直接硼氢化钠燃料电池阳极催化剂及膜电极研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
直接硼氢化钠燃料电池(DSBFC)作为一种新型的燃料电池,具有理论电压高(1.64 V)、能量密度大、可采用非贵金属作为催化剂等优点,近几年受到广泛关注。本论文从阳极催化剂的制备、膜电极的制备工艺和电池运行条件等方面做了系统的研究,并提出了一种提高燃料库仑效率的方法。
     采用浸渍还原法制备了不同摩尔比PtNi/C、AuNi/C、AuPt/C二元合金催化剂。EDAX结果表明各合金催化剂的金属载量和摩尔比均基本接近理论值。循环伏安和稳态极化的测试结果表明:三种二元合金催化剂的摩尔比均为7:3时催化性能最好,PtNi(7:3)/C在三种最优二元催化剂中性能最佳。采用XRD、XPS等手段深入分析了合金催化剂性能提高的机制。XPS结果发现,由于Ni的加入改变了Pt的电子状态,零价Pt的含量提高,这可能是其性能提高的原因之一。对于AuPt二元催化剂,Pt的加入可以使开路电势和峰值电位明显负移,峰值电流也有所提高。总的来看,合金化可以提高二元催化剂的性能,通过适当的热处理实现了这一目的。
     对膜电极制备工艺的研究发现,阳极催化剂采用PtNi(7:3)/C时电池性能最好;催化剂的载量提高有利于性能的提高,但载量过高会增加电极厚度对燃料传输不利,最优载量为1 mg·cm-2;Nafion的加入在起到粘结固定催化剂的同时会牺牲部分活性位置,10 mass %的Nafion含量较为适宜;阳极扩散层中PTFE的含量不同可得到不同的憎水性,从而调节扩散层中憎水和亲水孔的比例,结果发现PTFE的含量为5 mass %时膜电极性能最好;扩散层碳粉起到整平的作用,为催化剂提供安全的工作场所,但碳粉载量过高反而使扩散层粗糙度增大,有裂缝出现,另外碳粉过厚对物料传输不利,最后得出碳粉最佳载量为1 mg·cm-2;电解质膜仍然以Nafion117膜最为适宜,AEM性能较差;对电解质膜预先进行Na+化处理有利于缩短膜电极的活化时间,同时提高膜电极的放电稳定性。在最佳制备工艺条件下电池最大功率密度分别达到25.2 mW·cm-2(25℃)和54.8 mW·cm-2(60℃)。
     研究发现运行温度提高则电池性能大幅度增大,但实际应用时被动式燃料电池的工作温度不宜超过60℃;阳极燃料NaBH4的浓度的提高在一定程度上对提高电池性能有利,但浓度过高时,因为燃料的渗透加重了阴极的极化,而且浓度高会导致燃料库仑效率下降,研究发现NaBH4的浓度为1.0 mol·L-1时电池性能最好;支持电解质NaOH既为电池提供电荷载体,又是NaBH4的稳定剂,同时还参与阳极电极反应,但NaOH浓度过高会导致燃料粘度过大反而使电池性能下降。结果表明:NaOH浓度为6.0 mol·L-1时为最佳;阴极的工作条件也会对电池的性能产生较大影响,因为在电池中阳极极化较弱,阴极极化更为严重,采用纯氧的电池性能优于直接用空气,气体的加湿对电池性能有轻微改善;在采用阳离子膜作为电解质膜时,阴极会有NaOH的累积,及时清除阴极产生的NaOH可以改善电池长时间放电性能。
     为解决DSBFC燃料库仑效率低的问题,我们设计制备了一种新型复合膜电极,其阳极包含上下两个区域,可以使BH4-和H2同时在这两部分区域发生氧化反应,适当调整两部分区域的面积比例,可以在提高电池性能的同时使燃料库仑效率达到100%,目前条件下得到的最佳面积比例为3:1。
In recent years, direct sodium borohydride fuel cell (DSBFC) has been receiving increasing attention because of its advantages, such as high voltage (1.64 V), high energy density (9.3 kWh·kg-1), and using non-noble metal as anode catalyst. The preparation of anode catalyst, preparation technology of membrane electrode assembly (MEA) and effect of operating conditions on the DSBFC performance have been investigated in this dissertation.
     PtNi/C, AuNi/C and AuPt/C catalysts with various molar ratios were prepared by using impregnation method. EDAX results showed that the molar ratio and metal loading of each catalyst were near to the expect values. Cyclic voltammetry (CV) and steady-state polarization measurement results indicated that 7:3 was the optimal molar ratio for the three binary alloy catalysts, and PtNi(7:3)/C showed the best performance. The absence of characteristic peaks of Ni in XRD pattern of PtNi(7:3)/C catalysts, positive shift of 2θfor characteristic peaks of Pt, and the decrease of the d value indicated that Ni had entered into Pt lattice and formed alloy with Pt. The same results were obtained in AuNi(7:3)/C catalyst. Heat treatment can result in the higher alloying between binary metals, and the catalyst activity can be further improved. XPS patterns of PtNi(7:3)/C shows that the electronic state of Pt was changed, i.e. increase of Pt0 content, due to the electron effect of Ni. This may be one of the reasons to the performance improvement.
     The MEA with PtNi(7:3)/C as the anode catalyst has the best performance. The increase of catalyst loading can improve the cell performance, but exorbitant catalyst loading can make the electrode too thick and inhibit the diffusion of the fuel. The optimized catalyst loading is 1 mg·cm-2. Nafion can bond and fix the catalyst meanwhile it can also decrease the catalyst active sites. Therefore the best content of Nafion is 10 mass%. The proportion of hydrophobic pore to hydrophilic pore in the anode diffusion layer can be regulated by PTFE content. The experimental results indicated that the MEA with 5% PTFE content had the best performance. The carbon powder in the diffusion layer can provide safe working place for the catalysts, but exorbitant carbon powder loading would make the diffusion layer too coarse and generate cracks, on the other hand, the carbon powder with high thickness can inhibit the diffusion of the fuel. The best carbon powder loading is 1 mg·cm-2. The performance of the MEA with Nafion 117 membrane was higher than that of the MEA with AEM membrane. Na+ pre-treatment on the electrolyte membrane can shorten the MEA activation time and improve the discharge stability. Under the optimized preparation technologies, the maximum power density of the MEA was 25.2 mW·cm-2 and 54.8 mW·cm-2 at 25℃and 60℃, respectively.
