钴硼酸盐晶须的制备与机理初探
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文比较系统地研究了制备硼酸三钴晶须的方法,筛选出合适的原料、助熔剂、助熔剂含量和反应条件,对所制备的晶须进行了XRD、SEM、TEM和SAED等表征,通过查阅文献和对实验现象的观察,对硼酸三钴晶须的生长机理做了初步探索,研究的主要内容和结论如下:
     (1)通过单因素实验,钴源、硼源分别选定氯化钴和硼砂,且二者的配比为3:2-3:3;助熔剂选定氯化钾,且助熔剂的含量为钴原料和硼原料质量和的0.75-1.25倍,反应温度850℃-900℃,反应时间2-3 h,该条件可制备出高长径比的硼酸三钴晶须。
     (2)通过正交试验,利用极差、方差分析法对生长硼酸三钴晶须的反应条件进行了优化,找出了制备硼酸三钴晶须的最佳工艺条件:Co:B为3:2.25,助熔剂的含量为钴硼原料质量的0.75倍,反应温度为900℃,反应时间为4h;因素影响的主次顺序为反应温度>助熔剂含量>钴硼配比>反应时间。
     (3)借助XRD、SEM、TEM和SAED等测试手段对所制备的晶须进行了分析和表征。结果表明:制备的晶须为正交晶系的硼铁矿系Co3BO5;晶须长度平均在500μm以上,直径在0.5-5μm,个别直径10μm,长径比平均在100以上,为单晶结构,沿[231]方向生长。
     (4)通过对前驱体产物的判断,初步探讨了硼酸三钴晶须的生长机理,认为该方法制备的硼酸三钴晶须坩埚内、外壁上的生长机理为气相反应,烧结块内部晶须可以用溶解-析出机理来解释。
     根据制备硼酸三钴晶须筛选出的条件,进行小范围调整制备出二硼酸三钴晶须和二硼酸二钴晶须,试剂仍选择氯化钴和硼砂,助熔剂为氯化钾,优化的条件为反应温度850℃,反应时间为1.5 h,钴硼配比为1:2时,可得到夹杂着少量黑色晶须的紫色二硼酸三钴晶须;当钴硼配比1:3至1:4,可制得浅紫色二硼酸二钴晶须。其中制备的二硼酸三钴晶须强度较差,有缺陷,晶体表面有熔槽、裂痕、断痕,晶须长度平均在500μm以上,直径在10-100μm;二硼酸二钴晶须质量好于二硼酸三钴晶须,为大量的长纤维状,少量棒状,部分晶体表面有裂痕、断痕,晶须长度平均在200μm-300μm,个别可达500μm,直径一般在2-20μm。
     在制备硼酸三钴晶须的过程中,发现了层状六角片Co3O4,为该化合物的新的形貌,对该六角片状Co3O4的合成原料、合成条件进行了优化,确定最终的实验条件为CoCl2·6H2O:NaOH:H3BO3=1:5:1,反应温度为750℃,反应时间2h。XRD结果显示最终产物为C0304;SEM显示六角片形状规整,表面干净平整无裂痕和其它缺陷,边长范围为2-10μm,侧面图像显示为层状结构;TEM可以看出,产物为六角片状的单晶,结晶很好,表面平整无孔洞,测得HRTEM图中的条纹间距离为0.24 nm,对应于[311]晶面。
This dissertation has systematically studied the preparation and growth mechanism of CO3BO5 whiskers. Appropriate materials, flux, the flux ratio and the reaction conditions were optimized. The whiskers were characterized by XRD, SEM, TEM and SAED, the growth mechanism of the whiskers was explored. The main contents are as following:
     (1) Through Single factor experiments, cobalt chloride and borax were selected as cobalt source, boron source, respectively, and the ratio of the materials is in the range of 3:2-3:3; potassium chloride was selected as the flux, and the ratio of the flux is 0.75-1.25 of the summation quantity of cobalt salts and borate materials; the reaction temperature is between 850℃-900℃, and the reaction time is between 2-3 h. High length ratio of CO3BO5 whiskers can be prepared under these conditions.
     (2) Through orthogonal experiments, the range and variance analysis, the optimum prepartion conditions of Co3BO5 whiskers were determined as:the ratio of Co:B is 3:2.25, the ratio of flux is 0.75, the reaction temperature is 900℃, and the reaction time is 4 h; the order of the factors affecting the reactions is:temperature> content of flux> ratio of Co:B> reaction time.
     (3) The prepared whiskers were analyzed and characterized by XRD, SEM, TEM and SAED et al. The results showed that:the whiskers are orthorhombic Co3BO5, the average length of the whisker is more than 500μm, most diameters are between 0.5-5μm with a few diameters up to 10μm, the average length ratio is above 100 within high ratio. It is a single crystal structure that grows along the [231] direction.
