用户名: 密码: 验证码:
几种稀土发光材料的合成及发光性质的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文首先针对NaYF4这种上转换发光材料,通过表面包覆的方法合成了一种核-壳结构的纳米复合发光材料。采用溶胶-凝胶法为主要实验方法,在二氧化硅粒子表面包覆NaYF4:Yb3+/Er3+(或Yb3+/Tm3+)荧光粉层,制备了一系列NaYF4体系稀土离子(Yb3+,Er3+/Tm3+)掺杂的核-壳结构发光材料,解决了直接合成球形纳米发光材料的难题。与其他方法相比溶胶-凝胶法具有工艺简单、易于操作和不需要复杂的设备等优点。然后,采用两部喷雾热解法合成了Pr3+掺杂的CaTiO3球形荧光粉粒子,实验中使用柠檬酸和聚乙二醇(PEG)作为添加剂。最后,采用简单的溶剂热法合成了稀土离子Eu3+、Sm3+和Dy3+掺杂的CaWO4荧光粉纳米粒子和稀土离子Eu3+、Tb3+和Dy3+掺杂的SrMoO4荧光粉纳米粒子。
     上述材料的结构、形貌和光学性质分别通过X射线衍射(XRD)、傅立叶变换红外光谱(FT-IR)、场发射扫描电镜(SEM)、透射电镜(TEM)、X光电子能谱分析(XPS)和光致发光光谱(PL)等手段来表征。
     结果表明,制备的NaYF4:Ln@SiO2 (Ln=Yb/Er, Yb/Tm)和NaYF4:Ln@MCM-41 (Ln=Yb/Er, Yb/Tm)样品为核-壳结构。其中未煅烧样品为α-NaYF4单一相:400℃以上煅烧后,α-NaYF4与β-NaYF4共存,且β-NaYF4为主相。包覆的粒子呈均匀球形结构,单分散性好,粒径约为300nm。包覆的NaYF4:Ln壳层致密均匀,并且光滑、无开裂,厚度约为30nm,晶格间距为0.29nm,与NaYF4的XRD谱图(101)的d值符合的很好,说明了NaYF4:Ln(Ln= Yb/Er, Yb/Tm)在Si02表面结晶完好。在980nm红外光激发下,材料呈现明亮的上转换发光。
     合成的CaTiO3:Pr3+荧光粉是亚微米级球形粒子。325 nm紫外光激发和低压电子束(1-5 kV)作用下粒子显示出Pr3+的强1D2-3H4(612 nm)红光发射。此外,CaTiO3:Pr3+粒子的形态、PL和CL强度可通过改变PEG的浓度、焙烧温度和加速电压进行调节。这种荧光粉粒子在场发射平板显示器方面存在广阔的应用前景。
     制备的CaWO4:Ln (Ln=Eu3+、Sm3+和Dy3+)荧光粉具有CaWO4相的白钨矿结构,并且是由窄粒径分布、分散性良好的纳米晶体组成的。在紫外光激发或低压电子束作用下,CaWO4:Eu3+、CaWO4:Sm3+和CaWO4:Dy3+荧光粉分别显示Eu3+的5D0-7F1-3特征发射峰、Sm3+的4G5/2-6H5/29/2特征发射峰和Dy3+的4F9/2-6H13/2-15/2特征发射峰。这种荧光粉在荧光灯、场发射显示器和生物标签等方面具有应用前景。
     稀土离子Eu3+、Tb3+和Dy3+掺杂的SrMoO4粒子形态均一,是由简单的溶剂热法制备所得。XRD结果表明三种掺杂样品都具有高纯度和高结晶度。SrMoO4:Ln (Ln=Eu3+、Tb3+和Dy3+)样品呈现相当均匀的花生状和椭球状粒子。紫外光激发下,SrMoO4:Eu3+、SrMoO4:Tb3+和SrMoO4:Dy3+荧光粉分别显示Eu3+的5D0-7F1-3特征发射峰、Tb3+的5D4-7F3-6特征发射峰和Dy3+的4F9/2-6H13/2-15/2特征发射峰。这种荧光粉在荧光灯和发光二极管方面具有很高的应用潜力。
In this thesis, firstly, the core-shell structure of a kind of up-conversion phosphor material NaYF4 had been synthesized by coating. Using the inorganic silica sphere as cores resolved the problem of preparing directly the spherical nanocomposites. A simple sol-gel process has been developed to coat NaYF4:Yb3+/Er3+(or Yb3+/Tm3+) phosphor layers on monodisperse spherical SiO2 particles. Compared with other preparation methods, sol-gel method has the advantages as follows:simple procedure, easy operation, nocomplic-ated instruments. Secondly, spherical Pr3+ doped CaTiO3 phosphor particles were fabricated through a two-step spray pyrolysis process, using citric acid and polyethylene glycol (PEG) as additives. Finally, Rare earth ions (Eu3+, Sm3+, Dy3+) doped CaWO4 nanoparticles and rare earth ions (Eu3+, Tb3+, Dy3+) doped SrMoO4 nanoparticles were synthesized via a facile solvothermal process.
     The structure, morphology, textural and optical properties were well characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and photoluminescence spectra (PL), respectively.
     The results show that the core-shell structure phosphors NaYF4:Yb,Er/Tm@Si02 and NaYF4:Yb,Er/Tm@MCM-41 without annealing showed a cubic spinel structure of a-NaYF4. After being annealed above 400℃, the coexistence of a cubic and hexagonal structure of NaYF4 was obtained. The obtained core-shell structured phosphors maintain spherical morphology, submicrometer size and narrow size distribution, which have an average diameter of 300nm. Furthermore, uniform, smooth and crack-free phosphor films with thickness of 30nm were obtained. TEM results showed that the lattice fringes obvious and the distance between the adjacent lines are well consistent with the d value of (101) plane of NaYF4. The intense up-conversion emission was observed from the nanocrystals under excitation at 980nm.