     The DSBFC performance was significantly improved with the increase of operating temperature. And, the concentration of NaBH4 also had effects on the performance of DSBFC, where the optimal concentration is 1.0 mol·L-1. The possible reason is that the high concentration of NaBH4 will increase the cathode polarization and reduce the fuel utilization. In addition, the electrolyte, NaOH is another factor, where the optimal concentration of NaOH is 6.0 mol·L-1. And the cathode working conditions also play an important role on the performance of DBFC. It has been found that the pure and humid oxygen used, and the removal of NaOH from the cathode will improve the long-term performance of DSBFC.
     To overcome the low utilization of fuel in DSBFC, a novel composite membrane electrode assembly (MEA) is developed, in which the anode zone includes two sections. The utilization of fuel can be increased to 100 % when the area ratio of the two sections is 3:1.
引文
1衣宝廉.燃料电池——原理·技术·应用.化学工业出版社, 2003: 1-8
    2 C. K. Dyer. Fuel Cells for Portable Applications. J. Power Sources. 2002, 106 (1-2): 31-34
    3 M. Kazim. Economical and Environment Assessments of Proton Exchange Membrane Fuel Cell in Public Undertakings. Int. J. Energy Convers Mgmt. 2000, 42: 763-772
    4 V. Mehta, J. S. Cooper. Review and Analysis of PEM Fuel Cell Design and Manufacturing. J. Power Sources. 2003, 114 (1): 32-53
    5 D. Buttin, M. Dupont, M. Straumann, et al. Development and Operation of a 150 W Air-Feed Direct Methanol Fuel Cell Stack. J. Appl. Electrochem. 2001, 31 (3): 275-279
    6 J. Zhang, G. Yin, Z. Wang, et al. Effects of Mea Preparation on the Performance of a Direct Methanol Fuel Cell. J. Power Sources. 2006, 160 (2): 1035-1040
    7 J. Zhang, G.-P. Yin, Z.-B. Wang, et al. Effects of Hot Pressing Conditions on the Performances of Meas for Direct Methanol Fuel Cells. J. Power Sources. 2007, 165 (1): 73-81
    8 Z. P. Li, B. H. Liu, K. Arai, et al. A Fuel Cell Development for Using Borohydrides as the Fuel. J. Electrochem. Soc. 2003, 150 (7): A868-A872
    9 S. C. Amendola, P. Onnerud, M. T. Kelly, et al. A Novel High Power Density Borohydride-Air Cell. J. Power Sources. 1999, 84 (1): 130-133
    10刘志贤,石双群,宋新芳.硼氢化钠的性质及合成.河北师范大学学报(自然科学版). 1997, 21 (1): 71-75
    11 B. H. Liu, Z. P. Li, S. Suda. Thermal Properties of Alkaline Sodium Borohydride Solutions. Thermochim. Acta. 2008, 471 (1-2): 103-105
    12白银娟,路军,马怀让.硼氢化钠在有机合成中的研究进展.应用化学. 2002, 19 (5): 409-415
    13闫雷,于秀娟,李淑琴等.硼氢化钠还原法处理化学镀镍废液.化工环保. 2002, 22 (4): 213-216
    14孙龄高,李树森.原子荧光光谱法直接测定金属锑中的铋.矿冶. 1998, 7 (1): 78-81
    15曹晔,丛继信,张光友等.氢化物发生-原子吸收法测定饮用水中的砷硒.化学分析计量. 2003, 12 (2): 27-28
    16 S. C. Amendola, S. L. Sharp-Goldman, M. S. Janjua, et al. A Safe, Portable, Hydrogen Gas Generator Using Aqueous Borohydride Solution and Ru Catalyst. Int. J. Hydrog. Energy. 2000, 25 (10): 969-975
    17 S. C. Amendola, S. L. Sharp-Goldman, M. S. Janjua, et al. An Ultrasafe Hydrogen Generator: Aqueous, Alkaline Borohydride Solutions and Ru Catalyst. J. Power Sources. 2000, 85 (2): 186-189
    18 R. L. Pecsok. Polarographic Studies on the Oxidation and Hydrolysis of Sodium Borohydride1. J. Am. Chem. Soc. 1953, 75 (12): 2862-2864
    19 A. Levy, J. B. Brown, C. J. Lyons. Catalyzed Hydolysis of Sodium Borohydride. Ind. Eng. Chem. 1960, (52): 211-214
    20 J. A. Gardiner, J. W. Collat. Kinetics of the Stepwise Hydrolysis of Tetrahydroborate Ion. J. Am. Chem. Soc. 1965, 87 (8): 1692-1700
    21 H. I. Schlesinger, H. C. Brown, A. E. Finholt, et al. Sodium Borohydride, Its Hydrolysis and Its Use as a Reducing Agent and in the Generation of Hydrogen1. J. Am. Chem. Soc. 1953, 75 (1): 215-219
    22 M. Kaufman, B. Sen. Hydrogen Generation by Hydrolysis of Sodium Tetrahydroborate: Effects of Acids and Transition Metals and Their Salts. J. Chem. Soc. Dalton Trans. 1985: 307-313
    23 Y. Kojima, K.-i. Suzuki, K. Fukumoto, et al. Hydrogen Generation Using Sodium Borohydride Solution and Metal Catalyst Coated on Metal Oxide. Int. J. Hydrog. Energy. 2002, 27 (10): 1029-1034
    24 Y. Kojima, Y. Kawai, M. Kimbara, et al. Hydrogen Generation by Hydrolysis Reaction of Lithium Borohydride. Int. J. Hydrog. Energy. 2004, 29 (12): 1213-1217
    25 Y. Kojima, Y. Kawai, H. Nakanishi, et al. Compressed Hydrogen Generation Using Chemical Hydride. J. Power Sources. 2004, 135 (1-2): 36-41
    26孙雷,李宁,王桂香等.硼氢化钠制氢技术.电池. 2004, 34 (5): 382-383
    27王恒秀,李莉,李晋鲁等.一种新型制氢技术.化工进展. 2001, 7: 1-4
    28潘相敏,马建新.燃料电池汽车供氢新技术——硼氢化钠水解制氢.天然气化工. 2003, 28 (5): 51-55