     (4) Through estimating the precursor product, the growth mechanism of the CO3BO5 whiskers was explored. The Co3BO5 whiskers prepared by the crucible outer wall was considered as the gas phase reaction growth, and after sintering, the dissolved whiskers within a block can be explained by dissolving-depositing mechanism.
     Based on the selected preparation conditions of Co3BO5 whiskers, Co3B2O6 and Co2B2O5 whiskers were obtained. Reagents were chosen as cobalt chloride and boric acid, flux is potassium chloride, the optimized conditions are:reaction temperature is 850℃, reaction time is 1.5 h, the ratio of cobalt:boron is 1:2 and 1:3 to 1:4 respectively. The prepared Co3B2O6 whiskers are brittle and have some defects. The crystals'surfaces have taken on some cracks and ruptures, and the average length of the whiskers is more than 500μm, most diameters are between 10-100μm. Contrasted with Co3B2O6 whiskers, the quality of Co2B2O5 whiskers was improved. The fibriform crystals are increased and the clavas are reduced. The cracks and ruptures are reduced also.The average length of the whiskers are 200-500μm, most diameters are between 2-20μm.
     During the preparation of Co3BO5 whiskers, a hexagonal plate Co3O4, a new morphology, was discovered surprisingly. The synthetic material, conditions of the hexagonal plate Co3O4 were optimized and the final experimental conditions are:the material ratio is CoCl2·6H2O: NaOH:H3BO3= 1:5:1; the reaction temperature is 750℃, the reaction time is 2 h. XRD results show that the final product is Co3O4; SEM results show that their shapes are regular hexagonal piece, the surface is clean, smooth, no cracks and other defects, the side range is between 2-10μm, the side image shows a layer structure. TEM results show that the product is hexagonal plate single crystal, crystal is perfect, the surface is smooth with no holes. SAED and HRTEM figures show that the distance between the strips is 0.24 nm, corresponding to the [311] crystal face.
引文
[1]宋彭生.盐湖及相关资源开发利用进展(续一)[J],盐湖研究,2000,8(2),33-59
    [2]Li H. W., Kikuchi K., Nakamori Y., et al. Effects of Ball Milling and Additives on Dehydriding Behaviors of Well-Crystallized Mg (BH4)2[J]. Scripta Materialia,2007,57: 679-682
    [3]Varina R. A., Chiu Ch., Wronski Z. S. Mechano-Chemical Activation Synthesis (MCAS) of Disordered Mg (BH4)2 using NaBH[J]. Journal of Alloys and Compounds,2008,462: 201-208
    [4]Yu B., Guo Y. H., Sun D. L., et al. A combined Hydrogen Storage System of Mg(BH4)2 LiNH2 with Favorable ehydrogenation[J], Journal of Physical Chemistry C,2010,114, 4733-4737
    [5]Riktor M. Sorby D., M. Chlopek H., K., et al. In Situ Synchrotron Diffraction Studies of Phase Transitions and Thermal Decomposition of Mg (BH4)2 and Ca (BH4)2[J]. Journal of Materials Chemistry,2007,17,4939-4942
    [6]Z. Z. Fang, L. P. Ma, X. D. Kang, et al. In Situ Formation and Rapid Decomposition of Ti (BH4)3 by Mechanical Milling LiBH4 with TiF3[J]. Applied Physics Letters,2009,94, 044104
    [7]Rebecca J. Newhouse, Vitalie Stavila, Son-Jong Hwang, etal. Reversibility and Improved Hydrogen Release of Magnesium Borohydride[J]. Journal of Physical Chemistry C,2010, 114 (11):5224-5232
    [8]Kim C., Hwang S. J., Bowman R. C., et al. LiSc(BH4)4 as a Hydrogen Storage Material: Multinuclear High-Resolution Solid-State NMR and First-Principles Density Functional Theory Studies[J]. Journal of Physical Chemistry C,2009,113 (22),9956-9968
