我国苹果主产区潜隐性病毒侵染特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
苹果病毒病是对果树危害最大、影响最广的一种世界性病害。果树感染病毒后,一般树体生长量减少,产量降低,果实品质下降,不耐贮藏,严重时树体生长急剧衰退至枯死。在尚无有效的药剂防治和治疗措施情况下,繁殖无病毒苗木、实施果园无毒化栽培是防治苹果病毒病的最有效措施。国外诸多发达国家早在20世纪60年代已经开始发展无病毒化栽培,目前已基本普及。而我国对苹果病毒病研究起步较晚,无毒化栽培推广缓慢。正确认识病毒病的危害,准确掌握目前苹果病毒病的发生情况是制定和推广无毒化栽培政策的基础。近年来我国苹果病毒病的调查鉴定和研究工作相对薄弱,一些参考数据相对较老或者不全,因此对全国进行病毒危害现状调查对推进我国无毒化栽培有重要意义。本研究以建立高效、简化、准确率高、适合大规模样品的检测为目标对苹果病毒的RT-PCR反应体系进行优化,并通过对病毒时空分布规律的研究筛选最佳检测部位和取样时间,在此基础上对我国三个苹果主产区的病毒侵染状况做全面调查。主要结果如下:
     1.苹果潜隐性病毒检测体系的优化在三种潜隐性病毒的常规两步单重RT-PCR检测体系基础上,对检测效率更高的多重RT-PCR检测体系进行了优化。
     (1)对ASPV的引物进行了重新设计,筛选出了最佳的引物对组合。
     (2)对两步多重RT-PCR检测体系进行了优化。优化后的RT体系中的ES Reaction Mix和EasyScript RT/RI Enzyme Mix包含了反应所需的主要试剂,只需加入适量总RNA即可。使操作步骤简化,工作效率提高,而且减少了人为出错和污染的几率,更加减少了误差。再者,PCR扩增过程使用含Taq酶的ES MIX,不仅包括了扩增过程所需要的除引物和反转录产物外的所有试剂,而且含溴酚蓝染料。PCR扩增完成后,产物直接上样电泳,节省了上样时间,使得操作步骤简化,检测效率提高。
     (3)优化的一步多重RT-PCR检测体系使用新型试剂盒,该试剂已将RT和PCR反应所需的Buffer、Mg2+、dNTP、反转录酶、RNA酶抑制剂和Taq酶等按比例配成两种缓冲液Mix。反应体系配制时,只需按说明加入适量已含溴酚蓝染料Mix、总RNA模板和引物即可用于反应,扩增完成直接上样电泳。这比传统的RT-PCR方法操作步骤更简单,大大降低了污染几率和误差,同时节省了上样时间,使得检测过程更省时,工作效率更高。另外,对生产上危害较重的苹果锈果类病毒和苹果花叶病毒的RT-PCR反应体系进行了优化,建立了操作步骤更简单、效率更高的RT-PCR检测体系。
     2.ASPV和ACLSV在树体内的时空分布规律采用荧光定量RT-PCR技术,对2010年4月到12月采集的枝条顶端、枝皮组织和根皮组织,用苹果肌动蛋白mRNA序列引物作为内参,以4月份枝皮组织的表达量作为标准,进行相对表达差异分析,结果显示:
     (1)ASPV在枝皮组织中的含量呈先降低再升高再降低的趋势,即6月份的含量最低,8月份稍有增高,10月份达到5个采集时期的最高值,12月份略有下降,最高含量约是最低含量的5.5倍;ASPV在枝条顶端的含量呈现先降低后升高的趋势,即6月份含量最低,8月份略增,10月份继续升高,12月份达最高值,最高含量约是最低含量的3.0倍;ASPV在根皮中的分布规律为先升高再降低,即4月份含量最低,8月份含量增加,12月份略有下降,最高含量约是最低含量的2.3倍。
     (2)ACLSV在树体内的时空分布规律与ASPV基本相似,仅枝条顶端的含量变化略有不同,即ACLSV在10月份的增量小于ASPV,且此时含量低于12月份。
     3.苹果潜隐性病毒在我国苹果主产区的分布特征通过对我国8个苹果主产省,50个果园的2144个样品分析结果表明:
     (1)采样果园均不同程度地受到苹果潜隐性病毒的侵染,果园病毒侵染率达100%,危害情况较严重。
     (2)三种苹果潜隐性病毒(ASGV、ACLSV、ASPV)的整体发生率分别为:94.80%、59.33%、64.72%;总体混合侵染率为59.05%。相对而言,ASGV的侵染率最高,ACLSV的侵染率最低。
     (3)三种苹果潜隐性病毒在不同品种间的侵染也有一定差异。三大主栽品种富士、红星、嘎拉的病毒侵染率都较高,ASGV的侵染率最高几乎都为100%;ASPV和ACLSV的侵染率相对最低。部分品种如金冠、乔纳金、秦冠等的病毒侵染率也较高,一些砧木品种和地方品种的染毒情况较低。
     (4)在地区分布上,陕西省和河北省受三种苹果潜隐性病毒侵染较严重,复合侵染率也较高;其他地区ASGV侵染率较高,但ASPV和ACLSV的侵染相对较轻。
Virus disease is a severe worldwide disease that affects the production and quality of fruit trees. In generally, the apple trees with virus infection resulted in less growth and crop yiled, lower fruit quality, intolerance storage and sharp tree growth decline to the dead seriously. Without effective chemical control and treatment measures, breeding virus-free seedling and drug-free cultivation are the most effective measure against apple virus diseases. As early as the 1960s, many foreign countries began to develop the cultivation of virus-free and was basically popularized now. China had been the late start of studying on apple viruses and still has less development of virus-free cultivation now. The correct understanding and investigation the presence of virus diseases in China are the basic of the creation and promotion of the