    29戎维仁,邱德仁.硼氢化钠溶液的分解和氢氧化钠在溶液中的稳定机理(英文).复旦学报(自然科学版). 1998, 37 (3): 276-278
    30 C. Wu, H. Zhang, B. Yi. Hydrogen Generation from Catalytic Hydrolysis of Sodium Borohydride for Proton Exchange Membrane Fuel Cells. Catal. Today.2004, 93-95: 477-483
    31王涛,张熙贵,李巨峰等.硼氢化钠水解制氢的研究.燃料化学学报. 2004, 32 (6): 723-728
    32 Y. Kojima, K.-I. Suzuki, K. Fukumoto, et al. Development of 10 kW-Scale Hydrogen Generator Using Chemical Hydride. J. Power Sources. 2004, 125 (1): 22-26
    33 H. Dong, H. X. Yang, X. P. Ai, et al. Hydrogen Production from Catalytic Hydrolysis of Sodium Borohydride Solution Using Nickel Boride Catalyst. Int. J. Hydrog. Energy. 2003, 28 (10): 1095-1100
    34 J. H. Kim, H. Lee, S. C. Han, et al. Production of Hydrogen from Sodium Borohydride in Alkaline Solution: Development of Catalyst with High Performance. Int. J. Hydrog. Energy. 2004, 29 (3): 263-267
    35 M. E. Indig, R. N. Snyder. Sodium Borohydride, an Interesting Anodic Fuel (1). J. Electrochem. Soc. 1962, 109 (11): 1104-1106
    36闫卫东,刘吉祥.国内外氢能发展概况.中国能源. 2003, (2): 17-20
    37王景儒.制氢方法及储氢材料研制进展.化学推进剂与高分子材料. 2004, 2 (2): 13-18
    38宋文生,李磊,王宇新.燃料电池汽车氢能.汽车工程. 2003, 25 (4): 415-418
    39 J.-H. Wee. Which Type of Fuel Cell Is More Competitive for Portable Application: Direct Methanol Fuel Cells or Direct Borohydride Fuel Cells. J. Power Sources. 2006, 161 (1): 1-10
    40 J. A. Gardiner, J. W. Collat. The Hydrolysis of Sodium Tetrahydroborate. Identification of an Intermediate. J. Am. Chem. Soc. 1964, 86 (15): 3165-3166
    41 J. A. Gardiner, J. W. Collat. Polarography of the Tetrahydroborate Ion. The Effect of Hydrolysis on the System. Inorg. Chem. 1965, 4 (8): 1208-1212
    42 M. V. Mirkin, H. Yang, A. J. Bard. Borohydride Oxidation at a Gold Electrode. J. Electrochem. Soc. 1992, 139 (8): 2212-2217
    43 M. V. Mirkin, A. J. Bard. Voltammetric Method for the Determination of Borohydride Concentration in Alkaline Aqueous Solutions. Anal. Chem. 1991, 63 (5): 532-533
    44 H. Celikkan, M. Sahin, M. L. Aksu, et al. The Investigation of the Electrooxidation of Sodium Borohydride on Various Metal Electrodes in Aqueous Basic Solutions. Int. J. Hydrog. Energy. 2007, 32 (5): 588-593
    45 E. Gyenge. Electrooxidation of Borohydride on Platinum and Gold Electrodes:Implications for Direct Borohydride Fuel Cells. Electrochim. Acta. 2004, 49 (6): 965-978
    46 J. I. Martins, M. C. Nunes, R. Koch, et al. Electrochemical Oxidation of Borohydride on Platinum Electrodes: The Influence of Thiourea in Direct Fuel Cells. Electrochim. Acta. 2007, 52 (23): 6443-6449
    47雷淑.添加剂对硼氢化钠直接氧化的影响.重庆大学2009:
    48 K. Wang, K. Jiang, J. Lu, et al. Eight-electron Oxidation of Borohydride at Potentials Negative to Reversible Hydrogen Electrode. J. Power Sources. 2008, 185 (2): 892-894
    49 R. Tarozaite, L. T. Tamasiunaite, V. Jasulaitiene. Platinum-Tin Complexes as Catalysts for the Anodic Oxidation of Borohydride. J. Solid State Electrochem. 2009, 13 (5): 721-731
    50 X. Y. Geng, H. M. Zhang, Y. W. Ma, et al. Borohydride Electrochemical Oxidation on Carbon-Supported Pt-Modified Au Nanoparticles. J. Power Sources. 2010, 195 (6): 1583-1588
    51 J. I. Martins, M. C. Nunes. Comparison of the Electrochemical Oxidation of Borohydride and Dimethylamine Borane on Platinum Electrodes: Implication for Direct Fuel Cells. J. Power Sources. 2008, 175 (1): 244-249
    52 H. Dong, R. X. Feng, X. P. Ai, et al. Electrooxidation Mechanisms and Discharge Characteristics of Borohydride on Different Catalytic Metal Surfaces. J. Phys. Chem. B. 2005, 109 (21): 10896-10901
    53 C. Ponce-de-León, D. V. Bavykin, F. C. Walsh. The Oxidation of Borohydride Ion at Titanate Nanotube Supported Gold Electrodes. Elechtrochem. Commun. 2006, 8 (10): 1655-1660
    54 M. F. Santos, C. A. C. Sequeira. Determination of Kinetic and Diffusional Parameters for Sodium Borohydride Oxidation on Gold Electrodes. J. Electrochem. Soc. 2009, 156 (5): F67-F74
    55 A. Coowar, G. Vitins, G. O. Mepsted, et al. Electrochemical Oxidation of Borohydride at Nano-Gold-Based Electrodes: Application in Direct Borohydride Fuel Cells. J. Power Sources. 2008, 175 (1): 317-324
    56 P. I. Iotov, S. V. Kalcheva, A. M. Bond. Kinetic and Mechanistic Evaluation of Tetrahydroborate Ion Electro-oxidation at Polycrystalline Gold. Electrochim. Acta. 2009, 54 (28): 7236-7241
    57 H. Cheng, K. Scott. Determination of Kinetic Parameters for BorohydrideOxidation on a Rotating Au Disk Electrode. Electrochim. Acta. 2006, 51 (17): 3429-3433