    [9]Choudhury P., Bhethanabotla V. R., Stefanakos E.. Manganese Borohydride as a Hydrogen-Storage Candidate:First-Principles Crystal Structure and Thermodynamic Properties[J]. Journal of Physical Chemistry C,2009,113(30):13416-13424
    [10]郑学家.硼化合物生产与应用[M].北京:化学工业出版社,2008:223-229
    [11]张茂峰.稀土氟化物和硼化物纳米材料的合成、表征及性能研究[D].合肥:中国科学技术大学,2008
    [12]王连成.温和温度下氮化硼、碳化硼及稀土(或碱土)金属硼化物纳米材料的制备[D].济南:山东大学,2010
    [13]Babizhetskyy. V., Kohler. J, Mattausch. H., et al. Synthesis, Structure and Properties of Nd2BC Containing the Trans-dibora-(1,3)-butadiene [C=B-B=C](8-)-unit[J]. Zeitschriftfur Kristallographie,2011,226, (1):93-98
    [14]Babizhetskyy. V., Simon. A., Mattausch. H., et al. New Ternary Rare-earth Metal Boride Carbides R15B4C14 (R=Y, Gd-Lu) Containing BC2 Units:Crystal and Electronic Structures, Magnetic Properties [J]. Journal of Solid State Chemistry,2010,183(10): 2343-2351
    [15]Wang G. H, Brewer J. R, Chan J. Y, et al. Morphological Evolution of Neodymium Boride Nanostructure Growth by Chemical Vapor Deposition[J]. Journal of Physical Chemistry C,2009,113(24):10446-10451
    [16]全跃.硼及硼产品研究与进展[M].大连:大连理工大学出版社,2008:241-251
    [17]丁鹤振.金属硼化物的合成与应用[J].辽宁化工,2008,37(5):323-325
    [18]Wu H. S., Xiu X. H., Zhang C. J. Theoretical Study on the Structures and Stabilization of Metallic Borides[J]. ActaPhysico-ChimicaSinica,1997,13(3):258-263
    [19]孙歌.超细二硼化锆和碳化锆陶瓷粉末的制备研究[D].武汉:武汉理工大学,2009
    [20]汪京荣.最新的超导体——MgB2[J].稀有金属快报,2001,,(7):16-17
    [21]陈昌明,张立同,周万诚.硼化物陶瓷及其应用[J].兵器材料科学与工程,1997,20(2):68-71
    [22]Chen Z. G, Zou J. Field Emitters:Ultrathin BN Nanosheets Protruded from BN Fibers [J]. Journal of Materials Chemistry,2011,21(4):1191-1195
    [23]Cho H. B, Tokoi Y, Tanaka S, et al. Facile Orientation of Unmodified BN Nanosheets in Polysiloxane/BN Composite Films Using a High Magnetic Field[J]. Journal of Materials Science,2011,46(7):2318-2323
    [24]吴芳.碳化硼陶瓷及其摩擦学研究[D].长沙:中南大学,2001
    [25]陈刚,章嵩,王传彬,等.碳化硼陶瓷的放电等离子烧结及其力学性能[J].人工晶体学报,2009,38(1):165-169
    [26]Kokai F, Nozaki I, Okada T, et al. Efficient Growth of Multi-Walled Carbon Nanotubes by Continuous-Wave Laser Vaporization of Graphite Containing B4C[J]. Carmon,2011, 49(4):1173-1181
    [27]熊焰,傅正义.二硼化钛基金属陶瓷研究进展[J].硅酸盐通报,2005,(1):60-64
    [28]Khaghani-Dehaghani M. A., Ebrahimi-Kahrizsangi R., Setoudeh N, et al. Mechanochemical Synthesis of Al2O3-TiB2 Nanocomposite Powder from Al-TiO2-H3BO3 Mixture [J]. International Journal of Refractory Metals& Hard Materials,2011,29(2):244-249
    [29]郑学家.硼及硼酸盐产品开发和应用前景[J].无机盐工业,2005,37(4):1-3
    [30]袁光辉.硼酸盐的结构特征及分类研究[D].大连:大连理工大学,2007
    [31]Rowland C. E, Cahill C. L, Post J. E. The Structure of Braitschite, a Calcium Rare Earth Borate[J]. American Mineralogist,2011,96(1):197-201
    [32]李武.无机晶须[M].北京:化学工业出版社,2005:1-2
    [33]袁建君,方琪,刘智恩.晶须材料的研究进展[J].材料科学与工程,1996,14(4):1
    [34]李武,靳治良,张志宏.无机晶须材料的合成与应用研究[J],化学进展,2003,15(4):264-274
    [35]Wagner R. S., Ellis W. C. The VLS Mechanism of Whisker Growth[J]. Transactions of the Metallurgical Society of AIME,1965,233:1054-1064
    [36]Evans C.C., Whiskers [M], Mills Boon Limited, London,1972:1-68
    [37]Milewski J. V. Whiskers [M]. Oxford:Pergamn Press,1986:281
    [38]王善元,张汝光.纤维增强复合材料[M].第一版,北京:中国纺织大学出版社,1998:68
    [39]Frank F. C. The Influence of Dislocations on Crystal Growth[J]. Disc.Far.Soc.,1949,5: 48-54
    [40]Frank F. C. In Growth and Perfection of Crystals[M]. Wiley, New York.1958:350-360
    [41]Sears G. W. Screw Dislocation Theory of Whisker Growth [J]. Acta Materialia,1953,1: 457-459
    [42]Brenner S. S. Factors Influencing the Strength of Whiskers in Fiber Composite Materials[M], New York, American Society for Metal,1965:11
