钛合金高温模锻用防护润滑剂的研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钛合金因其优异的性能在军事和工业生产中得到了广泛的应用,其中80%的锻件是由模锻工艺提供的,尤其是大型锻件的加工成型。在高温模锻加工时,高温下钛合金易于氧化和渗气,使合金表面硬化,塑性变差,除去氧化皮后,造成了大量的资源浪费;而且高温加剧了模具与变形金属接触面间的相互作用,使摩擦系数提高,锻件难于脱模,进而导致锻件质量差,模具寿命短。因此,解决钛合金高温模锻时的氧化和润滑问题至关重要。目前,国内外已研制了多种涂层用于钛合金的高温防氧化,但存在的普遍问题就是涂层的防护温度区间较窄。传统的模锻工艺用润滑剂,因高温下易于氧化或碳化,也不能满足高温模锻的要求。
     本文研制的玻璃防护润滑剂,采用软化温度高低不同的两种硼硅酸盐复合玻璃粉,通过与有机粘结剂的衔接防护,解决了涂层防护温度区间过窄的难题,同时玻璃粉在高温熔融后还具有较好的润滑作用,玻璃因导热系数较低,也具有一定的保温作用,对于对变形温度敏感的钛合金来说,减少坯料出炉至锻造成形过程中的降温也至关重要,对其成形率及提高设备能量的利用率有重要意义。本实验通过高温熔融烧结法制备硼硅酸盐玻璃粉,其中以SiO_2和B_2O_3为玻璃形成体,碱性氧化物Na_2O、K_2O和Li_2O等低熔点氧化物为助熔剂,Al_2O_3、CaO、BaO作为稳定剂,摒弃了低熔玻璃粉中有毒的易熔PbO。所制备的玻璃防护润滑剂具有无毒、无黑色污染,涂覆方法简单易行等优点。
     对防护润滑剂防护性能的考察主要是通过对比有无涂层保护的钛合金在高温下的氧化行为来表征的。将两种试样置于马沸炉内在600℃、700℃、800℃和900℃下分别保温1h后,对比两种试样在不同温度下的氧化情况;还考察了900℃下随着保温时间的增加两中试样的氧化行为。借助金相显微镜观察试样断面的氧化层厚度;测试从两种钛合金试样从表面到中心的显微硬度变化情况,进一步验证防护效果;最后经过环境扫描电镜的线扫描能谱,对比分析二者的氧含量及其他元素的扩散情况。通过高温摩擦磨损试验测试使用润滑剂后的摩擦系数,并对比没有防护润滑剂的摩擦系数结果。可以说明起到了一定的润滑效果。结果表明:在大气环境中,本实验制备的玻璃防护润滑剂可以在600℃~900℃的温度区间内为钛合金提供良好的防护润滑效果,在600℃下具有较好的润滑效果。
Titanium alloys which have excellent performance were widely used in military and industrial production, of which 80% of the forgings are provided by the forging process, in particular the processing of large forgings shape. In the high temperature forging processing of titanium alloy, the alloy is easily oxide and gas permeability, results in surface hardening and brittle. That make the follow-up processing difficulty. After removing the oxidation layer, resulting in a large waste of resources; and In high temperature, the contact surface interaction of mold and metal deformation has been increasing, So the friction coefficient is increased, it is difficult for forging to stripping, which led to forging of poor quality, the mold life will be shorten. Thus, solving the problem of the oxidation and lubrication of titanium alloy when forging is crucial. At present, home and abroad have developed a variety of antioxidation coatings used for high-temperature forging of titanium alloys, but a general problem is the protective temperature is narrow and unreliable perormance of the coatings. The traditional lubricants can not meet the requirements of high temperature forging, due to it is liable to oxidation and carbonization in high temperature.
     The development of protective lubricant in this paper, is composed of two combined borosilicate glass powder which have high and low softening temperature. Through the join beteen the organic binder and glass powder to broaden the protective temperature. After the glass powder melted, it also has good lubrication. At the same time, the glass have heat preservation function because of its low thermal conductivity. It is very important for titanium which have high sensitivity deformation temperature. In the forging process heat insulation is also essential, It is significant for high strain rate forming and raising the utilization of the facilities. In this study, the borosilicate glass powder was prepared by melt quenching methods. SiO_2 and B_2O_3 are the basic component of the glass; Low-melting oxides such as Na_2O, K_2Oand Li_2O as flux; Al_2O_3, CaO and BaO as stabilizing agent, The composition get rid of toxic PbO. The glass protective lubricant which is prepared in this paper is non-toxic, non-ferrous contamination. Coating formed on surface is simple.
