配位氢化物的储氢特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
实现氢的高效、经济、安全储/运是氢能利用的关键环节。化学储氢因其在存储密度、能效及安全性等方面颇具技术优势而备受关注。具有较高重量储氢密度的配位氢化物是当前化学储氢材料研究中的热点之一,但是动力学缓慢和可逆性差制约了其实际应用。本文在综述配位氢化物储氢材料研究进展及其存在问题的基础上,选取NaAlH4和NH3BH3 (AB)作为研究对象,并做了如下工作:首先通过构建纳米约束体系来改善NaAlH4脱/加氢特性;其次,研究了纳米碳材料催化NaAlH4体系的脱氢性能;最后,采用化学改性来改善AB的热解脱氢行为。具体研究内容及结论如下:
     (1)以孔径为4 nm左右的有序介孔碳MC为纳米骨架,运用熔融浸渍法制备了MC部分约束NaAlH4体系(NaAlH4/MC)。即分布在MC外表面的晶态NaAlH4大颗粒与受MC纳米孔道约束的纳米或非晶态NaAlH4共存。热分析结果表明与纯NaAlH4相比,NaAlH4/MC的热稳定性显著降低。初始脱氢温度从220℃降低至150℃左右,完全脱氢温度从320℃降低至210℃左右。脱/加氢性能测试表明NaAlH4/MC具有良好的可逆加氢性能。在无金属催化剂的条件下,在100~150℃/3.0~7.0 MPa H2的较温和条件下可实现脱氢产物的再加氢。上述脱/加氢性能改善主要归因于MC的纳米约束和化学催化的协同作用,其中,纳米约束起主要作用。
     (2)通过熔融浸渍、脱/加氢相结合的方法进一步构建了MC完全约束NaAlH4体系(Space-confined NaAlH4/MC)。即一部分NaAlH4及其脱氢产物NaH和Al被完全约束在MC纳米孔中,以无定形态或细小晶态的形式存在,在150℃,7 MPa较温和的条件下实现可逆再加氢;而另一部分NaAlH4分布在MC外表面通过脱/加氢处理来去除,即其脱氢产物NaHH和Al在上述脱/加氢条件下不参加可逆循环。脱/加氢性能测试表明MC完全约束NaAlH4的循环性能显著增强。经15次循环后的容量保持率大于80%,远高于纯NaAlH4经5次循环后的50%。进一步能谱分析表明,纯NaAlH4的脱氢产物Al经5次循环后长大成为2-3μm甚至8μm大颗粒,而Space-confined NaAlH4/MC即使经过15次循环后,Al元素分布仍比较均匀。分析认为,MC的纳米孔道作为“纳米反应器”,将NaAlH4及其脱氢产物NaHH和Al约束在纳米空间内,这不仅阻止颗粒团聚和相分离发生,而且还缩短了扩散距离,降低反应能垒,从而使NaAlH4在较温和的条件下实现可逆循环。
     (3)MC完全约束NaAlH4具有优异的脱氢动力学性能。等温脱氢测试表明Space-confined NaAlH4/MC的脱氢过程无明显孕育期,180℃时90 min内的脱氢量由纯NaAlH4的0.5wt.%增至5.0wt.%,而反应激活能Ea由116 kJ/mol降至46kJ/mol。动力学模型计算表明NaAlH4纳米约束体系的脱氢过程分为两个阶段:第一阶段由一维形核长大控制,而第二阶段则由三维相界迁移和扩散共同控制。
     (4)采用溶解—再结晶的方法制备了纳米碳材料负载NaAlH4体系。扫描电镜显示石墨烯(Graphene)负载样品中NaAlH4呈现层状连续体,富勒烯(C60)负载样品中NaAlH4为5-10μm的花瓣状颗粒,而MC负载样品中NaAlH4为1-3μm的球状颗粒。热分析表明纯NaAlH4在220℃开始脱氢,而Graphene、C60和MC负载NaAlH4的初始脱氢温度分别降低至190、185和160℃。进一步通过Kissinger方程计算可知,与纯NaAlH4脱氢生成Na3AlH6、Na3AlH6脱氢生成NaH以及NaH分解的三步反应激活能相比,Graphene、C60和MC负载NaAlH4的第一步反应激活能分别降低了13、19和40 kJ/mol,第二步反应激活能分别降低了77、125和148 kJ/mol,第三步反应激活能分别降低了59、122和131 kJ/mol。27Al NMR谱分析表明Al原子的局域结构发生改变,证实了纳米碳材料与NaAlH4之间存在相互作用,这可能是引起NaAlH4的热稳定性降低和动力学性能改善的原因。综上分析可得,纳米碳材料对NaAlH4脱氢过程的作用规律为MC>C60>Graphene。
     (5)通过机械球磨法添加碱土金属氯化物可显著改善AB的价键特性和热解脱氢行为。与纯AB相比,MgCl2/AB样品中B-H和N-H键的拉伸振动频率发生明显偏移,初始分解温度降低了60℃左右,且无NH3、B2H6和N383H6释放。进一步研究发现碱土金属氯化物对AB的热解行为具有相似作用,但MgCl2对抑制NH3释放的作用强于CaCl2。分析认为,碱土金属氯化物对AB具有双重化学改性作用,即Cl替代H激活B-H键和碱土金属与AB分子相互作用激活N-H键,是降低脱氢温度和抑制杂质气体释放的内在原因。上述结果对氨硼烷基化合物和硼氢化物氨络合物的性能改善具有借鉴意义。
Storing hydrogen in an efficient, compact and safe manner is a technical challenge of utilizing hydrogen as an alternative energy carrier. One novel branch of hydrogen storage that attracts the attention of chemists and researches is chemical hydrogen storage owning to its prominent advantages in storing density, efficiency and safety. Recently, complex hydrides are becoming attractive materials for chemical hydrogen storage due to their intrinsic high hydrogen content. However, their practical applications are blocked by sluggish kinetics and poor reversibility. Based on the review of the research development and existing problems of complex hydrides, NaAlH4 and NH3BH3 (AB) were selected as the subject of the present work, which focused on the following aspects:Firstly, an improved de-/re-hydrogenation properties was achieved by using space-confining NaAlH4 in nanoporous materials; and then the dehydrogenation of NaAlH4 cayalyzed by nanocarbon materials were studied; finally a "chemical modification" method was applied to promote the hydrogen release from AB. All the research contents and results are as follows:
     (1) Through thermal melting impregnation NaAlH4 was loaded partially into ordered mesoporous carbon (MC) host with a pore size of~4 nm (as denoted as NaAlH4/MC) where the larger NaAlH4 particles reside on the external surface and amorphous and/ or nanosize ones on the MC internal surface. The thermal analysis results indicate that with respect to the pristine NaAlH4, the onset temperature for dehydrogenation of NaAlH4/MC decreases from about 220℃to around 150℃and the temperature for the complete dehydrogenation is reduced from about 320℃to about 210℃. Moreover, an enhanced reversibility of NaAlH4/MC is also observed. Without a metal catalyst, the re-hydrogenation in a dehydrogenated NaAlH4/MC system can be achieved even under the temperatures of 100~150℃and the hydrogen pressures of 3.0~7.0 MPa. These improvements are attributed to the synergistic effects of both nanoconfinement and chemical catalysis caused by the MC where the nanoconfinement plays a dominant role.