    [43]Yumoto H., Sako T., Gotoh Y., et al. Growth Mechanism of Vapor-Liquid-Solid(VLS) Grown Indium Tin Oxide(ITO) Whiskers along the Substrate[J], Journal of Crystal Growth,1999,203:136-140
    [44]Jung W., Lee T., Min B. Growth Mechanism of Aluminum Nitride Whiskers Prepared from a (Glutarato)(Hydroxo) Aluminum(III) Complex [J]. Materials Letters,2003,57, 4237-4242
    [45]Wagner R. S., Ellis W. C. Vapor-Liquid-Solid Mechanism of Single Crystal Growth[J]. Applied Physics Letters,1964,4(5):89-90
    [46]Lewis T. J. Whisker Growth by Chemical Reaction:Some Aspects of the Vapour Growth of Ceramic Whiskers [J]. Inorganic Macromolecules Review,1970,1:159-164
    [47]Chen H., Cao Y.G., Tang J.X., et al. Fabrication of Large-Scale SiC Fibers Using Carbamide as Additives[J], Journal of Crystal Growth,2001,231:4-7
    [48]Xia Y. N., Yang P. D, Sun Y. G. et al. One-Dimensional Nanostructures:Synthesis, Characterization, and Applications [J]. Advanced materials,2003,15 (5):353-389
    [49]韩敏芳,李伯涛,郭梦熊.碳化硅晶须品质及影响因素[J].人工晶体学报,1996,25(4):343-347
    [50]Li S., Fang X., Leng J., et al. A New Route for the Synthesis of Mg2B2O5 Nanorods by Mechano-Chemical and Sintering Process [J], Materials Letters,2010,64(2):151-153
    [51]Kitamura T. Formation of Needle Crystals of Magnesium Pyroborate[J]. Journal of Materials Science Letters,1988,7:467-469
    [52]边绍菊,李洁,乃学瑛,等.硼酸镁晶须的制备及生长机理初探[J].盐湖研究,2007,15(2):45-49
    [53]靳治良,李武,张志宏,等.硼酸镁晶须的合成研究[J].无机盐工业,2003,35(3):22-24
    [54]李慧青.新型增强材料-硼酸镁晶须[J].化工新型材料.2000,29(1):16-18
    [55]吴小王.硼酸镁晶须制备工艺及其形成机理研究[D].成都:成都理工大学,2006
    [56]黄浩,钟辉,彭时利.助熔剂法制备硼酸铝晶须的方法与机理[J],矿产综合利用,2009,(1):32-35
    [57]赵铭姝,翟玉春.高温熔剂法制备硼酸铝晶须的研究[J].材料科学与工艺,1998,6(3):81-83
    [58]Wada H., Sakane K., Kitamura T. et al. Synthesis of Aluminum Borate Whiskers in Potassium Sulfate Flux[J]. Journal of Materials Science Letters,1991,10(18): 1076-1077
    [59]李武.硼酸铝晶须的性质、制备和开发前景[J].盐湖研究,2001,8(3):40-43
    [60]Ray S. P. Preparation and Characteration of Aluminium Borate[J]. Journal of the American Ceramic Society,1992,75:2605-2608
    [61]孙新华.硼酸铝晶须的应用与制备[J].化工新型材料,1998(4):33-35
    [62]岩崎正道,等.日本专利:特开平4-280899,1992-10-6
    [63]朱文化,柯家骏.新型无机晶须——钛酸钾晶须[J].化学通报,1994,(4):5-10
    [64]隗学礼,赵宽放,朱启安,等.钛酸钾晶须的研制及其在工程塑料中的应用[A].中国材料研讨会论文,北京,1994:125-130
    [65]施尔畏,陈之战,元如林,等.水热结晶学[M].北京:科学出版社,2004:36-39
    [66]http://baike.baidu.com/view/338719.htm百度百科
    [67]魏钟晴,马培华.水合碱式硫酸镁晶须材料的水热合成[J].盐湖研究,1997,5(3):16-23
    [68]Zhu L. X., Yue T., Gao S. Y., et al. Hydrothermal Synthesis and the Effect of Reaction Time on Morphology of MgSO4·5Mg(OH)2·3H2O [J]. Chinese Journal of Inorganic Chemistry,2003,19(1):99-102
    [69]Ding Y., Zhang G. T., Zhang S. Y., et al. Preparation and Characterization of Magnesium Hydroxide Sulfate Hydrate Whiskers [J]. Chemistry of Materials,2000,12 (10): 2845-2852
    [70]Yan X. X., Xu D. L, Xue D. F. SO42- Ions Direct the One-Dimensional Growth of 5Mg(OH)2·MgSO4·2H2O[J]. Acta Materialia,2007,55 (17):5747-5757
    [71]史培阳,刘志银,袁义义,等.利用脱硫石膏水热合成硫酸钙晶须[J].东北大学学报(自然学报),2010,(1):76-79
    [72]杨荣华,吴秀勇,冯晓宁.用天然石膏制备硫酸钙晶须的研究[J].无机盐工业,2010,42(1):44-47
    [73]王力,马继红,郭增维,等.水热法制备硫酸钙晶须机结晶形态的研究[J].材料科学与工艺,2006,(06):626-629
    [74]Gu G., Zheng B., Han W. Q., et al. Tungsten Oxide Nanowires on Tungsten Substrates [J]. Nano Letters,2002,2(8):849-851
    [75]LiuW. L., Hsieh S. H., Chen W. J., et al. Growth of Zinc Oxide Nanowire on Ni/Cu2Zn /SiO2/Si Substrate[J]. Surface and Coatings Technology,2007,201(22-23):9221-9225
    [76]丁冬雁,张文龙,王德尊,等.硼酸铝晶须增强6061铝复合材料的界面改性[J].复合材料学报,2000,17(2):34-37.