     The as-prepared CaTiO3:Pr3+ phosphors are spherical with submicron particle size. The particles show a strong red emission corresponding to 1D2-3H4 (612 nm) of Pr3+ under the ultraviolet excitation (325 nm) and low voltage electron beams (1-5 kV). Furthermore, the morphology, PL and CL intensities of the CaTiO3:Pr3+ phosphors can be tuned by altering the concentration of PEG, annealing temperature, and acceleration voltage. These phosphors show potential applications in the field of field emission displays (FEDs).
     The XRD results reveal that all the doped samples are well assigned to the scheelite structure of the CaWO4 phase. The as-made phosphors consist of well-dispersed nanocrystals with relatively narrow size distribution. Upon excitation by ultraviolet radiation or low-voltage electron beams, the CaWO4:Eu3+ phosphors show the characteristic 5D0-7F1-3 emission lines of Eu3+, the CaWO4:Sm3+phosphors exhibit the characteristic 4G5/2-6H5/2-9/2 emission lines of Sm3+, and the CaWO4:Dy3+ phosphors demonstrate the characteristic 4F9/2-6H13/2-15/2 emission lines of Dy3+, respectively. These phosphors show potential applications in the fields of fluorescent lamps, field emission displays and biological labeling.
     Rare-earth ions(Eu3+、Tb3+ and Dy3+) doped SrMoO4 particles with uniform morphologies were successfully prepared through a facile solvothermal process. The XRD results reveal that all the doped samples are of high purity and crystallinity. It has been shown that the as-synthesized SrMoO4:Ln (Ln=Eu3+、Tb3+ and Dy3+)samples show respective uniform peanut-like and oval morphologies with narrow size distribution. Upon excitation by ultraviolet radiation, the SrMoO4:Eu3+ phosphors show the characteristic 5D0-7F1-3 emission lines of Eu3+, while the SrMoO4:Tb3+ phosphors exhibit the characteristic 5D4-7F3-6 emission lines of Tb3+, and SrMoO4:Dy3+ phosphors exhibit the characteristic 4F9/2-6H13/2-15/2 emission lines of Dy3+. These phosphors exhibit potential applications in the fields of fluorescent lamps and light emitting diodes (LEDs).
引文
[1]孙家跃,杜海燕,胡文祥.固体发光材料[M].北京:化学工业出版社,2003,7
    [2]徐叙瑢,苏勉曾.发光学与发光材料[M].北京:化学工业出版社,2004,4
    [3]Abrams BL, Holloway PH. Role of The Surface in Luminescent Processes [J]. Chemical Reviews,2004,104:5783-5801P
    [4]Blasse G, Grabmaier BC. Luminescent Materials[M]. New York: Springer-Verlag, BeilinHeidelberg,1994
    [5]李建宇.稀土发光材料及其应用[M].北京:化学工业出版社,2003,9
    [6]倪嘉缵,洪广言.稀土新材料及新流程进展[M].北京:科学出版社,1998:103-132页
    [7]张思远,毕宪章.稀土光谱理论[M].吉林:科学技术出版社,1991
    [8]Blasse G. The Influence of Charge-Transfer and Rydberg States on The Luminescence Properties[M]. New York:Structure and bonding 13, Spring-Verlag Berlin Heidelberg,1975.
    [9]Judd BR, Jorgensen CK. Hypersensitive Pseudoquadrupole Transitions in Lanthanides[J]. Molecular Physics,1964,8:281-290P
    [10]Henrie DL, Fellows RL, Choppin GR. Hypersensitivity in The Electronic Transitions of Lanthanide and Actinide Complexes [J]. Coordination Chemistry Reviews,1976,18:199-224P
    [11]Deng YH, Wang CC, Fu SK. Investigation of Formation of Silica-Coated Magnetite Nanoparticles via Sol-Gel Approach[J]. Colloids and Surfaces A: Physico-chem Eng Aspects,2005,262:87-93P
    [12]Im SH, Herricks T, Xia Y. Synthesis and Characterization of Monodisperse Silica Colloids Loaded with Superparamagnetic Iron Oxide Nanoparticles[J]. Chemical Physics Letters,2005,401:19-23P
    [13]Liu Q, Xu Z, Finch JA. A Novel Two-Step Silica-Coating Process for Engineering Magnetic Nanocomposites[J]. Chemistry of Materials,1998, 10:3936-3940P
    [14]Lu Y, Yin Y, Xia Y. Modifying the Surface Properties of Superparamagnetic Iron Oxide Nanoparticles through A Sol-Gel Approach[J]. Nano Letters, 2002,2(3):183-186P
    [15]Stober W, Fink A. Controlled Growth of Monodisperse Silica Spheres in the Micron Size Range[J]. Colloid and Intersurface Science,1968,26:62-69P
    [16]Caruso F, Caruso RA, Mohwald H. Nanoengineering of Inorganic and Hybrid Hollow Spheres by Colloidal Templating[J]. Science,1998,288:1111-1114P
    [17]Zhong ZY, Yin YD, Gates B. Preparation of Mesoscale Hollow Spheres of TiO2 and SnO2 by Templating Against Crystalline Arrays of Polystyrene Beads[J]. Advanced Materials,2000,12:206-209P
    [18]Mornet S, Elissalde C, hornebecq V. Controlled Growth of Silica Shell on Bao.6Sro.4TiO3 Nanoparticles Used as Precursors of Ferroelectric Composites[J]. Chemistry of Materials,2005,17:4530-4536P