     (2) A nanoconfinement system with NaAlH4 exclusively embedded in MC was synthesized firstly by a three-step procedure; viz., thermal melting impregnation plus de-/re-hydrogenation. Through the consecutive steps, NaAlH4 is successfully loaded by the impregnation step, and its dehydrogenated products of NaH and Al are also confined in the MC pores; while some of the NaAlH4 resided on the MC external surfaces is eliminated by the de-/re-hydrogenation steps, and its resulting products are essentially in a "dormant" state and are no longer functional in the following de-/re-hydrogenation experiments, as denoted as Space-confined NaAlH4/MC. The capacity retention for Space-confined NaAlH4/MC is>80% after fifteen cycles and higher than 50% for pristine NaAlH4 over five cycles. Furthermore, as suggested by EDX analysis, after five cycles, the resulting Al of pristine NaAlH4 grows to around 2-3μm and even up to 8μm. In contrast, for Space-confined NaAlH4/MC, after fifteen cycles, the distribution of Al elements is still uniform. It is believed that the MC pore serves as a "nano-reactor" where both NaAlH4 particles and their resulting NaH and Al products are physically limited at a nanoscale level, which facilitates the mass transfer of the solid phases by shortening the diffusion distance and thus leads to an enhanced cycling stability.
     (3) The Space-confined NaAlH4/MC was found to exhibit faster kinetics for dehydrogenation. For pristine NaAlH4, about 0.5 wt.% hydrogen is released at 180℃in 90 min. In contrast, the value for Space-confined NaAlH4/MC increases to about 5.0 wt.%, without an apparent induction period. Moreover, the activation energy Ea for hydrogen release is 46 kJ/mol for Space-confined NaAlH4/MC, and much lower than 116 kJ/mol for the pristine one. Furthermore, kinetic modeling studies suggest that the hydrogen release from the confined NaAlH4 system is governed by two processes; the initial process can be expressed by one-dimensional nucleation and growth, and the second process is jointly controlled by three-dimensional phase boundary migration and diffusion.
     (4) A "dissolution-recrystallization" method was applied to prepare nanocarbon materials supported NaAlH4. The NaAlH4 particles in Graphene supported NaAlH4 exhibit a heterogeneous matrix with layered structure, the ones in C60 supported NaAlH4 sample have a flower-like shape with size of 5~10μm, and the ones for MC supported NaAlH4 are shaped like sphere with 1~3μm in size. The thermal analysis indicates that the pristine NaAlH4 starts to release hydrogen at about 220℃, but the onset temperature for dehydrogenation of Graphene, C6o and MC supported NaAlH4 is remarkably reduced to 190,185 and 160℃, respectively. Moreover, as compared to the energies for three-step dehydrogenation of pristine NaAlH4 determined by using the Kissinger analysis, the activation energy for first-step dehydrogenation of Graphene supported NaAlH4, C6o supported NaAlH4 and MC supported NaAlH4 is reduced by 13,19 and 40 kJ/mol, the value for second-step is reduced by 77,125 and 148 kJ/mol, and the value for third-step is reduced by 59,122 and 131 kJ/mol, respectively. Furthermore,27Al NMR spectra show that the local structure of Al atom in nanocarbon materials supported NaAlH4 is different from that of prisitine one and suggests the existence of interaction between nanocarbon materials and NaAlH4, which may be the reason for these property improvements. By comparing with the above results, the destabilizing effect from high to low is in the following sequence: MC>C60>Graphene.
     (5) The reaction for hydrogen generation from AB via a solid-state can be promoted by alkaline earth metal chlorides. It is found that tuning the reactivity of both B-H and N-H bonds in AB by alkaline earth metal chlorides not only results in a significantly decrease in the onset dehydrogenation temperature by 60℃but also suppresses undesirable volatile by-products, such as NH3, B2H6 and N3B3H6. Moreover, alkaline earth metal chlorides such as MgCl2 and CaCl2 are found to exhibit a similar effect on improving the decomposition behaviors of AB, but the MgCl2 is more efficient than CaCl2 in suppressing the release of NH3. These improvements are attributed to the dual modification involving changing the reactivity of both B-H and N-H bonds by reaction with the additives which provides further insights into the promotion of hydrogen release from amidoboranes and related borohydride ammine complexes.
引文
[1]大角泰章.金属氢化物的性质与应用[M].北京:化学工业出版社,1990:2.
    [2]申泮文.21世纪的动力:氢与氢能[M].天津:南开大学出版社,2000:7.
    [3]胡子龙.贮氢材料[M].北京:化学工业出版社,2002:2-12.
    [4]雷永泉,万群,石永康.新能源材料[M].天津:天津大学出版社,2000:5.
    [5]张允什.负极贮氢合金材料[J].电源技术:1996,20(1):36-40.
    [6]Schlapbach L, Zuttel A. Hydrogen-storage materials for mobile applications [J]. Nature,2001,414:353-358.
    [7]Cohen R L, Wernick J H. Hydrogen storage materials:properties and possibilities [J]. Science,1981,214(4525):1081-1087.
    [8]Sandrock G. A panoramic overview of hydrogen storage alloys from a gas reaction point of view [J]. J. Alloys Compd.,1999,293-295:877-888.
    [9]Van Rijiswick M H J. Hydride for energy storage [M]. Oxford:Andersen and A. J. Maeland, Pergamon Press,1978.
    [10]Yang J, Sudik A, Wolverton C, Siegel D J. High capacity hydrogen storage materials:attributes for automotive applications and techniques for materials discovery [J]. Chem. Soc. Rev.,2010,39:656-675.
    [11]Eberle U, Felderhoff M, Schuth F. Chemical and physical solutions for hydrogen storage [J]. Angew. Chem., Int. Ed.,2009,48:6608-6630.
    [12]Schiith F. Hydrogen and hydrates [J]. Nature,2005,434:712-713.
    [13]Fichtner M. Nanotechnological aspects in materials for hydrogen storage [J]. Nature,2005,7(6):443-455.
    [14]Vanvucht J H, Kuijpers F A, Bruning H A. Reversible room temperature absorption of large quantities of hydrogen by intermetallic compounds [J]. Philips J. Res.,1970,25(2):133-140.
    [15]Reilly J J, Wiswall R H. The reaction of hydrogen with magnesium and nickel and the formation of Mg2NiH4 [J]. Inorg. Chem. Commun.,1968,7:2254-2256.
    [16]Lei Y Q, Li Z P, Chen C P, Wu J, Wang Q D. The cycling behaviour of misch metal-nickel-based metal hydride electrodes and the effects of copper plating on their performance [J]. J. Less-Common Met.,1991,172-174:1265-1272.
    [17]Willems J J G, Buschow K H J. From permanent magnets to rechargeable hydride electrode [J]. J. Less-Common Met.,1987,129:13-30.