    [77]师昌绪.材料大词典[M].北京:化学工业出版,1994,(1):480-482
    [78]王启宝,曾明.SiC 晶须的特性及其合成与应用发展现状[J].化工新型材料,1997,25(5):8-13
    [79]李慧青,张淑芬.新型增强材料—硼酸镁晶须[J].化工新型材料,2001,29(2):16-18
    [80]崔小明.无机晶须的研究和应用进展[J].精细化工原料及中间体,2007,(5):25-28
    [81]马正先,王万起,刘豹,等.硼酸镁晶须应用研究进展[J].矿产综合利用,2008,6:37-39
    [82]徐兆瑜.晶须的研究和应用新进展[J].化工技术与开发,2005,34(2):11-17
    [83]李缨.碳化硅晶须及其陶瓷基复合材料[J].陶瓷,2007(8):39-42
    [84]Niu Z. Y. Investigation on Mechanical Properties and Microstructure of Hydroxyapatite-SiC Composite Bioceramics[J]. Journal of Wuhan University of Technology-Materials Science Edition,2005,20:181-183
    [85]Yao. L. J, Fukunaga. H. TEM Study on the Interfacial Reaction of Al18B4O33/Al Composites[J]. Scripta Mater,1997,36:1267-1271
    [86]Kitamura T. Whisker of Magnesium Borate and Its Preparation[P]. Japan:JP60204697, 1985
    [87]汪海东,原力,尉井华,等.微波固相法合成硼酸镁晶须[J].盐湖研究,1998,6(2-3):98-102
    [88]Fujiyoshi Kaichi, et al. Production of Fibrous Magnesium Borate Hydroxide and Fibrous Magnesium Pyroborate [P]. Japan:JP 10017317,1998-01-20.
    [89]李武,纤维硼镁石的高温水热合成研究[J].盐湖研究,1996,4(3-4):43-47
    [90]向兰,朱万诚,朱慎林.一种硼酸镁晶须的水热合成制备方法[P].中国专利:CN1936104A,2007-03-28
    [91]路绍琰,李先国,冯丽娟,等.硼酸镁晶须的水热合成及表征[J].无机盐工业,2010,42(6):18-20.
    [92]Zhu W. C., Xiang L., Zhang Q. et al. Morphology Preservation and Crystallinity Improvement in the Thermal Conversion of the Hydrothermal Synthesized MgBO2(OH) Nanowhiskers to Mg2B2O5 Nanowhiskers[J]. Crystal Growth,2008,310(18):4262-4267
    [93]Li Y., Fan Z. Y., Lu J. G., et al. Synthesis of Magnesium Borate (Mg2B2O5) Nanowires by Chemical Vapor Deposition Method[J]. Chemistry of Materials,2004,16:2512-2514
    [94]陈敏.硼酸镁晶须的生产工艺和市场前景[J].青海科技,2009,6:122-125
    [95]潘金生,陈永华.晶须及其应用[J].复合材料学报,1995,12(4):1-7
    [96]孙新华.硼酸铝晶须的应用与制备[J].化工新型材料,1998,4:33-35
    [97]郑学家.新型含硼材料[M].北京:化学工业出版社,2010:95
    [98]Shi X. X., Xiao Y., Yuan L. J., et al. Hydrothermal Synthesis and Characterizations of 2D and 3D 4ZnO·B2O3-H2O Nano/Microstructures with Different Morphologies [J]. Powder Technology.2009,189:462-465
    [99]Shi X. X., Li M., Yang H., et al. PEG-300 Assisted Hdrothermal Synthesis of 4ZnO`B2O3·H2O Nanorods [J]. Materials Research Bulletin.2007(42):1649-1656
    [100]Zheng Y. H., Tian Y. M., Ma H. L., et al. Synthesis and Performance Study of Zinc Borate Nano whiskers [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2009(339):178-184
    [101]Boehm, M., Roessli B., Schefer J., et al. Coexisting 1D and 3D Magnetic Interactions in the Insulating Copper-Oxygen Compound CuB2O4[J]. Physica B:Condensed Matter, 2006,378-380:1128-1129
    [102]Petrakovskii, G. A., Bezmaternykh, L. N., Bayukov, O. A., et al. Magnetic Structure and Magnetic Excitations in the Two-Dimensional Spin System of the Cu3B2O6 Compound[J]. Physics of the Solid State,2007,49(7):1315-1320
    [103]Kudo, K., Koike, Y, Kurogi, S., et al. Magnon Thermal Conductivity in the Spin-Gap State and the Antiferromagnetically Ordered State of Low-Dimensional Copper Oxides[J]. Journal of Magnetism and Magnetic Materials,2004,272-276:94-95
    [104]Petrakovskii G. A., Sablina K. A., Vorotynov A. M., et al. Synthesis and Magnetic Properties of Cu3B2O6 Single Crystals[J]. Physics of the Solid State,1999,41(4): 610-612