    58 A. Tegou, S. Armyanov, E. Valova, et al. Mixed Platinum-Gold Electrocatalysts for Borohydride Oxidation Prepared by the Galvanic Replacement of Nickel Deposits. J. Electroanal. Chem. 2009, 634 (2): 104-110
    59 M. Chatenet, M. B. Molina-Concha, N. El-Kissi, et al. Direct Rotating Ring-Disk Measurement of the Sodium Borohydride Diffusion Coefficient in Sodium Hydroxide Solutions. Electrochim. Acta. 2009, 54 (18): 4426-4435
    60 P. Krishnan, T.-H. Yang, S. G. Advani, et al. Rotating Ring-Disc Electrode (RRDE) Investigation of Borohydride Electro-oxidation. J. Power Sources. 2008, 182 (1): 106-111
    61 M. Chatenet, M. B. Molina-Concha, J. P. Diard. First Insights into the Borohydride Oxidation Reaction Mechanism on Gold by Electrochemical Impedance Spectroscopy. Electrochim. Acta. 2009, 54 (6): 1687-1693
    62 M. Concha, M. Chatenet, C. Coutanceau, et al. In Situ Infrared (Ftir) Study of the Borohydride Oxidation Reaction. Elechtrochem. Commun. 2009, 11 (1): 223-226
    63 S. Colominas, J. McLafferty, D. D. Macdonald. Electrochemical Studies of Sodium Borohydride in Alkaline Aqueous Solutions Using a Gold Electrode. Electrochim. Acta. 2009, 54 (13): 3575-3579
    64 H. Liu, J. Q. Yang, Z. P. Li. Concentration Ratio of [OH-]/[BH4-]: A Controlling Factor for the Fuel Efficiency of Borohydride Electro-Oxidation. Int. J. Hydrog. Energy. 2009, 34 (23): 9436-9443
    65 G. Rostamikia, M. J. Janik. Borohydride Oxidation over Au(111): A First-Principles Mechanistic Study Relevant to Direct Borohydride Fuel Cells. J. Electrochem. Soc. 2009, 156 (1): B86-B92
    66 G. Rostamikia, M. J. Janik. A First Principles Study of Direct Oxidation of Aqueous Borohydride on Au and Pt Surfaces. ECS Transactions. 2008, 16 (2): 1869-1876
    67 G. Rostamikia, M. J. Janik. First Principles Mechanistic Study of Borohydride Oxidation over the Pt(111) Surface. Electrochim. Acta. 2010, 55 (3): 1175-1183
    68 K. L. Wang, J. T. Lu, L. Zhuang. A Current-Decomposition Study of the Borohydride Oxidation Reaction at Ni Electrodes. J. Phys. Chem. C. 2007, 111 (20): 7456-7462
    69 E. Sanli, B. Z. Uysal, M. L. Aksu. The Oxidation of NaBH4 on ElectrochemicalyTreated Silver Electrodes. Int. J. Hydrog. Energy. 2008, 33 (8): 2097-2104
    70易清风,李磊.新型钛基银电极上硼氢化钠的电化学氧化.化工学报. 2009, 60 (2): 455-459
    71晋霞. NaOH浓度对NaBH4在铜电极上直接氧化的影响.忻州师范学院学报. 2009, 25 (2): 10-11+14
    72段东红,孙彦平.碱性溶液中硼氢化钠在铜阳极上的氧化行为.化工学报. 2009, 60 (11): 2862-2868
    73 H. Morris, H. J. Gysling, D. Reed. Electrochemistry of Boron Compounds. Chem. Rev. 1985, 85 (1): 51-76
    74 P. E. a. A. Hickling. Transactions of the Faraday Society. Trans. Faraday Soc. 1962, 58: 1852 - 1864
    75 R. Jasinski. Fuel Cell Oxidation of Alkali Borohydrides. Electrochem. Technol. 1965, 3: 40-43
    76 O. Yutaka. An Electrochemical Study of Electroless Gold-Deposition Reaction. J. Electrochem. Soc. 1973, 120 (6): 739-744
    77 Y. M. Kubokawa, and K. Abe. Fuel Cells Anodic Reduction of Dissolved Hydrogen at Porous Flow through Electrodes. Denki Kagaku. 1968: 36(11): 784-788.
    78 L. Wang, C. Ma, Y. Sun, et al. AB5-Type Hydrogen Storage Alloy Used as Anodic Materials in Borohydride Fuel Cell. J. Alloy. Compd. 2005, 391 (1-2): 318-322
    79 B. H. Liu, Z. P. Li, K. Arai, et al. Performance Improvement of a Micro Borohydride Fuel Cell Operating at Ambient Conditions. Electrochim. Acta. 2005, 50 (18): 3719-3725
    80 J.-H. Kim, H.-S. Kim, Y.-M. Kang, et al. Carbon-Supported and Unsupported Pt Anodes for Direct Borohydride Liquid Fuel Cells. J. Electrochem. Soc. 2004, 151 (7): A1039-A1043
    81 A. Verma, A. K. Jha, S. Basu. Manganese Dioxide as a Cathode Catalyst for a Direct Alcohol or Sodium Borohydride Fuel Cell with a Flowing Alkaline Electrolyte. J. Power Sources. 2005, 141 (1): 30-34
    82 T.-H. Yang, J.-S. Park, W.-Y. Lee, et al. Investigation of Anode Catalysts and Electrolyte for Direct Borohydride Fuel Cells. ECS Meeting Abstracts. 2007, 701 (3): 217-217
    83 J. Wei, X. Wang, Y. Wang, et al. Investigation of Carbon-Supported Au Hollow Nanospheres as Electrocatalyst for Electrooxidation of Sodium Borohydride. Int. J.Hydrog. Energy. 2009, 34 (8): 3360-3366
    84 H. Cheng, K. Scott. Investigation of Ti Mesh-Supported Anodes for Direct Borohydride Fuel Cells. J. Appl. Electrochem. 2006, 36 (12): 1361-1366
    85韩家军,李宁,刘德丽.流动碱性电解质直接硼氢化物燃料电池.电源技术. 2008, 32 (10): 673-676
    86 H. Liu, Z. P. Li, S. Suda. Electrocatalysts for the Anodic Oxidation of Borohydrides. Electrochim. Acta. 2004, 49 (19): 3097-3105