    [18]Zaluska A, Zaluski L, Strom-Olsen J O. Lithium-beryllium hydrides:the lightest reversible metal hydrides [J]. J. Alloys Compd.,2000,307:157-166.
    [19]Willems J J G. Metal hydrogen electrodes stability of LaNi5-related compounds [J]. Philips J. Res.,1984,39(1):1-3.
    [20]Adzic G D, Hohnson J R. Cerium content and cycle life of multi-component AB5 hydride electrochem [J]. J. Electrochem. Soc.,1995,142(10):3429-3433.
    [21]Oesterreicher H, Ensslen K, Kerlin A, Bucher E. Hydriding behavior in Ca-Mg-Ni-B [J]. Mater. Res. Bull.,1980,15:275-283.
    [22]Sandrock G D, Murray J J, Post M L, Taylor J B. Hydrides and deuterides of CaNi5 [J]. Mater. Res. Bull.,1982,17:887-894.
    [23]Bawa M S, Ziem E A. Long-term testing and stability of CaNi5 alloy for a hydrogen storage application [J]. Int. J. Hydrogen Energy,1982,7(10):775-781.
    [24]Sridhar M P, Viswanathan B, Swamy C S, Srinivasan V. Surface properties of CaNi5 hydrogen storage alloy [J]. J. Mater. Sci.,1989,24(12):4387-4391.
    [25]Liang G, Ruggeri S, Lenain C, Alamdari H, Huot J, Roue L, Schulz R. Synthesis of nanocrystalline CaNi5-based alloys and use for metal hydride electrode [J]. Mater. Sci. Forum,2001,377:71-76.
    [26]Kronberger H. Nanocrystalline hydrogen storage alloys for rechargeable batteries [J]. J. Alloys Compd.,1997,253-254:87-89.
    [27]Bowman J R C, Witham C, Fultz B, Ratnakumar B V, Ellis T W, Anderson I E. Hydriding behavior of gas-atomized AB5 alloys. [J]. J. Alloys Compd.,1997, 253-254:613-616.
    [28]Gamo T, Moriwaki Y, Yanagihara N. Formation and properties of titanium-manganese alloy hydrides [J]. Int. J. Hydrogen Energy,1985,10(1):39-47.
    [29]Liu B H, Kim D M, Lee K Y. Hydrogen storage properties of TiMn2-based alloys [J]. J. Alloys Compd.,1996,240:214-218.
    [30]Semboshi S, Masahashi N, Hanada S. Effect of composition on hydrogen absorbing properties in binary TiMn2 based alloys [J]. J. Alloys Compd.,2003, 352:210-217.
    [31]余学斌.C14 Laves相与BCC相合金的储氢及电化学行为的研究[D].上海:中国科学院上海微系统与信息技术研究所,2004.
    [32]黄太仲,吴铸,余学斌,陈金舟,夏保佳,徐乃欣.合金化对Ti-Cr基储氢合金性能的影响[J].稀有金属,2004,28(4):744-749.
    [33]Ovonic base alloy. Metal hydride cells having improved cycle life and charge retention [P]. USA:5330861,1988.
    [34]张庆安.Laves相贮氢电极合金的相结构和电化学性能[D].杭州:浙江大学,2000.
    [35]Reilly J J, Wiswall R H. Formation and properties of iron titanium hydride [J]. Inorg. Chem. Commun.,1974,13(1):218-222.
    [36]Chiang C H, Chin Z H, Perng T P. Hydrogenation of TiFe by high-energy ball milling [J]. J. Alloys Compd.,2000,307:259-265.
    [37]Lee S M, Perng T P. Correlation of substitutional solid solution with hydrogenation properties of TiFe1-xMx (M=Ni, Co, Al) [J]. J. Alloys Compd., 1999,291:254-261.
    [38]Liu Y, Pan H, Gao M, Wang Q. Advanced hydrogen storage alloys for Ni/MH rechargeable batteries [J]. J. Mater. Chem.,2011.
    [39]Aizawa T, Kuji T, Nakano H. Synthesis of Mg2Ni alloy by bulk mechanical alloying [J]. J. Alloys Compd.,1999,291:248-253.
    [40]Bouaricha S, Dodelet J P, Guay D, Huot J, Boily S, Schlz R. Effect of carbon-containing compounds on the hydriding behavior of nanocrystalline Mg2Ni [J]. J. Alloys Compd.,2000,307:226-233.
    [41]Yamamoto Y, Orimo S, Fujii H, Kitano Y. Hydriding properties of the heat-treated MgNi alloys with nanosrtuctural designed multiphase [J]. J. Alloys Compd.,1999,293-295:546-551.
    [42]Tatsuoki K, Motoya K. Effect of partial substitution on hydrogen storage properties of Mg2Ni [J]. J. Electrochem. Soc.,1997,144(7):2384-2388.
    [43]Seiler A, Schlapbach L, Von W T. Surface analysis of Mg2Ni-Mg, Mg2Ni and Mg2Cu [J]. J. Less-Common Met.,1980,73:193-196.
    [44]Orimo S, Fujii H. Materials science of Mg-Ni-based new hydrides [J]. Appl. Phys. A,2001,72:167-186.
    [45]Kohno T, Yoshida H, Kawashima F. Hydrogen storage properties of new ternary system alloys:La2MgNi9, La5Mg2Ni23, La3MgNi14 [J]. J. Alloys Compd.,2000, 311:L5-7.
    [46]Li Q, Chou K C, Xu K D. Hydrogen absorption and desorption characteristics in the La0.5Ni1.5Mg17 prepared by hydriding combustion synthesis [J]. Int. J. Hydrogen Energy,2006,31:497-503.
    [47]Akiba E, Iba H. Hydrogen absorption by Laves phase related BBC solid solution [J]. Intermetallics,1998,6:461-470.
    [48]Akiba E. Hydrogen-absorbing alloys [J]. Curr. Opin. Solid State Mater. Sci.,1999, 4:267-272
    [49]Czujko T, Varin R A, Chiu C. Investigation of hydrogen desorption properties of Mg+10wt%X (X=V, Y, Zr) submicrocrystalline compositions [J]. J. Alloys Compd.,2006,414:240-247.
    [50]Zaluska A, Zaluski L, Strom-Olsen J O. Hydrogenation properties of complex alkali metal hydrides fabricated by mechano-chemical synthesis [J]. J. Alloys Compd.,1999,290:71-78.
    [51]Amendola C S, Sharp-Goldman L S, Janjua M S. A safe, portable, hydrogen gas generator using aqueous borohydride solution and Ru catalyst [J]. Int. J. Hydrogen Energy,2000,25:969-975.
    [52]Zaluska A, Zaluski L, Strom-Olsen J O. Nanocrystalline magnesium for hydrogen storage [J]. J. Alloys Compd.,1999,288:217-225.
    [53]Kojima Y, Kawai Y, Haga T. Magnesium-based nano-composite materials for hydrogen storage [J]. J. Alloys Compd.,2006,424:294-298.