    [105]田玉美,郑云辉,刘艳华,等.原位一步法制备疏水性纳米硼酸铜晶须[P].中国专利:CN101343774,2009-01-14
    [106]Liu, Z. H., Tian, Y. M., Sun, F, et al. Self-Assembly of Copper Borate-SiO2 Rods[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2008,318(1-3): 122-124
    [107]Norrestam, R., Kritikos M., Sjodin A. Manganese(Ⅱ,Ⅲ) Oxyborate, Mn2OBO3-A Distorted Homometallic Warwickite-Synthesis, Crystal-Structure, Band Calculations, and Magnetic-Susceptibility[J]. Journal of Solid State Chemistry,1995,114(2): 311-316
    [108]Konovalov P.F., Akad D. Issledovanie Binarnoi Sistemy COO-B2O3[J]. Nauk SSSR, 1950,70(5):847-850
    [109]Hauck D., Muller F. Thermochemistry of the COO-B2O3 System[J]. Journal of Inorganic and General Chemistry,1980,466:163-170
    [110]Gotz W., Hermann V., Zur Synthese und Kristallographie eines Co-Ludwigits, Co2Co(O2/BO3) [J]. Naturwissenschaften,1966,53:475-457
    [111]Kazak N. V., Ivanov N. B., Rudenko V. V., et al. Low-Field Magnetization of Ludwigites Co3O2BO3 and Co3-xFexO2BO3(x=0.14) [J]. Physics of the Solid State,2009, 51,(5):966-969
    [112]Ivanova N. B., Vasil'ev A. D., Velikanov D. A. et al. Magnetic and Electrical Properties of Cobalt Oxyborate Co3BO5 [J]. Physics of the Solid State,2007,49, (4):651-653
    [1]李武.无机晶须[M].北京:化学工业出版社,2005:92
    [2]靳治良,李武,张志宏,等.硼酸镁晶须的合成研究[J].无机盐工业,2003,35(3):22-24.
    [3]Zhang H.,Cheng W. D.,Huang Z. X.. Synthesis and Crystal Structure of Borate Oxide Co3BO5[J], Chinese Journal Structure Chemistry,2001,20(3):97-99
    [4]刘光启,马连湘,刘杰.化学化工物性数据手册(无机卷)[M].北京:化学工业出版社,2005:289,456-457,409-410
    [5]http://www.crct.polymtl.ca/FACT/documentation/
    [6]Konovalov P.F., Akad D. Issledovanie Binarnoi Sistemy COO-B2O3[J]. Nauk SSSR, 1950,70(5):847-850
    [7]Belyaev I. N.. K Voprosu 0 Diagramme Sostoyaniye Sistemy COO-B2O3 [J]. Fiz Z. Khim.,1956,30(6):1419-1419
    [8]Rowsell J.L.C., Taylor N. J., Nazar L.F. Crystallographic Investigation of the Co-B-0 System[J]. Journal of Solid State Chemistry,2003,174:189-197
    [9]边绍菊.硼酸镁晶须的优化制备及生长过程分析探讨[D].西宁:中国科学院青海盐湖研究所,2007
    [10](苏)克山,A.JI.著.成思危.译.硼酸盐在水溶液中的合成及其研究[M].北京:科学出版社,1962:123-127
    [1]Konovalov P.F., Akad D. Issledovanie Binarnoi Sistemy COO-B2O3[J]. Nauk SSSR, 1950,70(5):847-850
    [2]Belyaev I.N., K Voprosu 0 Diagramme Sostoyaniye Sistemy COO-B2O3 [J]. Fiz Z. Khim.,1956,30(6):1419-1419
    [3]Rowsell J.L.C., Taylor N.J., Nazar L.F. Crystallographic Investigation of the Co-B-0 System[J]. Journal of Solid State Chemistry,2003 (174):189-197
    [4](苏)克山,A.JI.著.成思危.译.硼酸盐在水溶液中的合成及其研究[M].北京:科学出版社,1962:123-127
    [5]杨毅涌,孙聚堂,袁良杰,等.碱式碳酸钻热分解产物的微量粉末X射线衍射分析[J].武汉大学学报(理学版),2001,47(6):660-662
    [1]Kim M. J., Huh Y. D. Morphology-Controlled Synthesis of Octahedron and Hexagonal Plate of Co3O4[J]. Materials Letters,2011,65:650-652
    [2]Ichiyanagi Y., Kimishima Y., Yamada S. Magnetic Study on Co3O4 Nanoparticles[J]. Journal of Magnetism and Magnetic Materials,2004,272:1245-1246
    [3]Zhang D. E., Chen A. M., Xie Q., et al. A Facile Synthesis of Co3O4 Nanoflakes: Magnetic and Catalytic Properties [J]. Solid State Sciences,2010, doi:10.1016/j.