    87 N. Duteanu, G. Vlachogiannopoulos, M. R. Shivhare, et al. A Parametric Study of a Platinum Ruthenium Anode in a Direct Borohydride Fuel Cell. J. Appl. Electrochem. 2007, 37 (9): 1085-1091
    88 V. W. S. Lam, A. Alfantazi, E. L. Gyenge. The Effect of Catalyst Support on the Performance of PtRu in Direct Borohydride Fuel Cell Anodes. J. Appl. Electrochem. 2009, 39 (10): 1763-1770
    89 V. W. Lam, E. Gyenge, A. Alfantazi. High Performance Anode Catalysts for the Direct Borohydride Fuel Cell. ECS Meeting Abstracts. 2008, 802 (4): 468-468
    90 X. Geng, H. Zhang, W. Ye, et al. Ni-Pt/C as Anode Electrocatalyst for a Direct Borohydride Fuel Cell. J. Power Sources. 2008, 185 (2): 627-632
    91 E. Gyenge, M. Atwan, D. Northwood. Electrocatalysis of Borohydride Oxidation on Colloidal Pt and Pt-Alloys (Pt-Ir, Pt-Ni, and Pt-Au) and Application for Direct Borohydride Fuel Cell Anodes. J. Electrochem. Soc. 2006, 153 (1): A150-A158
    92 M. Concha, M. Chatenet. Direct Oxidation of Sodium Borohydride on Pt, Ag and Alloyed Pt-Ag Electrodes in Basic Media. Part I: Bulk Electrodes. Electrochim. Acta. 2009, 54 (26): 6119-6129
    93 B. M. Concha, M. Chatenet. Direct Oxidation of Sodium Borohydride on Pt, Ag and Alloyed Pt-Ag Electrodes in Basic Media Part Ii. Carbon-Supported Nanoparticles. Electrochim. Acta. 2009, 54 (26): 6130-6139
    94 J. Q. Yang, B. H. Liu, S. Wu. Carbon-Supported Pd Catalysts: Influences of Nanostructure on Their Catalytic Performances for Borohydride Electrochemical Oxidation. J. Power Sources. 2009, 194 (2): 824-829
    95 H. Atwan, C. L. B. Macdonald, D. O. Northwood, et al. Colloidal Au and Au-Alloy Catalysts for Direct Borohydride Fuel Cells: Electrocatalysis and Fuel Cell Performance. J. Power Sources. 2006, 158 (1): 36-44
    96冯瑞香,曹余良,艾新平等. AgNi合金作为直接硼氢化物燃料电池的阳极催化剂.物理化学学报. 2007, 23 (6): 932-934
    97 H. M. Lee, S. Y. Park, K. T. Park, et al. Development of Au-Pd Catalysts Supported on Carbon for a Direct Borohydride Fuel Cell. Res. Chem. Intermed. 2008, 34 (8-9): 787-792
    98 J. B. Lakeman, A. Rose, K. D. Pointon, et al. The Direct Borohydride Fuel Cell for UUV Propulsion Power. J. Power Sources. 2006, 162 (2): 765-772
    99赵鹏程,杨子芹,谢自立等.催化剂载体对DBFC性能的影响.电源技术. 2009, 33 (7): 573-575
    100 P. de Leon, F. C. Walsh, R. R. Bessette, et al. Recent Developments in Borohydride Fuel Cells. ECS Transactions. 2008, 15 (1): 25-49
    101 S.-I. Yamazaki, H. Senoh, K. Yasuda. New Catalysts for Borohydride Electro-oxidation Using Rh Porphyrins. Elechtrochem. Commun. 2009, 11 (6): 1109-1112
    102 H. Atwan, D. O. Northwood, E. L. Gyenge. Evaluation of Colloidal Os and Os-Alloys (Os-Sn, Os-Mo and Os-V) for Electrocatalysis of Methanol and Borohydride Oxidation. Int. J. Hydrog. Energy. 2005, 30 (12): 1323-1331
    103 V. W. S. Lam, E. L. Gyenge. High-Performance Osmium Nanoparticle Electrocatalyst for Direct Borohydride Pem Fuel Cell Anodes. J. Electrochem. Soc. 2008, 155 (11): B1155-B1160
    104 E. SanlI, H. ?elikkan, B. ZühtüUysal, et al. Anodic Behavior of Ag Metal Electrode in Direct Borohydride Fuel Cells. Int. J. Hydrog. Energy. 2006, 31 (13): 1920-1924
    105 H. Atwan, D. O. Northwood, E. L. Gyenge. Evaluation of Colloidal Ag and Ag-Alloys as Anode Electrocatalysts for Direct Borohydride Fuel Cells. Int. J. Hydrog. Energy. 2007, 32 (15): 3116-3125
    106 M. Mitov, G. Hristov, E. Hristova, et al. Complex Performance of Novel Conimnb Electrodeposits in Alkaline Borohydride Solutions. Environ. Chem. Lett. 2009, 7 (2): 167-173
    107 B. H. Liu, Z. P. Li, S. Suda. Anodic Oxidation of Alkali Borohydrides Catalyzed by Nickel. J. Electrochem. Soc. 2003, 150 (3): A398-A402
    108 S. M. Lee, J. H. Kim, H. H. Lee, et al. The Characterization of an Alkaline Fuel Cell That Uses Hydrogen Storage Alloys. J. Electrochem. Soc. 2002, 149 (5): A603-A606
    109 L. Wang, C.-A. Ma, X. Mao, et al. Rare Earth Hydrogen Storage Alloy Used in Borohydride Fuel Cells. Elechtrochem. Commun. 2005, 7 (12): 1477-1481
    110 G. Wang, X. Wang, R. Miao, et al. Effects of Alkaline Treatment of Hydrogen Storage Alloy on Electrocatalytic Activity for NaBH4 Oxidation. Int. J. Hydrog. Energy. 2010, 35 (3): 1227-1231
    111 B. H. Liu, S. Suda. Hydrogen Storage Alloys as the Anode Materials of the Direct Borohydride Fuel Cell. J. Alloy. Compd. 2008, 454 (1-2): 280-285
    112 Z. Yang, L. Wang, Y. Gao, et al. LaNi4.5Al0.5 Alloy Doped with Au Used as Anodic Materials in a Borohydride Fuel Cell. J. Power Sources. 2008, 184 (1): 260-264