virus-free cultivation. So far, the identification and investigation of apple virus disease hazard is relatively weak and only has less comprehensive or old data. So the viruses investigation in apple orchards of the main producing areas in China is of great significance for carrying out the virus-free cultivation. The study concerned the development of the detection systems for three apple latent viruses, which have the chief characteristics of reliable, rapid, more efficient and simplified, accessible for mass-testing. The second aim was to identify the suitable tissue used for the analysis of infection. Under these conditions, the reaserch, using the samples collected respectively from different cultivars in commercial orchards located in three main apple-producing areas, will do a comprehensive infection investigation of the three main latent viruses. The main results are as follows:
     1. Development and optimization of detection systems for apple latent viruses On the basis of the traditional two-step of RT-PCR systems of three latent viruses, the multiplex RT-PCR detection system, which has higher detection efficiency, were optimized.
     (1) The primer pair for ASPV was redesigned and chose the best combination with two other pairs.
     (2)The detection system of two-step multiplex RT-PCR was optimized. The ES Reaction Mix and EasyScript RT/RI Enzyme Mix, which contained the main reagents of the reverse transcription required, were just used with appropriate amount of total RNA. Using the Mix would be simplified the steps and lowered the risk of contamination and error. Furthermore, ES Taq Mix, which including Taq DNA polymerase and other reagents except the amplification primers and reverse transcription product, was used for the PCR amplification process. When amplification was completed, the product because of bromophenol blue dye contained, were directly used for running the agarose gels. That could save the sampling time and make detection efficiency improved.
     (3) The one-step multiplex RT-PCR was performed using the commercial kit. The two master mixes typically contained all the components required for RT-PCR, by containing reaction Buffer, Mg2+, dNTP mix, reverse transcriptase, RNA inhibitor, and DNA Polymerase. The reaction mix was prepared according to the instructions, and also added total RNA and the primer pairs. The mix also contained bromophenol blue dye ,and the amplification product were quickly analyzed on agarose gels in TBE buffer. In comparison with conventional RT-PCR assay, the optimal test system have less operations, lower contamination, smaller errors and more efficiency. In addition, the two RT-PCR reaction systems of Apple scar skin viroid and Apple mosaic virus, which cause serious harms on apple production, were optimized and established the more simple and efficient detection assay.