    [54]Wu C Z, Wang P, Yao X. Effect of carbon/noncarbon addition on hydrogen storage behaviors of magnesium hydride [J]. J. Alloys Compd.,2006,414:259-264.
    [55]Kohlmann H, Bertheville B, Hansen T. High-pressure synthesis of novel europium magnesium hydrides [J]. J. Alloys Compd.,2001,322:59-68.
    [56]Bououdina M, Grant D, Walker G. Review on hydrogen absorbing materials-structure, microstructure and thermodynamic properties [J]. Int. J. Hydrogen Energy,2006,31:177-182.
    [57]Chambers A, Park C R, Baker T K, Rodriguez N M. Hydrogen storage in graphite nanofibers [J]. J. Phys. Chem. B,1998,102(22):4253-4256.
    [58]Chen P, Wu X, Lin J, Tan K L. High H2 uptake by alkali-doped carbon nanotubes under ambient pressure and moderate temperature [J]. Science,1999,285:91-93.
    [59]Pinkerton F E, Wicke B G, Olk C, Tibbetts G, Meisner G, Meyer M, Herbst J. Thermogravimetric measurement of hydrogen absorption in alkali-modified carbon materials [J]. J. Phys. Chem. B,2000,104:9460-9467.
    [60]Soler-Illia G, Sanchez C, Lebeau B, Patarin J. Chemical strategies to design textured materials:from microporous and mesoporous oxides to nanonetworks and hierarchical structures [J]. Chem. Rev.,2002,102:4093-4138.
    [61]Weitkamp J, Fritz M, Ernst S. Zeolites as media for hydrogen storage [J]. Int. J. Hydrogen Energy,1995,20(12):967-970.
    [62]Dinca M, Long J R. Hydrogen storage in microporous metal-organic frameworks with exposed metal sites [J]. Angew. Chem., Int. Ed.,2008,47:6766-6779.
    [63]Rosi N, Eckert J, Eddaoudi M, Vodak D, Keeffe M, Yaghi O. Hydrogen storage in microporous metal-organic frameworks [J]. Science,2003,300(5622):1127-1129.
    [64]Struzhkin V V, Militzer B, Mao W, Mao H, Hemley R. Hydrogen storage in molecular clathrates [J]. Chem. Rev.,2007,107:4133-4151.
    [65]Patchkovskii S, Tse J S. Thermodynamic stability of hydrogen clathrates [J]. Proc. Natl. Acad. Sci.,2003,100(25):14645-14650.
    [66]Florusse L, Peters C, Schoonman J, Hester K, Koh C, Dec S, Marsh K, Sloan E. Stable low-pressure hydrogen clusters stored in a binary clathrate hydrate [J]. Science,2004,306(5695):469-471.
    [67]Bogdanovic B, Schwickardi M. Ti-doped alkali metal aluminum hydrides as potential novel reversible hydrogen storage material [J]. J. Alloys Compd.,1997, 253-254:1-9.
    [68]Orimo S, Nakamori Y, Eliseo J R, Zuttel A. Jensen C M. Complex hydrides for hydrogen storage [J]. Chem. Rev.,2007,107:4111-4132.
    [69]Chen P, Zhu M. Recent progress in hydrogen storage [J]. Mater. Today,2008,12: 36-44.
    [70]Hamilton C W, Baker R T, Staubitzc A, Manners I. B-N compounds for chemical hydrogen storage [J]. Chem. Soc. Rev.,2009,38:279-293.
    [71]陶占良,彭博,梁静,程方益,陈军.高密度储氢材料研究进展[J].中国材料进展,2009,28(7-8):26-40.
    [72]Schuth F, Bogdanovic B, Felderhoff M. Light metal hydrides and complex hydrides for hydrogen storage [J]. Chem. Commun.,2004,20:2249-2258.
    [73]Wang P, Kang X D, Cheng H M. Exploration of the nature of active Ti species in metallic Ti-doped NaAlH4 [J]. J. Phys. Chem. B,2005,109:20131-20136.
    [74]Fichtner M, Fuhr O, Kirchner O, Rothe J. Small Ti clusters for catalysis of hydrogen exchange in NaAlH4 [J]. Nanotechnology,2003,14:778-785.
    [75]Sun D L, Kiyobayashi T, Takeshita H T, Kuriyama N, Jensen C M. X-ray diffraction studies of titanium and zirconium doped NaAlH4: elucidation of doping induced structural changes and their relationship to enhanced hydrogen storage properties [J]. J. Alloys Compd.,2002,337:L8-11.
    [76]Bogdanovic B, Felderhoff M, Pommerin A, Schuth F, Spielkamp N. Advanced hydrogen-storage materials based on Sc-, Ce- and Pr-doped NaAlH4 [J]. Adv. Mater.2006,18:1198-1201.
    [77]Fan X, Xiao X, Chen L, Yu K, Wu Z, Li S, Wang Q. Active species of CeAl4 in the CeCl3-doped sodium aluminium hydride and its enhancement on reversible hydrogen storage performance [J]. Chem. Commun.,2009,44:6857-6859.
    [78]Andreasen A, Pedersen A S, Vegge T. Dehydrogenation kinetics of as-received and ball-milled LiAlH4. [J]. J. Sol. St. Chem.,2005,178:3672-3678.
    [79]Chen J, Kuriyama N, Xu Q. Reversible Hydrogen Storage via Titanium-Catalyzed LiAIH4 and Li3AlH6 [J]. J. Phys. Chem. B,2001,105:11214-11220.
    [80]Bogdanovic B, Felderhoff M, Germann M, Hartel M, Pommerin A, Schuth F, Weidenthaler C, Zibrowius B. Investigation of hydrogen discharging and recharging processes of Ti-doped NaAlH4 by X-ray diffraction analysis (XRD) and solid-state NMR spectroscopy [J]. J. Alloys Compd.,2003,350:246-256.
    [81]Sun D L, Kiyobayashi T, Takeshita H T, Kuriyama N, Jensen C M. X-ray diffraction studies of titanium and zirconium doped NaAlH4:elucidation of doping induced structural changes and their relationship to enhanced hydrogen storage properties [J]. J. Alloys Compd.,2002,337:L8-11.
    [82]Orimo S, Nakamori Y, Kitahara G. Dehydriding and rehydriding reactions of LiBH4 [J]. J. Alloys Compd.,2005,404-406:427-430.
    [83]Vajo J J, Skeith S L, Mertens F. Reversible storage of hydrogen in destabilized LiBH4 [J]. J. Phys. Chem. B,2005,109(9):3719-3722.
    [84]Bosenberg U, Doppiu S, Mosegaard L. Hydrogen sorption properties of MgH2-LiBH4 composites [J]. Acta Mater.,2007,55:3951-3958.
    [85]Bosenberg U, Kim J W, Gosslar D. Role of additives in LiBH4-MgH2 reactive hydride composites for sorption kinetics [J]. Acta Mater.,2010,58:3381-3389.
    [86]Liang Z, Hiroki M, Takayuki I. Superior hydrogen exchange effect in the MgH2-LiBH4 system [J]. J. Phys. Chem. C,2010,114:13132-13135.