    113 L. Wang, C.-A. Ma, X. Mao. LmNi4.78Mn0.22 Alloy Modified with Si Used as Anodic Materials in Borohydride Fuel Cells. J. Alloy. Compd. 2005, 397 (1-2): 313-316
    114 L. Wang, W. C. Zhang, D. X. Cao, et al. Fe2O3-Modified Hydrogen Storage Alloys as Electrocatalyst for Borohydride Oxidation. Chin. J. Chem. 2009, 27 (11): 2166-2170
    115 M. Chatenet, F. Micoud, I. Roche, et al. Kinetics of Sodium Borohydride Direct Oxidation and Oxygen Reduction in Sodium Hydroxide Electrolyte: Part I. Bh4- Electro-Oxidation on Au and Ag Catalysts. Electrochim. Acta. 2006, 51 (25): 5459-5467
    116 R. X. Feng, H. Dong, Y. D. Wang, et al. A Simple and High Efficient Direct Borohydride Fuel Cell with MnO2-Catalyzed Cathode. Elechtrochem. Commun. 2005, 7 (4): 449-452
    117 Y.-G. Wang, Y.-Y. Xia. A Direct Borohydride Fuel Cell Using MnO2-Catalyzed Cathode and Hydrogen Storage Alloy Anode. Elechtrochem. Commun. 2006, 8 (11): 1775-1778
    118 H. Cheng, K. Scott. Investigation of Non-Platinum Cathode Catalysts for Direct Borohydride Fuel Cells. J. Electroanal. Chem. 2006, 596 (2): 117-123
    119 J. Ma, Y. Liu, P. Zhang, et al. A Simple Direct Borohydride Fuel Cell with a Cobalt Phthalocyanine Catalyzed Cathode. Elechtrochem. Commun. 2008, 10 (1): 100-102
    120 J. Ma, J. Wang, Y. Liu. Iron Phthalocyanine as a Cathode Catalyst for a Direct Borohydride Fuel Cell. J. Power Sources. 2007, 172 (1): 220-224
    121马金福,刘艳,赖俊华等.双核双金属酞菁(FeCoPc2)阴极催化直接硼氢化物燃料电池.电化学. 2009, 15 (3): 280-283
    122 Y. Liu, J. Ma, J. Lai, et al. Study of Lacoo3 as a Cathode Catalyst for a Membraneless Direct Borohydride Fuel Cell. J. Alloy. Compd. 2009, 488 (1):204-207
    123 Y. Liu, Y. Liu, J. Ma, et al. La1-xSrxCoO3 (x=0.1-0.5) as the Cathode Catalyst for a Direct Borohydride Fuel Cell. J. Power Sources. 2010, 195 (7): 1854-1858
    124 J. Ma, Y. Liu, Y. Liu, et al. A Membraneless Direct Borohydride Fuel Cell Using LaNiO3-Catalysed Cathode. Fuel Cells. 2008, 8 (6): 394-398
    125 H. Y. Qin, Z. X. Liu, W. X. Yin, et al. A Cobalt Polypyrrole Composite Catalyzed Cathode for the Direct Borohydride Fuel Cell. J. Power Sources. 2008, 185 (2): 909-912
    126 C. Celik, F. G. B. San, H. I. Sarac. Effects of Operation Conditions on Direct Borohydride Fuel Cell Performance. J. Power Sources. 2008, 185 (1): 197-201
    127 C. Celik, F. G. B. San, H. I. Sarac. Influences of Sodium Borohydride Concentration on Direct Borohydride Fuel Cell Performance. J. Power Sources. 2010, 195 (9): 2599-2603
    128 A. Verma, S. Basu. Direct Alkaline Fuel Cell for Multiple Liquid Fuels: Anode Electrode Studies. J. Power Sources. 2007, 174 (1): 180-185
    129 A. Verma, S. Basu. Direct Use of Alcohols and Sodium Borohydride as Fuel in an Alkaline Fuel Cell. J. Power Sources. 2005, 145 (2): 282-285
    130 A. Sequeira, T. C. Pardal, D. M. Santos, et al. Studies on Sodium Borohydride for Energy Systems. ECS Transactions. 2007, 3 (18): 37-47
    131 K. Singh, V. K. Shahi. Electrochemical Studies on Nafion Membrane. J. Membr. Sci. 1998, 140 (1): 51-56
    132 M. Santos, C. A. Sequeira. Polymeric Membranes for Direct Borohydride Fuel Cells: A Comparative Study. ECS Meeting Abstracts. 2009, 902 (6): 377-377
    133 C. Heitner-Wirguin. Recent Advances in Perfluorinated Ionomer Membranes: Structure, Properties and Applications. J. Membr. Sci. 1996, 120 (1): 1-33
    134 W. Franco, C. Sequeira. An Improved Borohydride- H2O2 Laboratory Fuel Cell. ECS Meeting Abstracts. 2006, 602 (42): 1837-1837
    135 M. Franco, C. Sequeira, J. Condeo. A Borohydride- H2O2 Laboratory Fuel Cell. ECS Meeting Abstracts, 2006: 276-276
    136 C.-C. Yang, Y. J. Li, S.-J. Chiu, et al. A Direct Borohydride Fuel Cell Based on Poly(Vinyl Alcohol)/Hydroxyapatite Composite Polymer Electrolyte Membrane. J. Power Sources. 2008, 184 (1): 95-98
    137 C. Kim, K.-J. Kim, M. Y. Ha. Performance Enhancement of a Direct Borohydride Fuel Cell in Practical Running Conditions. J. Power Sources. 2008, 180 (1):154-161
    138 K. Deshmukh, K. S. V. Santhanam. New Borohydride Fuel Cell with Multiwalled Carbon Nanotubes as Anode: A Step Towards Increasing the Power Output. J. Power Sources. 2006, 159 (2): 1084-1088
    139 M. Santos, J. A. Condeco, M. W. Franco, et al. An Improved Borohydride- H2O2 Laboratory Fuel Cell. ECS Transactions. 2007, 3 (32): 19-30
    140 M. F. Santos, C. A. C. Sequeira. Zinc Anode for Direct Borohydride Fuel Cells. J. Electrochem. Soc. 2010, 157 (1): B13-B19
    141 R. K. Raman, A. K. Shukla. A Direct Borohydride/Hydrogen Peroxide Fuel Cell with Reduced Alkali Crossover. Fuel Cells. 2007, 7 (3): 225-231