     Through comparing the oxidation behavior of the coated and uncoated protection Titanium alloy at high temperature to explore the protective performance of the protective lubricant. Two sample will be placed in the furnace at 600℃, 700℃, 800℃and 900℃to keep warm 1h, the two weighting increment of oxidation at different temperature are different; At 900℃with the increase of holding time to explore the weighting increment. By dint of microscope to observe the oxide layer thickness of the sample; The hardness changes from the center to the surface of the two titanium alloy is test by metallographic microscope, to further verify the protective effect; At last through ESEM line scanning to analysis the element of the titanium alloy surface. By high temperature friction testing machine to test the lubricant friction coefficient, and compare the coefficient of friction with non-protective lubricant results. The results show that Ti alloy can be protected well against oxidation and permeating gas by the glass coating during the heat treatment of 600℃~900℃. At 600℃has better lubricating effect.
引文
[1]王向东,郝斌,逯福生等.钛合金的基本性质、应用及我国钛工业发展概况.钛工业进展, 2004, 2(1): 6~10
    [2]钱九红.航空航天用新型钛合金的研究发展及应用.稀有金属, 2000, 24(3): 218~223
    [3] Wang K. The use of titanium for medical applications in the USA. Materials Seience And Engineering A?(Structural Materials: Properties, Microstructure and Processing), 1996, 213(l-2): 134~137
    [4]莫畏,邓国珠,陆德祯等.钛冶金,第二版,北京:冶金工业出版社, 1979.20~30
    [5]赵宇光,周伟,秦庆东等.预氧化处理对钛合金抗高温氧化行为的影响.特种铸造及有色合金, 2004 (3): 34~37
    [6]张春艳,伍光凤,田中青. TC4合金热氧化行为的研究.材料热处理《热加工工艺》2007, 36 (16): 36~38
    [7]于家斗,齐大蘅.钛合金的热保护涂层.稀有金属材料与工程, 1985, (1): 44~54
    [8]李忠磊,梁伟,滕尚君等. SiO2涂层对TiAl基合金抗高温氧化性能的影响.材料热处理学报, 2008, 29(5): 124~128
    [9]赵娟,王贵,刘朗等. SiC梯度涂层的制备及其氧化行为研究.广东化工,2007, 34(10): 25~28
    [10]石淼森.锻造加工中固体润滑.锻压机械, 1998, (01): 32~33
    [11]郑友华,李冀生,王美玲.固体涂层的评价和应用.润滑与密封, 2003, (02): 14~17
    [12]刘汇东,李皆荣. MD-2型水基石墨润滑剂的研究.固体润滑, 1981, 1(1): 44~46
    [13]周强,徐瑞清.石墨材料的润滑性能及其开发应用.新型碳材料, 1997, 12(3): 11~16
    [14] Fusoro R L. A comparison of the lubricating mechanism of graphite fluoride and molybdenium disulfide films.ASLE proceeding,2rd international conference on solid lubrication.1978, 5(9): 59~78
    [15]陈锐,李平,陆玉俊.固体润滑材料—石墨的应用.炭素, 2000, (4): 23~32
    [16]姜旭峰,季峰,孙世安.聚四氟乙烯润滑材料的摩擦学性能及其改性研究.摩擦密封材料, 2006(3): 169~173
    [17] Zhu Minhao, Zhou Huidi, Chen Jianmin,et al. Comparative Study on Radial and TangentialFretting Damage of Molybdenum Disulfide Bonded Solid Lubrication Coating . Tribology, 2002, 22(1): 14~18.
    [18]闫玉涛,胡广阳,李夜等.纳米二硫化钼粉体制备及其摩擦学性能.东北大学学报, 2009, 30(3): 414~417
    [19]张柏年.温锻润滑剂研究.模具技术, 1984(01): 63~68
    [20] Raybould Derek. Chipko Paul. Fischer William E.Elevated. Temperature oxidation protection coatings for titanium alloys and methods of preparing the same. United States Patent. 7135238, 11/14/2006
    [21] Albert G.Tobin,N.Y.Smithtown. Oxidation Protection Method for Titanium.USA Patent. 5672436, 09/30/1997.