    [4]Chidambaram K, Malhotra K. L., Chopra K. L. Spray-Pyrolyzed Cobalt Black as a High-Temperature Selective Absorber [J]. Thin Solid Films,1982,87(4):365-3771
    [5]Barrera E., Gonzalez I., Viveros T. A New Cobalt Oxide Electrodeposit Bath for Solar Absorbers[J]. Solar Energy Materials and Solar Cells,1998,51(1):69-82
    [6]Shea VAD, M. Alvarez-Galvan M. C., Campos-Martin J.M., et al. Surface and Structural Features of Co-Fe Oxide Nanoparticles Deposited on a Silica Substrate[J]. European Journal of Inorganic Chemistry,2006, (24):5057-5068
    [7]Maruyama T., Arai S.. Electrochromic Properties of Cobalt Oxide Thin Films Prepared by Chemical Vapor Deposition[J]. Journal of the Electrochemical Society,1996,143(4): 1383-1386
    [8]Zhang D. E., Xie Q., Chen A. M., et al. Fabrication and Catalytic Properties of Novel Urchin-Like Co3O4[J]. Solid State Ionics,2010,181(31-32):1462-1465
    [9]Nkeng P., Koening J., Gautier J., et al. Enhancement of Surface Areas of Co3O4 and NiCo2O4 Electrocatalysts Prepared by Spray Pyrolysis[J]. Journal of Electroanalytical Chemistry,1996,402:81-89
    [10]Ren L., Wang P. P., Han Y. S., et al. Synthesis of CoC2O4 · 2H2O Nanorods and Their Thermal Decomposition to Co3O4 Nanoparticles[J]. Journal of Chemical Physics Letters, 2009,476:78-83
    [11]Natile M. M., Glisenti A. Study of Surface Reactivity of Cobalt Oxides:Interaction with Methanol[J]. Chemistry of Materials,2002,14(7):3090-3099
    [12]Verelst M. T., Ely O., Amiens C., et al. Synthesis and Characterization of CoO, Co3O4, and Mixed Co/CoO Nanoparticules[J]. Chemistry of Materials,1999,11(10):2702-2708
    [13]Chen Y. C., Zhang Y. G., Fu S. Q. Synthesis and Characterization of Co3O4 Hollow Spheres[J]. Materials Letters,2007, (61):701-705
    [14]Teng F., Yao W. Q., Zheng Y. F., et al. Facile Synthesis of Hollow Co3O4 Microspheres and Its Use as a Rapid Responsive CL Eensor of Combustible Gases[J]. Talanta,2008, (76):1058-1064
    [15]Xu R., Wang J. W., Li Q. Y., et al. Porous Cobalt Oxide (Co3O4) Nanorods:Facile Syntheses, Optical Property and Application in Lithium-Ion Batteries [J]. Journal of Solid State Chemistry,2009,182(11):3177-3182
    [16]Ke X. F., Cao J. M., Zheng M. B., et al. Molten Salt Synthesis of Single-Crystal Co3O4 Nanorods Mater[J]. Materials Letters,2007,61(18):3901-3903
    [17]Li W. Y., Xu L. N., Chen J. Co3O4 Nanomaterials in Lithium-Ion Batteries and Gas Sensors [J]. Advanced Functional Materials,2005,15(5):851-857.
    [18]Li T., Yang S. G.., Huang L. S., et al. A Novel Process from Cobalt Nanowire to Co3O4 Nanotube[J]. Nanotechnology,2004,15(11):1479-1482.