    142 R. S. Disselkamp. Can Aqueous Hydrogen Peroxide Be Used as a Stand-Alone Energy Source. Int. J. Hydrog. Energy. 2010, 35 (3): 1049-1053
    143 N. Luo, G. H. Miley, J. Mather, et al. Engineering of the Bipolar Stack of a Direct NaBH4 Fuel Cell. J. Power Sources. 2008, 185 (1): 356-362
    144 J. Hong, B. Fang, C. Wang, et al. Zn-Air Fuel Cell/Battery Hybrid Power Sources with Addition of Borohydride. ECS Transactions. 2008, 3 (42): 89-99
    145 J. Hong, B. Fang, C. Wang, et al. Intrinsic Borohydride Fuel Cell/Battery Hybrid Power Sources. J. Power Sources. 2006, 161 (2): 753-760
    146 R. Brushett, R. S. Jayashree, W.-P. Zhou, et al. Investigation of Fuel and Media Flexible Laminar Flow-Based Fuel Cells. Electrochim. Acta. 2009, 54 (27): 7099-7105
    147 K. T. Park, U. H. Jung, S. U. Jeong, et al. Influence of Anode Diffusion Layer Properties on Performance of Direct Borohydride Fuel Cell. J. Power Sources. 2006, 162 (1): 192-197
    148 H. Cheng, K. Scott. Influence of Operation Conditions on Direct Borohydride Fuel Cell Performance. J. Power Sources. 2006, 160 (1): 407-412
    149 A. Choudhury, R. K. Raman, S. Sampath, et al. An Alkaline Direct Borohydride Fuel Cell with Hydrogen Peroxide as Oxidant. J. Power Sources. 2005, 143 (1-2): 1-8
    150 Z. P. Li, B. H. Liu, K. Arai, et al. Evaluation of Alkaline Borohydride Solutions as the Fuel for Fuel Cell. J. Power Sources. 2004, 126 (1-2): 28-33
    151 D. Cao, Y. Gao, G. Wang, et al. A Direct NaBH4-H2O2 Fuel Cell Using Ni Foam Supported Au Nanoparticles as Electrodes. Int. J. Hydrog. Energy. 2010, 35 (2): 807-813
    152 B. H. Liu, Z. P. Li, S. Suda. A Study on Performance Stability of the Passive Direct Borohydride Fuel Cell. J. Power Sources. 2008, 185 (2): 1257-1261
    153 Z. P. Li, B. H. Liu, J. K. Zhu, et al. Depression of Hydrogen Evolution During Operation of a Direct Borohydride Fuel Cell. J. Power Sources. 2006, 163 (1): 555-559
    154 B. H. Liu, S. Suda. Influences of Fuel Crossover on Cathode Performance in a Micro Borohydride Fuel Cell. J. Power Sources. 2007, 164 (1): 100-104
    155 B. H. Liu, Z. P. Li, J. K. Zhu, et al. Influences of Hydrogen Evolution on the Cell and Stack Performances of the Direct Borohydride Fuel Cell. J. Power Sources. 2008, 183 (1): 151-156
    156 B. H. Liu, Z. P. Li, L. L. Chen. Alkaline Sodium Borohydride Gel as a Hydrogen Source for Pemfc or an Energy Carrier for NaBH4-Air Battery. J. Power Sources. 2008, 180 (1): 530-534
    157 H. Y. Qin, Z. X. Liu, W. X. Yin, et al. Effects of Hydrazine Addition on Gas Evolution and Performance of the Direct Borohydride Fuel Cell. J. Power Sources. 2008, 185 (2): 895-898
    158 H. Qin, Z. Liu, Y. Guo, et al. The Affects of Membrane on the Cell Performance When Using Alkaline Borohydride-Hydrazine Solutions as the Fuel. Int. J. Hydrog. Energy. In Press, Corrected Proof:
    159 H. Y. Qin, Z. X. Liu, L. Q. Ye, et al. The Use of Polypyrrole Modified Carbon-Supported Cobalt Hydroxide as Cathode and Anode Catalysts for the Direct Borohydride Fuel Cell. J. Power Sources. 2009, 192 (2): 385-390
    160 H. Qin, Z. Liu, S. Lao, et al. Influences of Carbon Support on the Electrocatalysis of Polypyrrole-Modified Cobalt Hydroxide in the Direct Borohydride Fuel Cell. J. Power Sources. 2010, 195 (10): 3124-3129
    161 B. H. Liu, Z. P. Li, S. Suda. Development of High-Performance Planar Borohydride Fuel Cell Modules for Portable Applications. J. Power Sources. 2008, 175 (1): 226-231
    162 R. Jamard, J. Salomon, A. Martinent-Beaumont, et al. Life Time Test in Direct Borohydride Fuel Cell System. J. Power Sources. 2009, 193 (2): 779-787
    163 C. Kim, K.-J. Kim, M. Y. Ha. Investigation of the Characteristics of a Stacked Direct Borohydride Fuel Cell for Portable Applications. J. Power Sources. 2008, 180 (1): 114-121
    164 R. K. Raman, S. K. Prashant, A. K. Shukla. A 28-W Portable DirectBorohydride-Hydrogen Peroxide Fuel-Cell Stack. J. Power Sources. 2006, 162 (2): 1073-1076
    165 C. P. de Leon, F. C. Walsh, A. Rose, et al. A Direct Borohydride-Acid Peroxide Fuel Cell. J. Power Sources. 2007, 164 (2): 441-448
    166 G. Selvarani, S. K. Prashant, A. K. Sahu, et al. A Direct Borohydride Fuel Cell Employing Prussian Blue as Mediated Electron-Transfer Hydrogen Peroxide Reduction Catalyst. J. Power Sources. 2008, 178 (1): 86-91
    167 R. K. Raman, N. A. Choudhury, A. K. Shukla. A High Output Voltage Direct Borohydride Fuel Cell. Electrochem. Solid-State Lett. 2004, 7 (12): A488-A491