    [87]Vajo J J, Olson G L. Hydrogen storage in destabilized chemical systems [J]. Scripta Mater.,2007,56:829-834.
    [88]Alapati S V, Johnson J K, Sholl D S. Identification of destabilized metal hydrides for hydrogen storage using first principles calculations [J]. J. Phys. Chem. B,2006, 110(17):8769-8776.
    [89]Kang X, Wang P, Ma L. Reversible hydrogen storage in LiBH4 destabilized by milling with Al [J]. Appl. Phys. A,2007,89:963-966.
    [90]Aoki M, Miwa K, Noritake T. Destabilization of LiBH4 by mixing with LiNH2 [J]. Appl. Phys. A,2005,80:1409-1412.
    [91]Pena-Alonso R, Sicurelli A, Callone E, Carturan G, Raj R. A picoscale catalyst for hydrogen generation from NaBH4 for fuel cells [J]. J. Power Sources,2007, 165:315-323.
    [92]Chen P, Xiong Z T, Luo J Z, Lin J Y, Lee T K. Interaction of hydrogen with metal nitrides and imides [J]. Nature,2002,420:302-304.
    [93]Ichikawa T, Hanada N, Isobe S, Leng H Y, Fujii H. Hydrogen storage properties in Ti catalyzed Li-N-H system [J]. J. Alloys Compd.,2005,404-406:435-438.
    [94]Chen P, Luo J Z, Xiong Z T, Lin J Y, Tan K L. Interaction between lithium amide and lithium hydride [J]. J. Phys. Chem. B,2003,107:10967-10970.
    [95]Hu Y H, Ruckenstein E. Ultrafast reaction between LiH and NH3 during H2 storage in Li3N [J]. J. Phys. Chem. A,2003,107 (46):9737-9739.
    [96]Xiong Z, Yong C K, Wu G, Chen P, Shaw W, Karkamkar A, Autrey T, Jones M O, High-capacity hydrogen storage in lithium and sodium amidoboranes [J]. Nature Mater.,2008,7:138-141.
    [97]Xiong Z, Wu G, Chua Y, Hu J, He T, Xu W, Chen P. Synthesis of sodium amidoborane (NaNH2BH3) for hydrogen production [J]. Energy Environ. Sci., 2008,1(3):360-363.
    [98]Diyabalanage H V K, Shrestha R P, Semelsberger T A, Scott B L, Bowden M E, Davis B L, Burrell A K. [J]. Angew. Chem., Int. Ed.,2007,46:8995-8997.
    [99]Zhang Q A, Tang C X, Fang C H, Fang F, Sun D L, Ouyang L Z, Zhu M. [J]. J. Phys. Chem. C,2010,114:1709-1721.
    [100]Kang X, Ma L, Fang Z, Gao L, Luo J, Wang S, Wang P. Promoted hydrogen release from ammonia borane by mechanically milling with magnesium hydride:a new destabilizing approach. [J]. Phys. Chem. Chem. Phys.,2009,11:2507-2513.
    [101]Gutowsk A, Li L, Shin Y, M C. Wang X, Li S, John C, Linehan R, Bruce D. Kay, Schmid B, Autrey T. Nanoscaffold mediates hydrogen release and the reactivity of ammonia borane [J]. Angew. Chem., Int. Ed.,2005,44:3578-3582.
    [102]Keaton R, Blacquiere J, Baker R. Base metal catalyzed dehydrogenation of ammonia-borane for chemical hydrogen storage [J]. J. Am. Chem. Soc.,2007, 129(7):1844-1845.
    [103]Stephens F H, Baker R T, Matus M H, Grant D J, Dixon D A. Acid initiation of ammonia-borane dehydrogenation for hydrogen storage [J]. Angew. Chem., Int. Ed.,2007,46:746-749.
    [104]Liu C, Li F, Ma L, Cheng H. Advanced materials for energy storage [J] Adv. Mater.,2010,22:E1-35.
    [105]Liu Y, Chu L, Zhou H, Gao M, Pan H, Wang Q. A novel catalyst precursor K2TiF6 with remarkable synergetic effects of K, Ti and F together on reversible hydrogen storage of NaAlH4 [J]. Chem. Commun.,2011,47:1740-1742.
    [106]Wang P, Kang X. Hydrogen-rich boron-containing materials for hydrogen storage [J]. Dalton Trans.,2008,5400-5413.
    [107]Graetz J. New approaches to hydrogen storage [J]. Chem. Soc. Rev.,2009,38: 73-82.
    [108]Mamatha M, Bogdanovic B, Felderhoff M, Pommerin A, Schmidt W, Schuth F, Weidenthaler C. Mechanochemical preparation and investigation of properties of magnesium, calcium and lithium-magnesium alanates [J]. J. Alloys Compd.,2006, 407:78-86.
    [109]Tang X, Opalka S, Laube B, Wu F, Strickler J, Anton D. Hydrogen storage properties of Na-Li-Mg-Al-H complex hydrides [J]. J. Alloys Compd.,2007, 446-447:228-231.
    [110]Nickels E, Jones M, David W, Johnson S, Lowton R, Sommariva M, Edwards P P. Tuning the decomposition temperature in complex hydrides:synthesis of a mixed alkali metal borohydride [J]. Angew. Chem., Int. Ed.,2008,47:2817-2819.
    [111]Brinks H, Fossdal A, Hauback B C. Adjustment of the stability of complex hydrides through anion substitution [J]. J. Phys. Chem. C,2008,112:5658-5661.
    [112]Chater P, David W, Johnson S, Edwards P, Anderson P A. Synthesis and crystal structure of Li4BH4(NH2)3 [J]. Chem. Commun.,2006,23:2439-2441.
    [113]Farrell D, Shin D, Wolverton C. First-principles molecular dynamics study of the structure and dynamic behavior of liquid Li4BN3H10[J]. Phys. Rev. B,2009, 80:224201.
    [114]Vajo J J, Mertens F, Ahn C. MgH2 destabilized with Si [J]. J. Phys. Chem. C, 2004,108:13977-13983.
    [115]Wu H. Strategies for the improvement of the hydrogen storage properties of metal hydride materials [J]. ChemPhysChem,2008,9:2157-2162.
    [116]Yang J, Ciureanu M, Roberge R. Hydrogen storage properties of nano-composites of Mg and Zr-Ni-Cr alloys [J]. Mater. Lett.,2000,43(5-6):234-239.
    [117]de Jongh P. E., Adelhelm P, Nanosizing and nanoconfinement:new strategies towards meeting hydrogen storage goals [J]. ChemSusChem,2010,3:1332-1348.
    [118]Cakanyildinm C, Guru M. Processing of LiBH4 from its elements by ball milling method [J]. Renewable Energy,2008,33(11):2388-2392.
    [119]Saita I, Toshima T, Tanda S. Hydriding chemical vapor deposition of metal hydride nano-fibers [J]. Mater. Trans.,2006,47(3):931-934.