     2. The spatial and temporal distribution patterens of ASPV and ACLSV in tree body The sample phloem+periderm+cortex parenchyma, shoot tip and root bark collected from April to December in 2010 were tested by fluorescence quantitative RT-PCR. With the sequences of domestic Malus mRNA for actin as the internal control, the study was used the expression value of the phloem material in April as standard, and analyzed the relative expression variance. The results are summaried as follows:
     (1) The virus concentration of ASPV decreased at first then increased, and followed declined in phloem+periderm+cortex parenchyma throughout the year. The lowest concentriation was appeared in June, then slightly increased in August. In October , The relative concentration was still higher than in August, and was the maximum in the year. Then in December, compared with October, the concentration was reduced. The highest relative concentration was about 5.5 times higher than the lowest in phloem +periderm+ cortex parenchyma; The concentration of ASPV in the shoot tip at various times of the year performed firstly decreased then increased. The minimum ASPV relative concentration was obtained testing shoot tip collected in June. The shoot tip sampled later mostly showed a continuous increase in relative concentrations of ASPV until the highest value in December. The average ASPV relative concentration was 3 times higher in December than in June; The distribution characteristics of ASPV in the root bark was increased in August, and then gradually decreased in December. The maximum ASPV relative concentration in August was 2.3 times higher than the minimum value in April.
     (2) The distribution patterns of ACLSV were mostly similar with ASPV. The slight difference is that the ACLSV relative concentration in shoot tip had less increment in Octorber. So the minimum ACLSV relative concentration was obtained in December, and the distribution characteristics of ACLSV in the shoot tip was gradually increased from June until December.
     3. Distribution characteristics of apple latent virus in the major apple production areas of China Totally 2144 samples in 50 commercial orchards from 8 provinces were Collected. On the basis of the detection results presented in this paper we conclude that:
     (1) All the orchards have been subjected to apple latent virus infection in varying degrees. The virus infection rate was 100%. In summary, apple viruses are widely distributed in apple growing orchards and cause serious affect.
     (2) The overall of three kinds apple latent virus (ASGV, ACLSV,ASPV) infection rate: 94.80%, 59.33%, 64.72%, in different orchards and different varieties. Overall mixed infection rate was 59.05%. Relatively speaking, The infection rate of ASGV was the highest, on the contrary, ACLSV and ASPV of the lower infection rates.
     (3) The infection rates of three apple latent viruses were not deviations significantly, among the different varieties. In comparison, the latent virus infection rates of Fuji, Gala, Starking were generally higher, the infection rates of Apple stem grooving virus were almost 100%, ACLSV and ASPV of the lower infection rates. Some cultivars, just like Golden Delicious, Jonagold, and Qinguan, had higher virus infection rates. Some rootstock varieties and local cultivars were of lower exposure situations.
     (4) In the regions of Shaanxi Province and Hebei Province, the virus infection situations of three apple latent were most seriously, the composite infection rate were also highest; In other regions, the infection rates of ASGV were higher, but the infection rates of ASPV and ACLSV were relatively lighter.
引文
[1]杜国荣,杜俊杰.果树病毒病与脱毒技术综述[J].山西果树, 2004, 5: 36-37.
    [2]于绍夫.苹果病毒病害与无病毒苗繁殖[J].北方园艺, 1994, 4: 53-55.
    [3]王国平,刘福昌.果树无病毒苗木繁育与栽培[M] .北京:金盾出版社. 2002.
    [4]王国平.苹果病毒病防治[M].北京:金盾出版社. 1994.
    [5]张洪胜.我国无病毒苹果研究进展及存在问题[J].烟台果树, 1992, 2:17-18.
    [6] Martelli G P, Candresse T, Namba S. Trichovirus, a new genus of plant viruses[J]. Arch. Virol, 1994, 134: 451-455.
    [7] German S, Candresse T, Le Gall O,et al. Analysis of the dsRNAs of apple chlorotic leaf spot virus[J]. J. Gen. Virol, 1992, 73: 767-773.
    [8]姜中武,张振英,都韶英.苹果褪绿叶斑病毒的特性与为害[J].烟台果树, 1995, 4: 23-24.