    168毛示旻,刘建国,邹志刚等.直接硼氢化钠/双氧水燃料电池研究.电源技术. 2008, 32 (12): 827-831
    169魏建良,王先友,王宏等.直接硼氢化钠-过氧化氢燃料电池阴极催化剂催化性能研究.中国化学会第26届学术年会,中国天津, 2008:
    170 D. Byrd, G. H. Miley. Simulation Studies of the Membrane Exchange Assembly of an All-Liquid, Proton Exchange Membrane Fuel Cell. J. Power Sources. 2008, 176 (1): 222-228
    171吴海军,王诚,刘志祥等.操作条件对直接NaBH4/ H2O2燃料电池性能影响.电源技术. 2008, 32 (10): 666-668+676
    172魏建良,王先友,王宏等.纳米Au粒子作为直接硼氢化钠-过氧化氢燃料电池阴极催化剂.化学学报. 2008, 66 (24): 2675-2680
    173 H. Miley, N. Luo, J. Mather, et al. Direct NaBH4/ H2O2 Fuel Cells. J. Power Sources. 2007, 165 (2): 509-516
    174 R. K. Raman, A. K. Shukla. Electro-Reduction of Hydrogen Peroxide on Iron Tetramethoxy Phenyl Porphyrin and Lead Sulfate Electrodes with Application in Direct Borohydride Fuel Cells. J. Appl. Electrochem. 2005, 35 (11): 1157-1161
    175 C. Ponce de León, F. C. Walsh, C. J. Patrissi, et al. A Direct Borohydride-Peroxide Fuel Cell Using a Pd/Ir Alloy Coated Microfibrous Carbon Cathode. Elechtrochem. Commun. 2008, 10 (10): 1610-1613
    176 D. Cao, D. Chen, J. Lan, et al. An Alkaline Direct NaBH4- H2O2 Fuel Cell with High Power Density. J. Power Sources. 2009, 190 (2): 346-350
    177 J. L. Wei, X. Y. Wang, Y. Wang, et al. Carbon-Supported Au Hollow Nanospheres as Anode Catalysts for Direct Borohydride-Hydrogen Peroxide Fuel Cells. Energy Fuels. 2009, 23 (8): 4037-4041
    178 L. Gu, N. Luo, G. H. Miley. Cathode Electrocatalyst Selection and Deposition fora Direct Borohydride/Hydrogen Peroxide Fuel Cell. J. Power Sources. 2007, 173 (1): 77-85
    179 W. Haijun, W. Cheng, L. Zhixiang, et al. Influence of Operation Conditions on Direct NaBH4/ H2O2 Fuel Cell Performance. Int. J. Hydrog. Energy. In Press, Corrected Proof:
    180 N. Luo, G. H. Miley, K.-J. Kim, et al. NaBH4/ H2O2 Fuel Cells for Air Independent Power Systems. J. Power Sources. 2008, 185 (2): 685-690
    181郑学家,郑吉岩.硼氢化钠的合成工艺及应用.辽宁化工. 1999, (01): 59-60
    182 B. H. Liu, Z. P. Li, J. K. Zhu, et al. Sodium Borohydride Synthesis by Reaction of Na2O Contained Sodium Borate with Al and Hydrogen. Energy & Fuels. 2007, 21 (3): 1707-1711
    183 B. H. Liu, Z. P. Li, J. K. Zhu. Sodium Borohydride Formation When Mg Reacts with Hydrous Sodium Borates under Hydrogen. J. Alloy. Compd. 2009, 476 (1-2): L16-L20
    184 B. H. Liu, Z. P. Li, N. Morigasaki, et al. Kinetic Characteristics of Sodium Borohydride Formation When Sodium Meta-Borate Reacts with Magnesium and Hydrogen. Int. J. Hydrog. Energy. 2008, 33 (4): 1323-1328
    185 Z. P. Li, N. Morigazaki, B. H. Liu, et al. Preparation of Sodium Borohydride by Reaction of MgH2 with Dehydrated Borax through Ball Milling at Room Temperature. J. Alloy. Compd. 2003, 349 (1-2): 232-236
    186 Z. P. Li, B. H. Liu, J. K. Zhu, et al. NaBH4 Formation Mechanism by Reaction of Sodium Borate with Mg and H2. J. Alloy. Compd. 2007, 437 (1-2): 311-316
    187 Y. Kojima, T. Haga. Recycling Process of Sodium Metaborate to Sodium Borohydride. Int. J. Hydrog. Energy. 2003, 28 (9): 989-993
    188 Z. P. Li, B. H. Liu, K. Arai, et al. Protide Compounds in Hydrogen Storage Systems. J. Alloy. Compd. 2003, 356-357: 469-474
    189 C. P. de Leon, F. C. Walsh, D. Pletcher, et al. Direct Borohydride Fuel Cells. J. Power Sources. 2006, 155 (2): 172-181
    190 T. C. Deivaraj, W. X. Chen, J. Y. Lee. Preparation of PtNi Nanoparticles for the Electrocatalytic Oxidation of Methanol. J Mater Chem. 2003, 13 (10): 2555-2560
    191 R. P. J.W. Tsang, US Patent Application (2003) 2003143443.
    192 R. Jamard, A. Latour, J. Salomon, et al. Study of Fuel Efficiency in a Direct Borohydride Fuel Cell. J. Power Sources. 2008, 176 (1): 287-292
    193 V. Radmilovic, H. A. Gasteiger, P. N. Ross. Structure and Chemical-Compostionof a Supported Pt-Ru Electrocatalyst for Methanol Oxidation. J. Catal. 1995, 154(1): 98~106
    194 F. Maillard, M. Martin, F. Gloaguen, J.M. Leger, et al. Oxygen Electroreduction on Carbon-supported Platinum Catalysts. Particle-size Effect on the Tolerance to Methanol Competition. Electrochim. Acta. 2002, 47: 3431~3440.
    195 A. K. Shukla, M. Neergat, P. Bera, et al. An XPS Study on Binary and Ternary Alloys of Transition Metals with Platinized Carbon and Its Bearing Upon Oxygen Electroreduction in Direct Methanol Fuel Cells. J. Electroanal. Chem. 2001, 504(1): 111-119
    196 J. T. Mueller, P. M. Urban. Characterization of Direct Methanol Fuel Cells by AC Impedance Spectroscopy. J. Power Sources. 1998, 75(1): 139~143

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700