    [120]Brinks H W, Hauback B C, Srinivasan S S. Synchrotron X-ray studies of Al1-yTiy formation and re-hydriding inhibition in Ti-enhanced NaAlH4 [J]. J. Phys. Chem. B,2005,109:15780-15785.
    [121]Li W, Li C, Ma H. Magnesium nanowires:enhanced kinetics for hydrogen absorption and desorption [J]. J. Am. Chem. Soc.,2007,129:6710-6711.
    [122]Fang Z Z, Wang P, Rufford T E. Kinetic- and thermodynamic-based improvements of lithium borohydride incorporated into activated carbon [J]. Acta Mater.,2008,56(20):6257-6263.
    [123]Balde C P, Hereijgers B P, Bitter J H. Facilitated hydrogen storage in NaAlH4 supported on carbon nanoribers [J]. Angew. Chem., Int. Ed.,2006,45(21):3501-3503.
    [124]Hauback B, Brinks H, Jensen C, Murphy K, Maeland A. Neutron diffraction structure determination of NaAlD4 [J]. J. Alloys Compd.,2003,38:142-145.
    [125]Claudy P, Bonnetot B, Chhine G, Letoffe J. Study of the thermal behavior of sodium tetrahydroaluminate and sodium hexahydroaluminate [J]. Thermochim. Acta,1980,38:75-88.
    [126]Gross K, Guthrie S, Takara S, Thomas G. In-situ X-ray diffraction study of the decomposition of NaAlH4 [J]. J. Alloys Compd.,2000,297:270-281.
    [127]Finholt A, Barbaras G, Barnaras G, Urry G, Wartik T, Schlesinger H. The preparation of sodium and calcium aluminium hydrides [J]. J. Inorg. Nucl. Chem., 1955,1:317-325.
    [128]Zakharkin L, Gavrilenko V. A simple method for the preparation of sodium and potassium aluminium hydrides [J]. Russ. Chem. Bull.,1961,10(12):2105-2106.
    [129]Ashby E, Brendel G, Redman H. Direct synthesis of complex metal hydrides [J]. Inorg. Chem.,1963,2:499-506.
    [130]Clasen H. Preparation of alkali-metal aluminohydrides and gallohydrides [J]. Angew. Chem., Int. Ed.,1961,73:322-324.
    [131]申泮文,车云霞.氢化铝钠的合成方法[P].中国专利:89108190.9,1991-05-08:
    [132]Bogdanovic B, Schwickardi M. Ti-doped NaAlH4 as a hydrogen-storage material preparation by Ti-catalyzed hydrogenation of aluminum powder in conjunction with sodium hydride [J]. Appl. Phys. A,2001,72:221-223.
    [133]Xiao X, Chen L, Fan X, Wang X, Chen C, Lei Y, Wang Q. Direct synthesis of nanocrystalline NaAlH4 complex hydride for hydrogen storage [J]. Appl. Phys. Lett.,2009,94:041907.
    [134]Gross K, Thomas G, Jensen C. Catalyzed alanates for hydrogen storage [J]. J. Alloys Compd.,2002,330-332:683-690.
    [135]Bogdanovic B, Brand R, Marjanovic A, Schwickardi M, Tolle J. Metal-doped sodium aluminium hydrides as potential new hydrogen storage materials [J]. J. Alloys Compd.,2000,302:36-58.
    [136]Bellosta J M, Bogdanovic B, Felderhoff M, Pommerin A, Schuth F. Recording of hydrogen evolution-a way for controlling the doping process of sodium alanate by ball milling [J]. J. Alloys Compd.,2004,370:104-109.
    [137]Sun D L, Srinivasan S, Kiyobayashi T, Kuriyama N, Jensen C. Rehydrogenation of dehydrogenated NaAlH4 at low temperature and pressure [J]. J. Phys. Chem. B, 2003,107:10176-10179.
    [138]Bogdanovic B, Felderhoff M, Kaskel S, Pommerin A, Schlichte K, Schuth F. Improvement hydrogen storage properties of Ti-doped sodium alanate using titanium nanoparticles as doping agents [J]. Adv. Mater.,2003,15:1012-1015.
    [139]Zaluska A, Zaluski L, Strom-Olsen J O. Sodium alanates for reversible hydrogen storage [J]. J. Alloys Compd.,2000,298:125-134.
    [140]Sandrock G, Thomas G J, Gross K J. Effect of Ti-catalyst content on the reversible hydrogen storage properties of the sodium alanates [J]. J. Alloys Compd.,2002,339:299-308.
    [141]Gross K J, Majzoub E, Spangler S. The effect of titanium precursors on hydriding properties of alanates [J]. J. Alloys Compd.,2003,356-357:423-7428.
    [142]Anton D L. Hydrogen desorption kinetics in transition metal modified NaAlH4 [J]. J. Alloys Compd.,2003,356-357:400-404.
    [143]Kircher O, Fichtner M. Hydrogen exchange kinetics in NaAlH4 catalyzed in different decomposition states [J]. J. Appl. Phys.,2004,95:7748-7753.
    [144]Majzoub E H, Gross K J. Titanium-halide catalyst-precursors in sodium aluminum hydrides [J]. J. Alloys Compd.,2003,356-357:363-367.
    [145]Cento C, Gislon P, Bilgili M, Masci A, Zheng Q, Prosini P. How carbon affects hydrogen desorption in NaAlH4 and Ti-doped NaAlH4 [J]. J. Alloys Compd.,2007, 437:360-366.
    [146]Wang J, Ebner A, Ritter J. Kinetic behavior of Ti-doped NaAlH4 when cocatalyzed with carbon nanostructures [J]. J. Phys. Chem. B,2006,110:17353-17358.
    [147]Haber J, Crane J, Buhro W, Frey C, Sastry S, Balbach J, Conradi M. Chemical synthesis of nanocrystalline titanium and nickel aluminides from the metal chlorides and lithium aluminum hydride [J]. Adv. Mater.,1996,8:163-166.
    [148]Kiyobayashi T, Srinivasan S, Sun D, Jensen C. Kinetic study and determination of enthalpies of activation of the dehydrogenation of titanium- and zirconium-doped NaAlH4 and Na3AlH6 [J]. J. Phys. Chem. A,2003,107:7671-7674.
    [149]Seayad A M, Antonelli D M. Recent advances in hydrogen storage in. metal-containing inorganic nanostructures and related materials [J]. Adv. Mater., 2004,16:765-777.
    [150]Kang X D, Wang P, Cheng HM. Electron microscopy study of Ti-doped sodium aluminum hydride prepared by mechanical milling NaH/Al with Ti powder [J]. J. Appl. Phys.,2006,100:034914.
    [151]Singh S, Eijt S W, Huot J, Kochelmann W A, Wagemaker M, Mulder F M. The TiCl3 catalyst in NaAlH4 for hydrogen storage induces grain refinement and impacts on hydrogen vacancy formation [J]. Acta Mater.,2007,55:5549-5557.
    [152]Balde C P, Hereijgers B P, Bitter J H, de Jong K P. Sodium alanate nanoparticles-linking size to hydrogen storage properties [J]. J. Am. Chem. Soc., 2008,130:6761-6765.
