πg electronic spectrum of jet-cooled boron disulfide, BS2 [J]. J Chem Phys,2003,119:2047-2056.
    [189]He S G, Clouthier D J. Persistence rewarded:Successful observation of the B 2Σu+-(?)2Πg electronic transition of jet-cooled BS2 [J].J Chem Phys,2004,120: 4258-4262.
    [190]Guo Q L, Guo J C, Li S D. Geometries, Electric Structures, and Electron Detachment Energies of Small Boron Sulfide Anions:A Density Functional Theory Investigation [J]. Chin J Struct Chem,2008,27:651-658.
    [191]Alexandrova A N, Boldyrev A I, Zhai H J, Wang L S. All-Boron Aromatic Clusters as Potential New Inorganic Ligands and Building Blocks in Chemistry [J]. Coord Chem Rev,2006,250:2811-2866.
    [192]Pyykko P, Riedel S, Patzschke M. Triple-Bond Covalent Radii [J].Chem Eur J,2005, 11:3511-3520.
    [193](a) Stock A, Massanez C. Die Dichte des Phosphordampfes [J]. Chem Ber,1912,45: 3527-3539. (b) Stock A. Hydrides of Boron and Silicon [A]. Cornell University Press: Ithaca, NY,1933.
    [194]Bell R P, Longuet-Higgins H C. Structure of Boron Hydrides [J]. Nature,1945,155: 328-329.
    [195]Eberhardt W H, Crawford B, Lipscomb W N. The Valence Structure of the Boron ydrides [J].J Chem Phys,1954,22:989-1001.
    [196]Lipscomb W N. Boron Hydride Chemistry; Academic Press:New,1998.
    [197]Desclaux J P, Pyykko P. Detection of higher excited states of toluene [J]. Chem Phys Lett,1976,39:300-303.
    [198]For reviews on auride chemistry see:(a) Jansen M, Murding AV. In Gold Progress in Chemistry, Biochemistry and Technology; Schmidbaur, H Ed; Wiley:New York, 1999. (b) Pyykko P. Relativity, Gold, Closed-Shell Interactions, and CsAu-NH3 [J].Angew Chem, Int Ed,2002,41:3573-3578.
    [199]Gagliardi L. When Does Gold Behave as a Halogen? Predicted Uranium Tetraauride and Other MAu4 Tetrahedral Species, (M= Ti, Zr, Hf, Th) [J]. J Am Chem Soc,2003, 125:7504-7505.
    [200]Burdett J K, Eisensten O, Schweizer W B. Are Strong Gold-Gold Interactions Possible in Main Group XnA(AuPR3)m Molecules? [J]. Inorg Chem,1994,33: 3261-3268.
    [201]Kruger S, Stener M, Mayer M, Nortemann F, Rosch N. The hydration of the uranyl dication:Incorporation of solvent effects in parallel density functional calculations with the program PARAGAUSS [J]. J Mol Struct (THEOCHEM),2000,527:63-74.
    [202]Scherbaum F, Grohmann A, Muller G, Schmidbaur H. Synthesis, Structure, and Bonding of the Cation [{(C6H5)3PAu}5C] [J]. Angew Chem, Int Ed Engl,1989,28: 463-465.
    [203]Grohmann A, Schmidbaur H. Electron-deficient bonding at pentacoordinate nitrogen [J]. Nature,1990,345:140-142.
    [204]Schmidbaur H, Steigelmann O Z. Hypercoordinate Carbon in Protonated Tetraauriomethane Molecules [J].Naturforsch,1992,47b:1721-1724.
    [205]Li J, Pyykko P. Structure of tetrakis (phosphine) nitrido-or-phosphinidyne or arsinidyneultragold(1+):Td or C4v? [J]. Inorg. Chem,1993,32:2630-2634.
    [206]Schmidbaur H, Gabbai F P, Schier A, Riede J. Hypercoordinate Carbon in Protonated Tetraauriomethane Molecules [J]. Organometallics,1995,14:4969-4971.
    [207]Olah G. A, Rasul G. From Kekule's Tetravalent Methane to Five, Six and Seven Coordinate Protonated Methanes [J]. Acc Chem Res,1997,30:245-249.
    [208]Pyykko P, Zhao Y. Relativistic pseudopotential calculation of bonding trends in XAum+n clusters (X= B-N, Al-S; n= 4-6) [J]. Chem Phys Lett,1991,177: 103-106.
    [209]Avramopoulos A, Papadopoulos M G, Sadlej A J. Uniform MgO nanobelts formed from in situ Mg3N2 precursor [J]. Chem Phys Lett,2003,370:765-769.
    [210]Lu H G. In GXYZ Ver 1.0, A Random Cartesian Coordinates Generating Program; Shanxi University:Taiyuan,2008.
    [211](a)Frisch M J, Head-Gordon M, Pople J A. A direct MP2 gradient method [J]. Chem Phys Lett,1990,166:275-280. (b) Frisch M J, Head-Gordon M, Pople J A. Semi-direct algorithms for the MP2 energy and gradient [J]. Chem Phys Lett,1990, 166:281-289.
    [212](a) Dolg M, Wedig U, Stoll H, Preuss H. Energy-adjusted ab initio pseudopotentials or the first row transition elements [J].J Chem Phys,1987,86: 866-872. (b) Martin J M L, Sundermann A. Correlation consistent valence basis sets for use with the Stuttgart-Dresden-Bonn relativistic effective core potentials:The atoms Ga-Kr and In-Xe [J]. J Chem Phys,2001,114:3408-3420.
    [213]Liu J, Aeschleman J, Rajan L M, Che C, Ge Q. in Materials Issues in A Hydrogen Economy, Ed. By Jena P.; Kandalam A.; Sun Q. World Scientific Publishing Co Ptc Ltd, Singapore,2009.
    [214](a) Lammertsma K, Ohwada T. Three-Center, Two-Electron Systems. Origin of the Tilting of Their Substituents [J]. J Am Chem Soc,1996,118:7247-7254. (b) Krempp M, Damrauer R, DePuy C H, Keheyan Y. Gas-Phase Ion Chemistry of Boron Hydride Anions [J]. J Am Chem Soc,1994,116:3629-3630. (c) Qu Z W, Li Z S, Ding Y H, Sun C C. Theoretical Study of the Gas-Phase Reaction of Diborane(3) Anion B2H3-with CO2 [J]. J Phys Chem A,2000,104:11952-11960.
    [215](a) Longenecker J G, Mebel A M, Kaiser R I. First Infrared Spectroscopic Detection of the Monobridged Diboranyl Radical (B2H5, C2v) and Its D5-Isotopomer in Low-Temperature Diborane Ices [J]. Inorg Chem,2007,46:5739-5743. (b) Ruscic B, Schwarz M, Berkowitz J. Structure and bonding in the B2H5 radical and cation [J]. Chem Phys,1989,91:4183-4188.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700