    [19]Hu L. H., Peng Q., Li Y.D. Selective Synthesis of Co3O4 Nanocrystal with Different Shape and Crystal Plane Effect on Catalytic Property for Methane Combustion[J]. Journal of the American Chemical Society,2008,130(48):16136-16137
    [20]Xu R., Zeng H. C. Mechanistic Investigation on Self-redox Decompositions of Cobalt-Hydroxide-Nitrate Compounds with Different Nitrate Anion Configurations in Interlayer Space[J]. Journal of Physical Chemistry B,2003,15(10):2040-2048
    [21]Feng J., Zeng H. C. Size-Controlled Growth of Co3O4 Nanocubes [J]. Chemistry of Materials,2003,15(14):2829-2835
    [22]He T., Chen D. R., Jiao X. L., et al. Co3O4 Nanoboxes:Surfactant-Templated Fabrication and Microstructure Characterization[J]. Advanced Materials,2006,18(8):1078-1082
    [23]Jeong S. Y., Ahn H. J., Seong T. Y. Synthesis and Characterization of Co3O4/RuO2 Composite Nanofibers Fabricated by an Electrospinning Method [J]. Materials Letters, 2011,65(3):471-473
    [24]Choi S. W., Park J. Y., Kim S. S. Growth Kinetics of Nanograins in Co3O4 Fibers[J]. Ceramics International,2011,37(1):427-430
    [25]Guan H. Y., Shao C. L., Wen S. B., et al. A Novel Method for Preparing Co3O4 Nanofibers by Using Electrospun PVA/Cobalt Acetate Composite Fibers as Precursor [J]. Materials Chemistry and Physics,2003,82(3):1002-1006
    [1]乃学瑛.氧化镁晶须的合成及其生长机理的研究[D].西宁:中国科学院青海盐湖研究所,2007
    [2]陈若愚,夏树屏高世扬.硼酸铝晶须合成机理的研究[J].化学研究与应用,2010,13(5):513-516.
    [3]赵铭铢,翟玉春.硼酸铝晶须的生长机理[J].化工冶金,1998,11:365-368
    [4]Guimaraes R.B., Mir M., Continentino M.A. et al. Current Voltage and X-ray Measurements in Fe3O2BO3[J]. Journal of Magnetism and Magnetic Materials,2001, 226-230:1983-1984
    [5]Continentino M.A., Boechat B., Guimaraes R.B. et al. Magneticand Transport Properties of Low-Dimensional Oxi-Borates[J]. Journal of Magnetism and Magnetic Materials, 2001,226-230:427-430
    [6]Norrestam R., Nielsen K., Sotofte I., et al. Structural Investigation of Two Synthetic Oxyborates:The Mixed Magnesium-Manganese and the Pure Cobalt Ludwigites, Mg1.93(2)Mn1.07(2)O2BO3and Co3O2BO3[J]. Z. Kristallogr.1989,189:33-41
    [7]Mir M., Guimaraes R.B., Fernandes,J. C. et al. Structural Transition and Pair Formation in Fe3O2BO3[J]. Physical Review letters,2001,87(14):147201-1-147201-4
    [8]Kazak N.V., Ivanova N.B., ABayukov O. et al. The Superexchange Interactions in Mixed Co-Fe Ludwigite[J]. Journal of Magnetism and Magnetic Materials,2011,323:521-527
    [9]Maria M.. Octahedral Distortions in the Homometallic Fe Ludwigite[J]. Journal of Solid State Chemistry,2004,177:4605-4615
    [10]Carlsson A., Norrestam R., Bovin J.O. On the Cation Disorder in Pinakiolite, (MgMn)O2BO3 [J]. Micron and Microscopica Acta,1992,23(1-2):153-154
    [11]Dumas J., Tholence J.L., Continentino M. et al. Electron Paramagnetic Resonance in Fe3O2BO3[J]. Journal of Magnetism and Magnetic Materials,2001,226-230:468-469
    [12](苏)克山,A.JI.著.成思危.译.硼酸盐在水溶液中的合成及其研究[M].北京:科学出版社,1962:123-127
    [13]乐颂光.钴冶金[M],北京:冶金工业出版社.1987:192
    [14]刘康时.陶瓷工艺原理[M],广州:华南理工大学出版社,1990:52
    [15]张师,俞建长.硼砂及熔块配合料不同温度焙烧物相变化的X射线研究[J],中国陶瓷,1996,32(6):5-9
    [16]谢先德,硼酸盐矿物学[M],北京:科学出版社,1965(谢先德,硼酸盐矿物物理学,地震出版社,1993,3-7)
    [17]柳松青,中温渗硼应用[J],加热加工工艺,2000,1:55-56
    [18]杨青,夏树屏,水合硼酸盐的热分析研究[J],盐湖研究,1996,4(2):12-17
    [19]杨南如,岳文海,无机非金属材料图谱手册[M],武汉工业出版社,2000:209,243
    [20]http://mwjl.hit.edu.cn/Micro/Pdf Files/Soldering/Soldering-3.pdf
    [21]天津化工研究院等编,无机盐工业手册上册[M],北京:化学工业出版社,1988:210
    [22]张弜,赵彦明.硼酸镁纳米带的制备、结构和生长机理[J],物理化学学报,2006,22(1):110-113.
    [23]Ucyildiz A, Girgin I.. Controlled Synthesis, Characterization and Thermal Properties of Mg2B2O5 [J], Central European Journal of Chemistry 2010,8:758-765.
    [24]Li S., Fang X., Leng J., et al. A New Route for the Synthesis of Mg2B2O5 Nanorods by Mechano-Chemical and Sintering process [J], Materials Letters,2010,64(2):151-153

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700