    [19]Deng Y, Qi D, Zhao D. Superparamagnetic High-Magnetization Microspheres with an Fe3O4@SiO2 Core and Perpendicularly Aligned Mesoporous SiO2 Shell for Removal of Microcystins[J]. Journal of American Chemical Society,2008,130:28-29P
    [20]Shan W, Yu T, Tang Y. Magnetically Separable Nanozeolites:Promising Candidates for Bio-App lications[J]. Chemistry of Materials,2006, 18(14):3169-3172P
    [21]Aliev FG, Correa MA. Layer-by-Layer Assembly of Core-Shell Magnetite Nanoparticles:Effect of Silica Coating on Interparticle Interaction and Magnetic Properties [J]. Advanced Materials,1999,11:1006-1010P
    [22]Caruso F, Lichtenfeld H, Donath E. Investigation of Electrostatic Interactions in Polyelectrolyte Multilayer Films:Binding of Anionic Fluorescent Probes to Layers Assembled onto Colloids[J]. Macromolecules,1999, 32:2317-2322P
    [23]张希艳,卢利平等.稀土发光材料[M].北京:国防工业出版社,2005
    [24]Xie MY, Peng XN, Fu XF, et al. Synthesis of Yb3+/Er3+ Co-Doped MnF2 Nanocrystals with Bright Red up-Converted Fluorescence[J]. Scripta Materialia,2009,60:190-193P
    [25]Yi GS, Lu HC, Zhao SY, et al. Synthesis, Characterization, and Biological Application of Size-Controlled Nanocrystalline NaYF4:Yb,Er Infrared-to-Visible Up-Conversion Phosphors[J]. Nano Letters,2004, 4(11):2191-2196P
    [26]Chen Z, Chen H, Hu H, et al. Versatile Synthesis Strategy for Carboxylic Acid-functionalized Upconverting Nanophosphors as Biological Labels[J]. Journal of the American Chemical Society,2008,130(10):3023-3029P
    [27]Kong DY, Quan ZW, Yang PP, et al. Avidin Conjugation to Up-Conversion Phosphor NaYF4:Yb3+, Er3+ by the Oxidation of the Oligosaccharide Chains [J]. Journal of Nanoparticle Research,2009,11(4):821-829P
    [28]Li CX, Quan ZW, Yang PP, et al. Highly Uniform and Monodisperse Beta-NaYF4:Ln3+(Ln=Eu, Tb, Yb/Er, and Yb/Tm) Hexagonal Microprism Crystals:Hydrothermal Synthesis and Luminescent Properties [J]. Inorganic Chemistry,2007,46(16):6329-6337P
    [29]Li CX, Quan ZW, Yang PP, et al. Shape Controllable Synthesis and Upconversion Properties of NaYbF4/NaYbF4:Er3+ and YbF3/YbF3:Er3+ Microstructures[J]. Journal of Materials Chemistry,2008, 18(12):1353-1361P
    [30]Li CX, Quan ZW, Yang PP, et al. Shape-Controllable Synthesis and Upconversion Properties of Lutetium Fuoride (Doped with Yb3+/Er3+) Microcrystals by Hydrothermal Process[J]. Journal of Physical Chemistry C, 2008,112(35):13395-13404P
    [31]Li CX, Yang J, Quan ZW, et al. Different Microstructures of ss-NaYF4 Fabricated by Hydrothermal Process:Effects of pH Values and Fluoride Sources[J].] Chemistry of Materials,2007,19(20):4933-4942P
    [32]Li CX, Zhang CM, Hou ZY, et al. Beta-NaYF4 and Geta-NaYF4:Eu3+ Microstructures:Morphology Control and Tunable Luminescence Properties[J]. Journal of Physical Chemistry C,2009,113(6):2332-2339P
    [33]陈宝玖,王海宁,秦伟平.Yb3+和Er3+共掺杂氟硼酸盐玻璃材料光学跃迁及红外到可见上转换[J].发光学报,2000,21(1):38-42页
    [34]张中太,张俊英.无机光致发光材料及应用[M].北京:化学工业出版社,2005:266-279页
    [35]王中林等.纳米材料表征[M].北京:化学工业出版社,2005
    [36]Huang JX, Fan R, Connor S, Yang PD. One-Step Patterning of Aligned Nanowire Arrays by Programmed Dip Coating [J]. Angewandte Chemie International Edition,2007,46:2414-2417P
    [37]Pan ZX, Alem N, Sun T, Dravid VP. Site-Specific Fabrication and Epitaxial Conversion of Functional Oxide Nanodisk Arrays[J]. Nano Letters,2006, 6:2344-2348P
    [38]Zhou GT, Wang XC, Yu JC. A Low-Temperature and Mild Solvothermal Route to The Synthesis of Wurtzite-Type ZnS with Single-Crystalline Nanoplate-like Morphology [J]. Crystal Growth & Design,2005, 5:1761-1765P
    [39]Hu JQ, Lu QY, Tang KB, et al. Low Temperature Synthesis of Nanocrystalline Titanium Nitride via a Benzene-Thermal Route[J]. Journal of the American Ceramic Society,2000,83:430-432P
    [40]Klinger N, Strauss EL, Komarek KL. Reactions between Silica and Graphite[J]. The American Ceramic Society,1966,49:369-375P
    [41]Tanjew N, Markus H. Wet-Chemical Synthesis of Doped Nanoparticles: Optical Properties of Oxygen-Deficient and Antimony-Doped Colloidal SnO2[J]. Physical Chemistry,2000,104:8430-8437P
    [42]张立德等.纳米材料和纳米结构[M].北京:科学出版社,2001
    [43]Frank SN, Bard AJ. Heterogeneous Photocatalytic Oxidation of Cyanide and Sulfite in Aqueous Solutions at Semiconductor Powders[J]. Physical Chemistry,1977,81:1484-1488P
    [44]杨文胜,高明远,白玉白.纳米材料与生物技术[M].北京:化学工业出版社,2005:154-166页
    [45]张立德.纳米材料研究及其发展趋势和展望[J].高科技与产业化,1994,5(4):17-20页
    [46]喻发全.核-壳型复合结构纳米粒子研究进展[J].现代化工,24(2):12-15页
    [47]Yi G, Lu H, Zhao S, et al. Synthesis, Characterization, and Biological Application of Size-Controlled Nanocrystalline NaYF4:Yb,Er Infrared-to-Visible Up-Conversion Phosphors[J]. Nano Letters,2004, 48(4):2191-2196P