    [9]李文慧,牛建新.苹果病毒的研究现状[J].北方果树, 2006, 4: 3-5.
    [10]徐志华.果树林木病害生态图鉴[M].北京:中国林业出版社. 2000.
    [11]洪霓.发状病毒属病毒研究进展[J].武汉大学学报(理学版), 2003, 49(2): 271-276.
    [12]王国平.果树病毒检测与脱除技术的研究进展[J].华中农业大学学报, 2004, 6: 685-691.
    [13]王国平,刘福昌.苹果病毒病害的研究进展[J].农牧情报研究, 1990, 2: 18-25.
    [14]廖明安,冷怀琼.病毒对苹果生理生化及生长结果的影响[J].果树科学, 1999, 16(1): 4- 8.
    [15]王国平.中国果树病毒病原色图谱[M].北京:金盾出版社, 2001.
    [16]陈继峰,赵军营,李绍华.果树病毒检测方法及其应用[J].河北林果研究, 2005, 20(2): 167-173.
    [17]侯义龙,张开春,胡文玉,等.逆转录-聚合酶链式反应检测果树RNA病毒[J].病毒学报, 2002, 18(1): 71-73.
    [18]王国平,洪霓,张尊平,等.苹果无病毒母本树的培育技术研究[J].中国农业科学, 1996, 29(3): 41-48.
    [19]韩礼星,王继世,何水涛,等.苹果病毒病的脱毒研究[J].果树科学, 1991, 8 (1): 7-l2.
    [20]程玉琴,韩振海,徐雪峰.苹果病毒及其脱毒检测技术研究进展[J].中国农学通报, 2003, 19(1): 72-73, 96.
    [21]刘久成,梁玉秋.无病毒矮化苹果栽培简报[J].北方果树, 1999, l: 21-22.
    [22] Larsen E C. Growth of maiden apple trees with or without viruse infeetion [J]. Annual Review of Plant Physiology. 2000, 24: 502-524.
    [23]覃兰英,李青.核果类病毒识别鉴定及脱毒技术[J].北京农业科学, 1997, 10: 23-28, 25.
    [24]郑金城,赵亮.苹果无病毒苗木繁育技术[M].中国农业出版社, 1995.
    [25]姜淑荣,王际轩,刘志.苹果无病毒树的栽培反应及展望[J].西北园艺, 1996, 3: 20-21.
    [26] Desvignes J C. Virus diseases of fruit trees [M]. Ctifl, Printer: Centremprim, 1999:11-26.
    [27]王壮伟.苹果潜隐性病毒的检测与脱除技术研究[D].南京农业大学, 2006: 1-2.
    [28]牛建新,朱军,马兵钢.库尔勒香梨的苹果褪绿叶斑病毒cDNA探针检测技术研究[J].西北农业学报, 2005, 14(2): 58-63.
    [29]张强,牛建新,李西萍.苹果褪绿叶斑病毒一步法RT PCR检测[J].西北农业学报, 2006, 15 (4) : 67- 69.
    [30]洪霓,王国平.苹果褪绿叶斑病毒生物学及生化特性研究[J].植物病理学报, 1999, 2(1): 77- 81.
    [31] Hadidi L A, Foster J A, Candresse T, et al. Sensitive detection of Apple chlorotic leaf spot virus from infected apple or peach tissue using RT-PCR,IC-RT-PCR,or mμLtiplex IC-RT-PCR[J]. Acta Hort, 1995, 386: 51-62.
    [32]张开春,侯义龙,胡文玉,等.采用RT-PCR技术检测果树病毒[J].果树学报, 2001, 18(6): 370-371.
    [33]牛建新,刘连科,朱军,等.库尔勒香梨上ACLSV的RT-PCR检测[J].果树学报, 2003, 20(4): 243-246.
    [34]郭瑞,李世访,董雅凤,等.苹果锈果类病毒辽宁分离物的克隆与序列分析[J].植物病理学报, 2005, 35(5): 472-474.
    [35]赵英,牛建新.利用两种方法检测苹果锈果类病毒[J].植物保护, 2008, 34(2): 132-138.