    [153]Bhakta R K, Herberg J L, Jacobs B, Highley A, Ockwig N W. Metal-organic frameworks as templates for nanoscale NaAlH4 [J]. J. Am. Chem. Soc.,2009,131: 13198-13199.
    [154]Stephens R D, Gross A F, Atta S L V, Vajo J J, Pinkerton F E. The kinetic enhancement of hydrogen cycling in NaAlH4 by melt infusion into nanoporous carbon aerogel [J]. Nanotechnology,2009,20:204018.
    [155]Zheng S, Fang F, Zhou G, Chen G, Ouyang L, Zhu M. Hydrogen storage properties of space-confined NaAlH4 nanoparticles in ordered mesoporous silica [J]. Chem. Mater.,2008,20:3954-3958.
    [156]Adelhelm P, Gao J, Verkuijlen M H W, Rongeat C, Herrich M, van Bentum PJanM. Comprehensive study of melt infiltration for the synthesis of NaAlH4/C nanocomposites [J]. Chem. Mater.,2010,22:2233-2238.
    [157]Gao J, Adelhelm P, Verkuijlen MHW, Rongeat C, Herrich M, van Bentum P, Jan M. Confinement of NaAlH4 in nanoporous carbon:impact on H2 release, reversibility, and thermodynamics [J]. J. Phys. Chem. C,2010,114:4675-4682.
    [158]Li Z, Zhu G, Lu S, Qiu S, Yao X. Ammonia borane confined by a metal-organic framework for chemical hydrogen storage:enhancing kinetics and eliminating ammonia [J]. J. Am. Chem. Soc.,2010,131:1490-1491.
    [159]Christian M, Aguey-Zinsou K. Destabilisation of complex hydrides through size effects [J]. Nanoscale,2010,2:2587-2590.
    [160]Lohstroh W, Roth A, Hahn H, Fichtner M. Thermodynamic effects in nanoscale NaAlH4 [J]. ChemPhysChem,2010,11:789-792.
    [161]Mueller T, Ceder G. Effect of particle size on hydrogen release from sodium alanate nanoparticles [J]. ACS Nano.,2010,264(10):5647-5656.
    [162]Peng B, Chen J. Ammonia borane as an efficient and lightweight hydrogen storage medium [J]. Energy Environ. Sci.,2008,1:479-483.
    [163]Staubitz A, Robertson A, Manners I. Ammonia-borane and related compounds as dihydrogen sources [J]. Chem. Rev.,2010,110:4079-4124.
    [164]Sit V, Geanangel R, Wendlandt W W. The thermal dissociation of NH3BH3 [J]. Thermochim. Acta,1987,113:379-382.
    [165]Wolf G, Baumann J, Baitalow F, Hoffmann F P. Calorimetric process monitoring of thermal decomposition of B-N-H compounds [J]. Thermochim. Acta,2000,343: 19-25.
    [166]Baitalow F, Baumann J, Wolf G, Jaenicke-Robler K, Leitner G. Thermal decomposition of B-N-H compounds investigated by using combined thermoanalytical methods [J]. Thermochim. Acta,2002,391:159-168.
    [167]Bluhm M, Bradley M, Butterick R, Kusari U, Sneddon L G. Amineborane-based chemical hydrogen storage:enhanced ammonia borane dehydrogenation in ionic liquids [J]. J. Am. Chem. Soc.,2006,128:7748-7749.
    [168]Stowe A, Shaw W, Linehan J, Schmid B, Autrey T. In situ solid state 11B MAS-NMR studies of the thermal decomposition of ammonia borane:mechanistic studies of the hydrogen release pathways from a solid state hydrogen storage material [J]. Phys. Chem. Chem. Phys.,2007,9:1831-1836.
    [169]Heldebrant D, Karkamkar A, Hess N, Bowden M, Rassat S, Rappe K, Autrey T. The effects of chemical additives on the induction phase in solid-State thermal decomposition of ammonia borane [J]. Chem. Mater.,2008,20:5332-5336.
    [170]Nguyen V, Matus M, GrantD, NguyenM, Dixon D. Computational study of the release of H2 from ammonia borane dimer (BH3NH3)2 and its ion pair isomers [J]. J. Phys. Chem. A,2007,111:8844-8856.
    [171]Li L, Yao X, Sun C, Du A, Cheng L, Zhu Z, Yu C, Zou J, Smith S, Wang P, Cheng H, Frost R, Lu M. Lithium-catalyzed dehydrogenation of ammonia borane within mesoporous carbon framework for chemical hydrogen storage [J]. Adv. Funct. Mater.,2009,19:265-271.
    [172]Kang X, Fang Z, Kong L, Cheng H, Yao X, Lu G, Wang P. Ammonia borane destabilized by lithium hydride:an advanced on-board hydrogen storage material [J]. Adv. Mater.,2008,20:2756-2759.
    [173]Kang X, Luo J, Zhang Q, Wang P. Combined formation and decomposition of dual-metal amidoborane NaMg(NH2BH3)3 for high-performance hydrogen storage [J].Dalton Trans.,2011.
    [174]Xiong Z, Chua Y, Wu G, Wang L, Wong M, Kam Z, Autrey T, Kemmittd T, Chen P. Interaction of ammonia borane with Li2NH and Li3N [J]. Dalton Trans., 2010,39:720-722.
    [175]Chua Y, Wu G, Xiong Z, He T, Chen P. Calcium amidoborane ammoniate; synthesis, structure and hydrogen storage properties [J]. Chem. Mater.,2009,21: 4899-4904.
    [176]Wu C, Wu G, Xiong Z, Han X, Chu H, He T, Chen P. LiNH2BH3·NH3BH3: structure and hydrogen storage properties [J]. Chem. Mater.,2010,22(1):3-5.
    [177]Wideman T, Sneddon L G. Convenient procedures for the laboratory preparation of borazine [J]. Inorg. Chem.,1995,34:1002-1003.
    [178]Kim S, Han W, Kim T, Kim T, Michalak A, Hwang S, Kang S. Palladium catalysts for dehydrogenation of ammonia borane with preferential B-H Activation [J]. J. Am. Chem. Soc.,2010,132(29):9954-9955.
    [179]Jaska C, Temple K, Lough A, Manners I. Rhodium-catalyzed formation of boron-nitrogen bonds:a mild route to cyclic aminoboranes and borazines [J]. Chem. Commun.,2001,11:962-963.
    [180]Jaska C, Temple K, Lough A, Manners I. Transition metal-catalyzed formation of boron-nitrogen bonds:catalytic dehydrocoupling of amine-borane adducts to form sminoboranes and borazines [J]. J. Am. Chem. Soc.2003,125:9424-9234.
    [181]Clark T J, Russell C A, Manners I. Homogeneous, titanocene-catalyzed dehydrocoupling of amine-borane adducts [J]. J. Am. Chem. Soc.,2006,128: 9582-9583.
    [182]Chen Y, Fulton J, Linehan J, Autrey T. In-situ XAFS and NMR study of rhodium catalyst structure during dehydrocoupling of dimethylamine borane [J]. J. Am. Chem. Soc.,2005,127:3254-3255.