    [48]Schneider J. Magnetic Core/Shell and Quantum-Confined Semiconductor Nanoparticles via Chimie Douce Organometallic Synthesis [J]. Advanced Materials,2001,76(13):529-533P
    [49]Philipse AP, B MP, Bruggen V, et al. Magnetic Silca Dispersions:Preparation and Stability of Surface-Modified Silica Particles with a Magnetic Core[J]. Langmuir,1994,10:92-99P
    [50]Santra W, Tapec R, Theodoropoulou N. Synthesis and Characterization of Silica-Coated Iron Oxide Nanoparticles in Microemulsion:The Effect of Nonionic Surfactants [J]. Langmuir,2001,17:2900-2906P
    [51]Yang Y, Li HQ, Ruckenstein E. Hydrophbic Core/Hydrophilic Shell Amphilic Particles[J]. Journal of Colloid and Interface Science,2001,238:414-419P
    [52]Spahnel L, Haase M, Weller H. Photochemistry of Colloidal Semiconductions.20:Surface Modification and Stability of Strong Luminescing CdS Particles[J]. Journal of American Chemical Society,1987, 109:5649-5655P
    [53]Brus L. Electron-Electron and Electron-Hole Interactions in Small Semiconductor Crystallites:The Size Dependence of Lowest Excited Electronic Satate[J]. The Journal of Physical Chemistry,1984, 163(112):4403-4409P
    [54]Wei CY, Uri B. Growth and Properties of Semiconductor Core/Shell Nanocrystals with In As Cores[J]. Journal of American Chemical Society, 2000,122:9692-9702P
    [55]Caruso F, Lichtenfeld H, Mohwald H. Electrostatic Self-Assembly of Silica Nanoparticle-Polyelectrolyte Multilayers on Polystyrene Latex Particles[J]. Journal of the American Chemical Society,1998,120:8523-8524P
    [56]Caruso F, Spasova M, Salgueirno-Maceria V. Multilayer assemblies of silica-encapsulated gold nanoparticles on decomposable colloid templates[J]. Advanced Materials,2001,13:1090-1094P
    [57]Caruso RA, Antonietti M. Sol-Gel Nanocoating:An Approach to the Preparation of Structured Materials[J]. Chemistry of Materials,2001, 13:3272-3176P
    [58]Giersig M, Ung T, Liz-Marzan LM, Mulvaney P. Direct observation of chemical reactions in silica-coated gold and silver nanoparticles[J]. Advanced Materials,1997,9:570-575P
    [59]Jiang ZH, Liu CY. Seed-Mediated Growth Technique for the Preparation of a Silver Nanoshell on a Silica Sphere [J]. Journal of Physical Chemistry B, 2003,107:12411-12415P
    [60]Sertchook H, Avnir D. Submicron Silica/Polystyrene Composite Particles Prepared by a One-Step Sol-Gel Process[J]. Chemistry of Materials,2003, 15:1690-1694P
    [61]Fleming MS, Mandal TK, Walt DR. Nanosphere-Microsphere Assembly:Methods for Core-Shell Materials Preparation[J]. Chemistry of Materials,2001,13:2210-2216P
    [62]Oldenburg SJ, R.D.Averitt, Westcott SL, Halas NJ. Nanoengineering of optical resonances[J]. Chemical Physics Letters,1998,288:243-247P
    [63]Ung T, L.MLiz-Marzan, P. Mulvaney. Controlled Method for Silica Coating of Silver Colloids. Influence of Coating on the Rate of Chemical Reactions[J]. Langmuir,1998,14:3740-3748P
    [64]Zhang Y, Lu MH. Labelling of silica microspheres with fluorescent lanthanide-doped LaF3 nanocrystals[J]. Nanotechnology,2007,18:275603 (275610ppm).
    [65]Sondi I, Fedynyshyn TH, Sinta R, Matijevic E. Encapsulation of Nanosized Silica by in Situ Polymerization of tert-Butyl Acrylate Monomer[J]. Langmuir,2000,16:9031-9034P
    [66]Schuetzand P, Caruso F. Electrostatically Assembled Fluorescent Thin Films of Rare-Earth-Doped Lanthanum Phosphate Nanoparticles[J]. Chemistry of Materials,2002,14:4509-4516P
    [67]Hall SR, Davis SA, S. Mann. Cocondensation of Organosilica Hybrid Shells on Nanoparticle Templates:A Direct Synthetic Route to Functionalized Core-Shell Colloids[J]. Langmuir,2000,16:1454-1456P
    [68]Jiang YD, Wang ZL, Zhang F, Paris HQ Summers CJ. Synthesis and characterization of Y2O3:Eu3+ powder phosphor by a hydrolysis technique[J]. Journal of Materials Research,1998,13:2950-2955P
    [69]Jing X, Ireland TG, Gibbons C, et al. Control of Y2O3:Eu spherical particle phosphor size, assembly properties, and performance for FED and HDTV[J]. Journal of the Electrochemical Society,1999,146:4546-4658P
    [70]Vecht A, Gibbons C, Davies D, et al. Engineering phosphors for field emission displays[J]. Journal of Vacuum Science and Technology B,1999, 17:750-757P
    [71]Celikkaya A, Akinc M. Preparation and mechanism of formation of spherical submicrometer zinc-sulfide powders[J]. Journal of the American Ceramic Society,1990,73:2360-2365P
    [72]Cho SH, Yoo JS, Lee JD. A new synthetic method to prepare spherical phosphors for emissive screen applications[J]. Journal of the Electrochemical Society,1998,145:1017-1019P