    [36]杨俊玲.苹果花叶病毒(ApMV)和李属矮缩病毒(PDV) RT-PCR检测体系的研究[D].内蒙古农业大学, 2004.
    [37]侯义龙,杨俊玲,董雅凤,等.苹果花叶病毒RT-PCR检测技术[J].中国果树, 2004, 6: 5-6.
    [38]李玲.苹果潜隐性病毒脱除及RT-PCR技术研究[D].河北农业大学, 2008: 16-17.
    [39]晏娜.化学处理和热处理脱除苹果潜隐性病毒的研究[D].河北农业大学, 2009: 13-15.
    [40]焦朝霞.河北省苹果潜隐性病毒的分布特征[D].河北农业大学, 2009: 30-39.
    [41]陆秋农,贾定贤.中国果树志?苹果卷[M].北京:中国农业科技出版社;中国林业出版社, 1999,12 : 325.
    [42]黄留玉. PCR最新技术原理、方法及应用[M].北京:化学工业出版社, 2005: 9-10, 18.
    [43] Goblet Christiane, Prost Edovard , Whalen Robert G. One-step amplification of transcripts in total RNA using the polymerase chain reaction[J]. Nucleic Acids Research, 1989,17(5): 2144.
    [44] Crisan D. Molecular diagnostic testing for determination of myeloid lineage in acute leukemias[J]. Ann. Clin. Lab. Sci. , 1994, 24: 355-363.
    [45]黄银花,胡晓湘,徐慰倬,等.影响多重PCR扩增效果的因素[J].遗传, 2003, 25(1): 65-68.
    [46] Chamberlain J S, Gibbs R A, Ranier J E, et al. Deletion screening of the Duchenne muscular dystrophy locus via multiplex DNA amplification[J]. Nucleic Acids Research,1988,16(23): 11141-11156.
    [47]李文慧,牛建新.苹果病毒的研究现状[J].北方果树, 2006, 4:3-5.
    [48] Klerks M M, Leone G, Lindner J L, et al. Rapid and sensitive detection of Apple stem pitting virus in apple trees through RNA amplification and probing with fluorescent molecular beacons[J]. Phytopathology, 2001, 91:1085-1091.
    [49]李文慧,牛建新.苹果茎沟病毒RT-PCR检测技术[J].西北农业学报, 2006,15(4):105-107.
    [50] Marinho Vera L A, Kummert J, Rufflard G,et al. Detection of Apple stem grooving virus in dormant apple trees with crude extracts as templates for one-step RT-PCR[J]. Plant Disease,1998, 82: 785-790.
    [51]王壮伟.苹果潜隐性病毒的检测与脱除技术研究[D].南京农业大学. 2006.
    [52] Kundu J K. The occurrence of Apple stem pitting virus and Apple stem grooving virus within field-grown apple cultivars evaluated by RT-PCR[J]. Plant Protection Science, 2003, 39: 88-92.
    [53] Nemchinov L, Hadidi A., Foster J A,et al. Sensitive detection of Apple chlorotic leaf spot virus from infected apple or peach tissue using RT-PCR, IC-RT-PCR, or multiplex IC-RT-PCR[J]. Acta Horticulturae , 1995, 386: 51-62.
    [54] Kundu J K, Svoboda J, Polank J. Detection of Apple stem grooving virus in different tissues of apple trees throughout the year[J]. Plant Protection Science, 2003, 39: 93-96.
    [55]范旭东,董雅凤,张尊平,等. 3种苹果潜隐病毒多重RT-PCR检测体系的建立[J].园艺学报, 2009, 36(12): 1821-1826.
    [56] Menzel, Jelkmann, Maiss. Detection of four apple viruses by multiplex RT-PCR assays with coamplification of plant mRNA as internal control[J]. Journal of Virological Methods, 2002, 99: 81-92.
    [57] Youssef S A, Moawad S M, Nosseir F M,et al. Detection and identification of Apple stem pitting virus and Apple stem grooving virus affecting apple and pear trees in Egypt[J]. Julius-Kühn-Archiv, 2010, 427: 248-252.