    [183]Denney M C, Pons V, Hebden T, Heinekey D, Goldberg K. Efficient catalysis of ammonia borane dehydrogenation [J]. J. Am. Chem. Soc.,2006,128:12048-12049.
    [184]He T, Xiong Z, Wu G, Chu H, Wu C, Zhang T, Chen P. Nanosized Co- and Ni-catalyzed ammonia borane for hydrogen storage [J]. Chem. Mater.,2009,21: 2315-2318.
    [185]Kalidindi S, Joseph J, Jagirdar B R. Cu2+-induced room temperature hydrogen release from ammonia borane [J]. Energy Environ. Sci.,2009,2:1274-1276.
    [186]马礼敦.高等结构分析[M].上海:复旦大学出版社,2001.
    [187]近藤精一.李国希(译).吸附科学[M].北京:化学工业出版社,2005.
    [188]祁景玉.现代分析测试技术[M].上海:同济大学出版社,2005.
    [189]叶恒强,工元明.透射电子显微学进展[M].北京:科学出版社,2003.
    [190]陆婉珍.现代近红外光谱分析技术[M].北京:中国石化出版社,2007.
    [191]蔡正干.热分析[M].北京:高等教育出版社,1993.
    [192]Adelhelm P, de Jongh P E. The impact of carbon materials on the hydrogen storage properties of light metal hydrides [J]. J. Mater. Chem.,2011,21:2417-2427.
    [193]Zhao D, Huo Q, Feng J, Chmelka B, Stucky G. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures [J]. J. Am. Chem. Soc.,1998, 120:6024-6036.
    [194]Jun S, Joo S, Ryoo R, Kruk M, Jaroniec M, Liu Z, Ohsuna T, Terasaki O. Synthesis of new, nanoporous carbon with hexagonally ordered Mesostructure [J]. J. Am. Chem. Soc.,2000,122:10712-10713.
    [195]Dymova T N, Eliseeva N G, Bakum S I, Degachev Y M. Direct synthesis of alkali-metal alumohydrides in melts [J]. Dokl. Akad. Nauk. SSSR.,1974,215: 1369-1372.
    [196]Berseth P, Harter A, Zidan R, Blomqvist A, Arauujo C, Scheicher R, Ahuja R, Jena P. Carbon nanomaterials as catalysts for hydrogen uptake and release in NaAlH4 [J]. Nano Lett.,2009,9(4):1501-1505.
    [197]Findenegg G, Jahnert S, Akcakayiran D, Schreiber A. Freezing and melting of water confined in silica nanopores [J]. ChemPhysChem,2008,9:2651-2659.
    [198]Smith G, Goudy A. Thermodynamics, kinetics, and modeling studies of the LaNi 5-xCox Hydride System [J]. J. Alloy. Compd.,2001,316:93-98.
    [199]Luo W, Gross K J. A kinetics model of hydrogen absorption and desorption in Ti-doped NaAlH4 [J]. J. Alloys Compd.,2004,385:224-231.
    [200]Zheng S, Li Y, Fang F, Zhou G, Yu X, Chen G. Improved dehydrogenation of TiF3-doped NaAlH4 using ordered mesoporous SiO2 as a codopant [J]. J. Mater. Res.,2010,25(10):3886-2890.
    [201]Liu Y F, Zhong K, Luo K, Gao M X, Pan H G, Wang Q D. Size-dependent kinetic enhancement in hydrogen absorption and desorption of the Li-Mg-N-H system [J]. J. Am. Chem. Soc.,2009,131:1862-1870.
    [202]Yang H, Ogaro P O, Groudy A J. Hydriding and dehydriding kinetics of sodium alanate at constant pressure thermodynamic driving forces [J]. J. Phys. Chem. C, 2009,113:14512-14517.
    [203]Gunaydin H, Houk K N, Ozolins V. Vacancy-mediated dehydrogenation of sodium alanate [J]. PNAS,2008,105:3673-3677.
    [204]Zidan R, Takara S, Hee A, Jensen C. Hydrogen cycling behavior of zirconium and titanium-zirconium-doped sodium aluminum hydride [J]. J. Alloys Compd., 1999,285(1-2):119-122.
    [205]A. K. Geim, K. S. Novoselov. The rise of graphene. [J]. Nature Mater.,2007,6: 183-192.
    [206]H. E. Kissinger. Reaction kinetics in differential thermal analysis [J]. Anal. Chem.,1957,29:1702-1706.
    [207]Verkuijlen M, Gao J, Adelhelm P, van Bentum P, de Jongh P E, Kentgens A. Solid-state NMR studies of the local structure of NaAlH4/C nanocomposites at different stages of hydrogen desorption and rehydrogenation [J]. J. Phys. Chem. C, 2010,114(10):4683-4692.
    [208]Sφrensen R Z, Hummelshφj J S, Klerke A, Reves J B, Vegge T, Nφrskov J K, Christensen C H. Indirect, reversible high-density hydrogen storage in compact metal ammine salts [J]. J. Am. Chem. Soc.,2008,130:8660-8668.
    [209]Guo Y, Xia G, Zhu Y, Gao L, Yu X. Hydrogen release from amminelithium borohydride, LiBH4-NH3 [J]. Chem. Commun.,2010,46:2599-2601.
    [210]Hess N J, Bowden M E, Parvanov V M, Mundy C, Kathmann S M, Schenter G K, Autrey T. Spectroscopic studies of the phase transition in ammonia borane: raman spectroscopy of single crystal NH3BH3 as a function of temperature from 88 to 330 K [J]. J. Chem. Phys.2008,128:034508.
    [211]Heyns A M, Prinsloo L C. The vibrational spectra and decomposition of a-calcium nitride (a-Ca3N2) and magnesium nitride (Mg3N2) [J]. J. Sol. St. Chem., 1998,137:33-41.
    [212]Machtoub L, Takano Y, Kito H. Raman study of electronic excitations in MgB2 with application of high magnetic field [J]. Physica C:Superconductivity 2006, 445-448:478-480.
    [213]Schlecht R G, Bockelmann H K. Raman scattering from microcrystals of MgO [J]. Phys. Rev. Lett.,1973,31:930-933.
    [214]Luo J, Kang X, Wang P. Mechanically milling with off-the-shelf magnesium powder to promote hydrogen release from ammonia borane [J]. J. Phys. Chem. C, 2010,114:10606-10611.
    [215]Benzouaa R, Demirci U B, Chiriac R, Toche F, Miele P. Metal chloride-doped ammonia borane thermolysis:positive effect on induction period as well as hydrogen and borazine release [J]. Thermochim. Acta.,2010,509:81-86.
    [216]He T, Wang J, Wu G, Kim H, Proffen T, Wu A, Li W, Liu T, Xiong Z, Wu C, Chu H, Guo J, Autrey T, Zhang T, Chen P. Growth of crystalline polyaminoborane through catalytic dehydrogenation of ammonia borane on FeB nanoalloy [J]. Chem. Eur. J.,2010,16:12814-12817.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700