    [73]Jung KY, Lee DY, Kang YC, Park HD. Improved photoluminescence of BaMgAl10O17 blue phosphor prepared by spray pyrolysis[J]. Journal of Luminescence,2003,105:127-133P
    [74]Xu C, Watkins BA, Sievers RE, et al. Submicron-sited spherical yttrium oxide based phosphors prepared by supercritical CO2-assisted aerosolization and pyrolysis[J]. Applied Physics Letters,1997,71:1643-1645P
    [75]Zhou YH, Lin J, Han XM, Wang SB, Zhang HJ. Morphology control and luminescence properties of YAG:Eu phosphors prepared by spray pyrolysis[J]. Materials Research Bulletin,2003,38:1289-1299P
    [76]Jia PY, Liu XM, Li GZ, Yu M, Fang F, Lin J. Sol-gel synthesis and characterization of SiO2@CaWO4, SiO2@CaWO4:Eu3+/Tb3+ core-shell structured spherical particles[J]. Nanotechnology,2006,27:734-742P
    [77]Li GZ, Wang ZL, Quan ZW, Li CX, Lin J. Growth of Highly Crystalline CaMoO4:Tb3+ Phosphor Layers on Spherical SiO2 Particles via Sol-Gel Process:Structural Characterization and Luminescent Properties[J]. Crystal Growth & Design,2007,7:1797-1802P
    [78]Lin CK, Kong DY, Liu XM, Wang H, Yu M, Lin J. Monodisperse and Core-Shell-Structured SiO2@YBO3:Eu3+ Spherical Particles:Synthesis and Characterization[J]. Inorganic Chemistry,2007,46:2674-2681P
    [79]Pang ML, Lin J, Yu M, Wang SB. Fabrication and luminescent properties of rare earths-doped Gd-2(WO4)(3) thin film phosphors by Pechini sol-gel process[J]. Journal of Solid State Chemistry,2004,177:2237-2241P
    [80]Wang H, Yu M, Lin CK, Liu XM, Lin J. Synthesis and Luminescence Properties of Monodisperse Spherical Y2O3:Eu3+@SiO2 Particles with Core-shell Structure[J]. Journal of Physical Chemistry C,2007, 111:11223-11230P
    [81]Yu M, Lin J, J. Fang. Silica Spheres Coated with YVO4:Eu3+ Layers via Sol-Gel Process:A Simple Method To Obtain Spherical Core-Shell Phosphors[J]. Chemistry of Materials,2005,17:1783-1791P
    [82]Yu M, Wang H, Lin CK, Li GZ, Lin J. Sol-gel synthesis and photoluminescence properties of spherical SiO2@LaPO4:Ce3+/Tb3+ particles with a core-shell structure[J]. Nanotechnology,2006,17:3245-3252P
    [83]Feng L, Tang Q, Liang L, Wang J, Liang H, Sua Q. Optical transitions and up-conversion emission of Tm3+-singly doped and Tm3+/Yb3+-codoped oxyfluoride glasses[J]. Journal of Alloys and Compounds,2007, 436:272-277P
    [84]Hu H, Yu MX, Li FY, et al. Facile Epoxidation Strategy for Producing Amphiphilic Up-Converting Rare-Earth Nanophosphors as Biological Labels[J]. Chemistry of Materials,2008,20:7003-7009P
    [85]Liang LF, Wu H, H.L.Hu, Wu MM, Su Q. Enhanced blue and green upconversion in hydrothermally synthesized hexagonal NaY1-xYbxF4:Ln(3+) (Ln(3+)=Er3+ or Tm3+)[J]. Journal of Alloys and Compounds,2004, 368:94-100P
    [86]Liu F, Ma E, Chen DQ, Wang YS, Yu YL, Huang P. Infrared luminescence of transparent glass ceramic containing Er3+:NaYF4 nanocrystals[J]. Journal of Alloys and Compounds,2009,467:317-321P
    [87]Naccache R, Vetrone F, Mahalingam V, Cuccia LA, Capobianco JA. Controlled Synthesis and Water Dispersibility of Hexagonal Phase NaGdF4:Ho3+/Yb3+ Nanoparticles[J]. Chemistry of Materials,2009, 21:717-723P
    [88]Tropper AC, Carter JN, Lauder RDT, Hanna DC, Davey ST, Szebesta DJ. Analysis of blue and red laser performance of the infrared-pumped praseodymium-doped fluoride fiber laser[J]. Opt Soc Am,1994,11:886-893P
    [89]Wang M, Mi CC, Liu JL, et al. One-step synthesis and characterization of water-soluble NaYF4:Yb,Er/Polymer nanoparticles with efficient up-conversion fluorescence[J]. Journal of Alloys and Compounds,2009,485: L24-L27P
    [90]Wei Y, Lu FQ, Zhang XR, Chen DP. Polyol-mediated synthesis and luminescence of lanthanide-doped NaYF4 nanocrystal upconversion phosphors[J]. Journal of Alloys and Compounds,2008,455:376-384P
    [91]Xu CT, Svensson N, Axelsson J, et al. Autofluorescence insensitive imaging using upconverting nanocrystals in scattering media[J]. Applied Physics Letters,2008,93:171103P
    [92]Yanes AC, Santana-Alonso A, Mendez-Ramos J, del-Castillo J, Rodriguez VD. Yb3+-Er3+ co-doped sol-gel transparent nano-glass-ceramics containing NaYF4 nanocrystals for tuneable up-conversion phosphors[J]. Journal of Alloys and Compounds,2009,480:706-710P
    [93]Yu MX, Li FY, Chen ZG, et al. Laser Scanning Up-Conversion Luminescence Microscopy for Imaging Cells Labeled with Rare-Earth Nanophosphors[J]. Analytical Chemistry,2009,81:930-935P
    [94]Heer S, Kompe K, GMdel HU, Haase M. Highly efficient multicolour upconversion emission in transparent colloids of lanthanide-doped NaYF4 nanocrystals[J]. Advanced Materials,2004,16:2102-2105P