    [58] Park Honglyeol, Yoon Jaeseung, Kim Hyunran, et al. Multiplex RT-PCR assay for the detection of Apple stem grooving virus and Apple chlorotic leaf spot virus in infected Korean apple cultivars[J]. Plant Pathol.J., 2006, 22(2): 168-173.
    [59]张金波,罗佳滨,张春斌,等.荧光定量PCR技术原理及在分子诊断中的应用进展[J].中国优生与遗传杂志, 2006, 14(12): 13-14.
    [60] Swift G H, Peyton M J, MacDonald R J. Assessment of RNA quality by Semi-Quantitative RT-PCR of multiple regions of a long ubiquitous mRNA[J]. Bio Techniques , 2000, 28: 524-531.
    [61] Pfaffl M W, Mircheva Georgieva T, Georgiev Penchev I ,et al. Real-time RT-PCR quantification of insulin-like growth factor (IGF)-1, IGF-1 receptor, IGF-2, IGF-2 receptor,insulin receptor, growth hormone receptor, IGF-binding proteins 1, 2 and 3 in the bovine species[J]. Domestic Animal Endocrinology, 2002, 22: 91-102.
    [62] Yang Z, Woodahl E L, Wang X-Y, et al. Semi-quantitative RT-PCR method to estimate full-length mRNA levels of the multidrug resistance gene[J]. BioTechniques,2002, 33: 196-203.
    [63]张华磊,毛柯,刘志,等. MdMYB1转录因子调控红星苹果果实着色的计算机模拟分析及表达验证[J].园艺学报, 2009, 36 (11) : 1581-1588.
    [64]吴田,谢从华. 4种信号分子处理后马铃薯Star基因表达的RT-PC R分析[J].华中农业大学学报, 2010, 29(3): 268-271.
    [65]刘科宏,周常勇,宋震,等.运用实时荧光RT-PCR技术检测柑橘碎叶病毒[J].果树学报, 2009, 26(5): 748-751.
    [66]胡浩,殷幼平,张利平,等.柑桔黄龙病的常规PCR及荧光定量PCR检测[J].中国农业科学, 2006, 39(12): 2491-2497.
    [67]郭立新.苹果茎沟病毒的分子特性及实时荧光RT-PCR检测方法的研究[D].石河子大学, 2005.
    [68]郭立新,向本春,陈红运,等.实时荧光RT-PCR一步法检测苹果茎沟病毒[J].植物病理学报, 2006, 36(1): 57-61.
    [69]刘红光.柑桔衰退病毒分子快速检测方法研究[D].重庆大学, 2007.
    [70]杨伟东,郑耘,章桂明,等.烟草环斑病毒IC-RT-Realtime PCR检测方法研究[J].中国病毒学, 2006, 21(3): 277-280.
    [71]邹勤.应用real-time RT-PCR研究柑桔衰退病毒弱毒株对强毒株的拮抗作用[D].西南大学,2010.
    [72]白静,陈红运,傅俊范,等.实时荧光RT-PCR一步法检测南方菜豆花叶病毒[J].植物保护学报, 2007, 34(1): 78-82.
    [73] Svoboda J, Polák J. Relative concentration of Apple mosaic virus coat protein in different parts of apple tree[J]. Hort. Sci. (Prague), 2010, 37(1): 22–26.
    [74] Matic S, Sánchez-Navarro J A, Mandic B, et al. Tracking three ilaviruses in stone fruit trees throught the year by ELISA and tissue-printing hybridization[J]. Journal of Plant Pathology, 2008, 90 (1): 137-141.
    [75]郑文光,王晓武,高必达.植物病毒胞间运动分子生物学研究进展[J].中国生物工程杂志, 2003, 23(2): 52-58.
    [76]肖火根,周国辉,范怀忠.病毒在植物体内的运转[J].病毒学报, 2001, 17(3): 282-287.
    [77]范树国,林纳生,吴国江.植物病毒及其卫星RNA在寄主体内的移动和系统分布[J].中国病毒学, 2005, 20(6): 675-681.