    [22] Beers Russell A. Berczik Douglas M. Noetzel Allan A. Oxidation resistant coating for titanium alloys. United States Patent. 5580669, 12/03/1996
    [23] E. Verne, Fernandez Valles, C. Vitale Brovarone et al.Double-layer glass-ceramic coatings on Ti6Al4V for dental implants. Journal of the European Ceramic Society, 2004 , (24): 2699~2705
    [24] T. Moskalewicz, F. Smeacetto, G. Cempura et al.Microstructure and properties characterisation of the double layered glass-ceramiccoating on near-αtitanium alloy. Surface & Coatings Technology. 2010, 204(21-22): 3509~3516
    [25] Lianjun Wang, Changgong Meng, Changhou Liu et al, Glass-Ceramic Protective Coating for Titanium Alloys. Communications of the American Ceramic Society, 2002, 85(11): 2867~2869
    [26]梁文,张炼,吴金平等.玻璃基高温防氧化涂料的研究.材料保护, 2007, 40(3): 37~39
    [27]欧阳德刚,周明石,张奇光等.高温金属抗氧化无机涂层的作用机理与设计原则.钢铁研究, 1997, (4): 52~54
    [28]马英仁.玻璃润滑剂及其在热挤压中的应用.摩擦学报, 1984, (02): 84~88
    [29]陈君才.钢的热处理加热用保护涂料的研究.昆明工学院学报, 1992,17(4): 16~23
    [30] R.G.Sogomonyan, Z.D.Zusman, A.A.Popova. Glass-ceramic coating for protective low-alloy steels against oxidation during their heat treatment.Protection of Metals, 1986, 22(5): 648~649
    [31]杨海云.国外金属压挤加工过程玻璃润滑技术的现状及其发展动向.有色金属, 1965, (08): 18~20
    [32]李光远,栾慧智. FR系列金属热变形防护润滑剂,航空材料, 1989, (9): 24~31
    [33]王淑云,李辉忠.钛合金锻造用玻璃防护润滑剂的研制,锻压技术, 2003,(4): 3~31
    [34]段素杰.钛合金叶片无余量精锻工艺用玻璃防护润滑剂的应用.锻压技术, 2001(01): 45~46
    [35]李光远,栾慧智.钛合金精锻防护润滑剂的研制与评定.模具技术, 1985, (05): 20~27
    [36]陈福,殷海荣,丽华等. Na2O - Al2O3-B2O3系统低熔点玻璃的研究.陕西科技大学学报, 2005, 23(4): 33~36
    [37] DemoM, HermsG, SteilH.X-ray study on the boron coordination in sodium borate glasses at higher temperature . Phy. Stat.So.l, 1986(93): 5~7
    [38]殷海荣,陈福,武丽华.硼酸盐玻璃的研究进展.无机盐工业, 2005, 32(10): 10~12
    [39]彭琳,赵高凌,刘史敏等.铝硼硅系玻璃中Al2O3,B2O3对化学稳定性的影响.武汉理工大学学报, 2007, 29(1): 154~156
    [40] C.C.索采夫, A.T.图曼诺夫.金属加热用保护涂层.陆索.译.北京:机械工业出版社, 1979: 30~39.
    [41] S.Sarkar, S.Datta, S.Das, et al.Oxidation Protection of gamma-titanium aluminide using glass-ceramic coatings. Surface & Coatings Technology. 2009, 203(13): 1797~1805
    [42] Kiyoshi Nogi, Nobuya Iwaamoto, Kazumi Ogino. Wetting phenomena at high temperature(PartⅡ). Transaction JWRI, 1992, 21(2): 1~8.
    [43] Hideki Kita, Manabu Fukushima, D.Doni Jayaseelan et al. Oxidation Resistance and High-Temperature Lubricating Properties of Magnesium-Phosphate-Tredted Graphite. J. Am. Ceram. Soc, 2005,88(9):2632~2634
    [44] R.Harris, E.Kelly, D.H.Leeds, et al. Process 3rd international conference on chemical vapo rdeposition[C]: Westerville,OH:American Ceramic Society, 1972: 183~192.
    [45]段素杰.钛合金叶片无余量精锻工艺用玻璃防护润滑剂.中国专利:CN1348844A, 2005-5-15
    [46]张煜伟. TC4钛合金热加工用防氧化自剥落无铅玻璃—陶瓷涂层的研究:(博士论文).南京:南京航空航天大学图书馆, 2008
    [47] Haibin Shao, Tingwei Wang, Qitu Zhang.Preparationand properties of CaO–SiO2–B2O3 glass-ceramic at low temperature. Journal of Alloys and Compounds, 2009, (484): 2~5
    [48] Tao Sun, Hanning Xiao, Wenming Guo,et al.Effect of Al2O3 content on BaO–Al2O3– B2O3–SiO2 glass sealant for solid oxide fuel cell. Ceramics International, 2010, (36): 821~826
    [49]王连军.玻璃-陶瓷保护涂层的制备及在钛合金热加工过程中的应用研究:(博士论文).大连:大连理工大学图书馆, 2002
    [50]钱达兴.玻璃熔制时影响氧化硼挥发的若干因素.建筑材料学报, 1998, 1(02): 197~200
    [51] A.N.阿弗古斯契尼克.硅酸盐物理化学.超星数字图书馆, 2002, 279~281
    [52] Miehael E.Savard,Robert F. SPeyer. Effect of Partiele Size on the Fusion of Soda-Lime-Silicate Glass Containing NaCI. Joumal of the Ameriean Ceramie Society, 1993, 76(3): 671~677

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700