    [95]Roberts JE. Lanthanum and Neodymium Salts of Trifluoroacetic Acid[J]. Journal of the American Chemical Society,1961,83:1087-1088P
    [96]Mai HX, Zhang YW, Si R, et al. High-Quality Sodium Rare-Earth Fluoride Nanocrystals:Controlled Synthesis and Optical Properties[J]. Journal of the American Chemical Society,2006,128:6426-6436P
    [97]Menezes LD, DeAraujo CB, Maciel GS, et al. A Continuous Wave Ultraviolet Frequency Upconversion due to Triads of Nd3+ Ions in Fluoroindate Glass[J]. Applied Physics Letters,1997,70(5):683-685P
    [98]曹亮军.上转换氟化物纳米材料的制备与表征[D].长春:长春理工大学,2008
    [99]陈晓波,宋增福.Tm(o.i)Yb(io.9)氟氧化物玻璃的直接上转换敏化发光[J].光谱学与光谱分析,2001,21(26):752-754页
    [100]郭海.稀土离子掺杂的纳米氧化物上转换发光与稀土氧化物功能薄膜研究[D].合肥:中国科学技术大学,2005
    [101]徐东勇,臧竞存.上转换激光和上转换发光材料的研究进展[J].人工晶体学报,2001,30(32):203-210页
    [102]杨建虎,戴世勋,蒋中宏.稀土离子的上转换发光及研究进展[J].物理学进展,2003,23(23):284-298页
    [103]Justel T, Nikol H, Ronda C. New developments in the field of luminescent materials for lighting and displays[J]. Angewandte Chemie International Edition,1998,37:3084-3103P
    [104]Jing YD, Zhang F, Summers CJ, Wang ZL. Synthesis and properties of Sr2CeO4 blue emission powder phosphor for field emission displays[J]. Applied Physics Letters,1999,74:1677-1679P
    [105]Cho SH, Kwon SH, Yoo JS, et al. Cathodoluminescent characteristics of a spherical Y2O3:Eu phosphor screen for field emission display application[J]. Journal of the Electrochemical Society,2000, 147:3143-3147P
    [106]Martinez-Rubio MI, Ireland TG, Fern GR, Silver J, Snowden MJ. A New Application for Microgels:Novel Method for the Synthesis of Spherical Particles of the Y2O3:Eu Phosphor Using a Copolymer Microgel of NIP AM and Acrylic Acid[J]. Langmuir,2001,17:7145-7149P
    [107]Banerjee S, Kim DI, Robinson RD, Herman IP, Mao YB, Wong SS. Observation of Fano asymmetry in Raman spectra of SrTiO3 and CaxSrl-xTiO3 perovskite nanocubes[J]. Applied Physics Letters,2006, 89:223130P
    [108]de Lazaro S, Milanez J, Figueiredo AT, et al. Relation between photoluminescence emission and local order-disorder in the CaTiO3 lattice modifier[J]. Applied Physics Letters,2007,90:111904P
    [109]Longo VM, Cavalcante LS, Figueiredo ATd, et al. Highly intense violet-blue light emission at room temperature in structurally disordered SrZrO3 powders[J]. Applied Physics Letters,2007,90:091906P
    [110]Mather GC, Islam MS, Figueiredo FM. Atomistic study of a CaTiO3-based mixed conductor:Defects, nanoscale clusters, and oxide-ion migration[J]. Adv Funct Mater,2007,17:905-912P
    [111]Wang XS, Xu CN, Yamada H, Nishikubo K, Zheng XG. Electro-mechano-optical conversions in Pr3+-doped BaTiP3-CaTiO3 ceramics[J]. Advanced Materials,2005,17:1254-1258P
    [112]Diallo PT, Jeanlouis K, Boutinaud P, Mahiou R, Cousseins JC. Improvement of the optical performances of Pr3+ in CaTiO3[J]. Journal of Alloys and Compounds,2001,323:218-222P
    [113]Cho SH, Yoo JS, Lee JD. Synthesis and low-voltage characteristics of CaTiO3:Pr luminescent powders[J]. Journal of the Electrochemical Society, 1996,143:L231-L234P
    [114]Diallo PT, Boutinaud P, Mahiou R, Caperaa J, Cousseins JC. Red luminescence in Pr3+-doped calcium titanates[J]. Physical Status Solidi A, 1997,160:255-263P
    [115]Kang YC, Seo DJ, Park SB, Park HD. Direct synthesis of strontium titanate phosphor particles with high luminescence by flame spray pyrolysis[J]. Materials Research Bulletin,2002,37:263-269P
    [116]Okamoto S, Kobayashi H. Enhancement of characteristic red emission from SrTiO3:Pr3+ by Al addition[J]. Journal of Applied Physics,1999, 86:5594-5597P
    [117]Park JK, Ryu H, Park HD, Choi SY. Synthesis of SrTiO3:Al, Pr phosphors from a complex precursor polymer and their luminescent properties [J]. Journal of the European Ceramic Society,2001,21:535-543P
    [118]Yamamoto H, Okamoto S. Efficiency enhancement by aluminum addition to some oxide phosphors for field emission displays [J]. Displays,2000, 21:93-98P
    [119]Kang YC, Kim EJ, Lee DY, Park HD. High brightness LaPO4:Ce,Tb phosphor particles with spherical shape[J]. Journal of Alloys and Compounds,2002,347:266-270P
    [120]Liu XM, Luo Y, Lin J. Synthesis and characterization of spherical Sr2Ce04 phosphors by spray pyrolysis for field emission displays[J]. Journal of Crystal Growth,2006,290:266-271P
    [121]Zhou YH, Lin J. Morphology control and luminescence properties of BaMgAl10O17:Eu2+ phosphors prepared by spray pyrolysis[J]. Journal of Solid State Chemistry,2005,178:441-447P
    [122]Grossin D, Noudem JG. Synthesis of fine La0.8Sro.2Mn03 powder by different ways[J]. Solid State Sciences,2004,6:939-944P
    [123]Iskandar F, Mikrajuddin, Okuyama K. In Situ Production of Spherical Silica Particles Containing Self-Organized Mesopores[J]. Nano Letters,2001, 1:231-234P
    [124]Laine RM, Marchal J, Sun HP, Pan XQ. A new Y3Al5O12 phase produced by liquid-feed flame spray pyrolysis (LF-FSP)[J]. Advanced Materials,2005, 17:830-833P
    [125]Nimmo W, Ali NJ, Brydson R, Calvert C, Milne SJ. Particle formation during spray pyrolysis of lead zirconate titanate[J]. Journal of the American Ceramic Society,2005,88:839-844P
    [126]Xue XZ, Lu TH, Liu XP, Xing W. Simple and controllable synthesis of highly dispersed Pt-Ru/C catalysts by a two-step spray pyrolysis process[J]. Chemical Communications,2005,12:1601-1603P
    [127]Liu XM, Jia PY, Lin J. Monodisperse spherical core-shell structured SiO2-CaTiO3:Pr3+ phosphors for field emission displays[J]. Journal of Applied Physics,2006,99:124902P
    [128]Boutinaud P, Pinel E, Dubois M, Vink AP, Mahiou R. UV-to-red relaxation pathways in CaTiO3:Pr3+[J]. Journal of Luminescence,2005,111:69-80P
    [129]Swiatek K, Godlewski M, Hommel D. Deep europium-bound exciton in a zns lattice[J]. Physical Review B,1990,42:3628-3633P
    [130]Mukarami S, Markus H, Doris R, Makato M. Photoluminescence and decay profiles of undoped and Fe3+, Eu3+-doped PLZT ceramics at low temperatures down to 10 K[J]. Inorganica Chimica Acta,2000, 300:1014-1021P
    [131]Yi GR, Moon JH, Manoharan VN, Pine DJ, Yang SM. Packings of Uniform Microspheres with Ordered Macropores Fabricated by Double Templating[J]. Journal of the American Chemical Society,2002, 124(45):13354-13355P
    [132]Treadaway MJ, Powell RC. Energy-Transfer in Samarium-Doped Calcium Tungstate Crystals[J]. Physical Review B,1975,11(2):862-874P
    [133]Nagirnyi V, Feldbach E, Jonsson L, et al. Excitonic and recombination processes on CaWO4 and CdWO4 scintillators under synchrotron irradiation[J]. Radiation Measurements,1998,29:247-250P
    [134]Petricca F, Angloher G, Cozzini C, et al. Light detector development for CRESST II[J]. Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment,2004,520:193-196P
    [135]Nazarov MV, Jeon DY, Kang JH, et al. Luminescence properties of europium-terbium double activated calcium tungstate phosphor[J]. Solid State Communications,2004,131:307-311P
    [136]Mao Y, Huang JY, Ostroumov R, Wang KL, Chang JP. Synthesis and Luminescence Properties of Erbium-Doped Y2O3 Nanotubes[J]. The Journal of Physical Chemistry C,2008,112(7):2278-2285P
    [137]Jun Y-W, Jung Y-Y, Cheon J. Architectural Control of Magnetic Semiconductor Nanocrystals[J]. Journal of the American Chemical Society, 2002,124(4):615-619P
    [138]Lifshitz E, Bashouti M, Kloper V, Kigel A, Eisen MS, S. Berger. Synthesis and Characterization of PbSe Quantum Wires, Multipods, Quantum Rods, and Cubes[J]. Nano Letters,2003,3(6):857-862P
    [139]Su Y, Li G, Xue Y, Li L. Tunable Physical Properties of CaWO4 Nanocrystals via Particle Size Control[J]. The Journal of Physical Chemistry C 2007,111(18):6684-6689P
    [140]Talapin DV, Haubold S, Rogach AL, Kornowski A, Haase M, Weller H. A Novel Organometallic Synthesis of Highly Luminescent CdTe Nanocrystals[J]. The Journal of Physical Chemistry B,2001, 105(12):2260-2263P
    [141]Wuister SF, Swart I, Driel Fv, Hickey SG, Donega CdM. Highly Luminescent Water-Soluble CdTe Quantum Dots[J]. Nano Letters,2003, 3(4):503-507P
    [142]Wuister SF, Donega CdM. Luminescence Temperature Antiquenching of Water-Soluble CdTe Quantum Dots:  Role of the Solvent[J]. Journal of the American Chemical Society,2004,126(33):10397-10402P
    [143]Li G, Boerio-Goates J, Woodfield BF, Li L. Evidence of Linear Lattice Expansion and Covalency Enhancement in Rutile TiO2 Nanocrystals[J]. Applied Physics Letters,2004,85(11):2059-2061P
    [144]Chen D, Shen GZ, Tang KB, Zheng HG, Qian YT. Low-Temperature Synthesis of Metal Tungstates Nanocrystallites in Ethylene Glycol[J]. Materials Research Bulletin,2003,38(14):1783-1789P
    [145]Kay MI, Frazer BC. Neutron Diffraction Refinement Of CaWO4[J]. Journal of Chemical Physics,1964,40:504-506P
    [146]Senyshyn A, Kraus H, Mikhailik VB, Yakovyna V. Lattice Dynamics and Thermal Properties of CaWO4[J]. Physical Review B,2004,70(21): 214306P
    [147]Yu M, Lin J, Wang Z, et al. Fabrication, Patterning, and Optical Properties of Nanocrystalline YVO4:A (A=Eu3+, Dy3+, Sm3+, Er3+) Phosphor Films via Sol-Gel Soft Lithography [J]. Chemistry of Materials,2002,14(5): 2224-2231P
    [148]Zhang Q, Yao WT, Chen X, Yu SH. Nearly Monodisperse Tungstate MW04 Microspheres (M= Pb,Ca):Surfactant-Assisted Solution Synthesis and Optical Properties[J]. Crystal Growth & Design,2007,7(8):1423-1431P
    [149]Jia G, Song Y, Yang M, Huang Y, Zhang L, You H. Uniform YVO4:Ln3+(Ln =Eu, Dy, and Sm) nanocrystals:Solvothermal synthesis and luminescence properties[J]. Optical Materials,2009,331(6):1032-1037P
    [150]Si S, Li C, Wang X, Yu D, Peng Q, Li Y. Magnetic Monodisperse Fe3O4 Nanoparticles[J]. Crystal Growth & Design,2005,5(2):391-393P
    [151]Xu J, Ge J-P, Li Y-D. Solvothermal Synthesis of Monodisperse PbSe Nanocrystals[J]. The Journal of Physical Chemistry B,2006, 110(6):2497-2501P
    [152]Zhang Y, Li Y. Synthesis and Characterization of Monodisperse Doped ZnS Nanospheres with Enhanced Thermal Stability [J]. The Journal of Physical Chemistry B,2004,108(46):17805-17811P
    [153]Zhang Y, Peng Q, Wang X, Li Y. Synthesis and Characterization of Monodisperse ZnS Nanospheres[J]. Chemistry Letters,2004, 33(10):1320-1321P
    [154]Burcham LJ, Wachs IE. Vibrational Analysis of The Two Non-Equivalent, Tetrahedral Tungstate (WO4) units in Ce2(WO4)3 and La2(WO4)3[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 1998,54(10):1355-1368P
    [155]Shi DL, Lian J, Wang W, et al. Luminescent carbon nanotubes by surface functionalization[J]. Advanced Materials,2006,18:189-193P
    [156]Yang P, Quan Z, Li C, Lian H, Huang S, Lin J. Fabrication, Characterization of Spherical CaWO4:Ln@MCM-41(Ln=Eu3+, Dy3+, Sm3+, Er3+) Composites and Their Applications as Drug Release Systems[J]. Microporous and Mesoporous Materials,2008,116(1-3):524-531P
    [157]Yang P, Quan Z, Lu L, Huang S, Lin J. Luminescence Functionalization of Mesoporous Silica with Different Morphologies and Applications as Drug Delivery Systems[J]. Biomaterials,2008,29(6):692-702P
    [158]Su Y, Li L, Li G. Synthesis and Optimum Luminescence of CaWO4-Based Red Phosphors with Codoping of Eu3+ and Na+[J]. Chemistry of Materials, 2008,20(19):6060-6067P
    [159]Mikhailik VB, Bailiff IK, Kraus H, Rodnyi PA, Ninkovic J. Two-Photon Excitation and Luminescence of A CaWO4 Scintillator[J]. Radiat Meas/5th European Conference on Luminescent Detectors and Transformers of Ionising Radiation (LUMDETR 2003)2003 Sep.01-05; Prague, CZECH REPUBLIC,2003,38:585-588P
    [160]Wang ZL, Quan ZW, Lin J, Fang JY. Polyol-mediated synthesis and photoluminescent properties of Ce3+ and/or Tb3+-doped LaPO4 nanoparticles[J]. J Nanosci Nanotech,2005,5:1532-1536P
    [161]Hsu C, Poweh RC. Energy transfer in europium doped yttrium vanadate crystals[J]. Journal of Luminescence,1975,10:273-293P
    [162]Barbosa LB, Ardila DR, Cusatis C, et al. Growth and Aracterization of Crack-Free Scheelite Calcium Molybdate Single Crystal Fiber[J]. Journal of Crystal Growth,2002,235:327-332P
    [163]Graser R, Pitt E, Scharmann A, et al. Optical properties of CaWO4 and CaMoO4 crystals in the 4 to 25 eV region[J]. Physical Status Solidi B,1975, 69:359-368P
    [164]Hu Y, Zhuang W, Yei H, et al. A Novel Red Phosphor for White Light Emitting Diodes[J]. Journal of Alloys and Compounds,2005,390:226-229P
    [165]Johnson LF, Boyd GD, Nassau K, et al. Continuous Operation of a Solid-State Optical Maser [J]. Physical Review,1962,126(4):1406-1409P
    [166]Chang IC, Katzka P, Jacob J, Estrin S. Tunable acoustooptic filter at 10.6-mu[J]. IEEE Ultrason Symp,1979,26:172-172P
    [167]Streifer W, Saltz P. Transient analysis of an electronically tunable dye laser.2. analytic study[J]. IEEE J Quant Elect QE,1973,9:563-569P
    [168]Grasser R, Scharmann A. Luminescence Sites in CaWO4 and CaWO4:Pb Crystals[J]. Journal of Luminescence,1976,12/13:473-478P
    [169]Lou ZD, Cocivera M. Cathodo Luminescence of CaWO4 and SrWO4 Thin Films Prepared by Spray Pyrolysis[J]. Materials Research Bulletin,2002, 37:1573-1582P
    [170]Min KW, Mho SI, Yeo IH. Electro Chemical Fabrication of Luminescent CaWO4 and CaWO4:Pb Films on W Substrates with Anodic Potential Pulses[J]. Journal of the Electrochemical Society,1999,8:3128-3133P
    [171]Barnes MD, Mehta A, Thundat T, Bhargava RN, Chabra V, Kulkarni B. On-off blinking and multiple bright states of single europium ions in Eu3+: Y2O3 nanocrystals[J]. Journal of Physical Chemistry B,2000, 104:6099-6102P
    [172]Groenink JA, Hakfoort C, Blasse G. The Luminescence of Calcium Molybdate[J]. PhysStatus Solidi A,1979,54:329-369P

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700