    [78]张祥林,赵冰梅.植物病毒在蚕豆植株内增殖和转移的研究[J].石河子农学院学报, 1994, 12(1-2): 49-52.
    [79] Henson J, French R. The polymerase chain reaction and plant disease diagnose[J]. Annu Rev Phytopathol, 1993, 143: 369-373.
    [80] Demeke T, Adams R P. [J]. Biotechniques, 1992, 12: 332-334.
    [81]王壮伟,渠慎春,章镇,等.苹果属RNA高效快速提取新方法[J].果树学报, 2004, 21(4): 385- 387.
    [82]葛晓萍,石琰璟.一种适合富含多糖、多酚植物的RNA提取方法[J].青岛科技大学学报(自然科学版), 2007, 28(1): 6-8.
    [83]侯义龙,张开春,吴禄平,等.果树组织中总RNA提取的新方法[J].沈阳农业大学学报, 2002, 33(2): 122- 125.
    [84]曹秋芬,孟玉平,孙毅.苹果属植物总RNA有效、快速提取方法[J].农业生物技术学报, 2003, 11(4): 428-429.
    [85]田伟,田义柯,王彩虹,等.苹果组织总RNA提取方法的比较研究[J].青岛农业人学学报(自然科学版), 2010, 27(2) : 122-125.
    [86]赵英,牛建新.利用两种方法检测苹果锈果类病毒[J].植物保护, 2008, 34(2): 132-138.
    [87]赵英,牛建新.应用RT-PCR和斑点杂交法检测新疆梨树上的苹果锈果类病毒[J].果树学报, 2007, 24(6): 761-764.
    [88]赵英,牛建新.新疆杏树苹果锈果类病毒的检测与全序列分析[J].园艺学报, 2008, 35(6): 805-810.
    [89] Serio F D, Malfitano M, Alioto D, et al. Apple dimple fruit viroid: sequence variability and its specific detection by multiplex fluorescent RT-PCR in the presence of Apple scar skin viroid[J]. Journal of Plant Pathology, 2002, 84 (1): 27-34.
    [90] ShamLoul A M, Yang X, Han L, et al. Characterization of a new variant of Apple scar skin viroid associated with pear fruit crinkle disease[J]. Journal of Plant Pathology, 2004, 86 (3): 249-256.
    [91] Kyriakopoulou P E, Giunchedi L, Hadidi A. Peach latent mosaic and pome fruit viroids in naturally infected cultivated pear pyrus communis and wild pear P.amygdaliformis: implications on possible origin of these viroids in the mediterranean region[J]. Journal of Plant Pathology ,2001, 83 (1): 51-62.
    [92] Kwon M J, Hwang S L, Lee S J, et al. Detection and distribution of Apple scar skin viroid-Korean Strain (ASSVd-K) from apples cultivated in Korea[J]. The Plant Pathology Journal, 2002, 18(6) : 342-344 .
    [93]苏前富,郭瑞,李世访,等.苹果锈果类病毒的几种提取方法及RT-PCR检测灵敏度的比较[J].植物保护, 2006, 32(2): 95-97.
    [94]赵英,牛建新.梨树组织中的苹果锈果类病毒原位RT-PCR检测[J].分子植物育种, 2008, 6 (4): 812-818.
    [95]杨俊玲.苹果花叶病毒(ApMV)和李属矮缩病毒(PDV)RT-PCR检测体系的研究[D].内蒙古农业大学, 2004.
    [96] Menzel W, Jelkmann W, Maiss E. Detection of four apple viruses by multiplex RT-PCR assays with coamplification of plant mRNA as internal control[J]. Journal of Virological Methods, 2002, 99: 81–92
    [97]侯义龙,杨俊玲,董雅凤,等.苹果花叶病毒RT-PCR检测技术[J].中国果树, 2004, 6: 5-6.
    [98] Choi S H, Ryu K H. Rapid Screening of Apple mosaic virus in Cultivated Apples by RT-PCR[J]. Plant Pathol. J. 2003, 19(3) : 159-161.
    [99] Lee Gung Pyo, Ryu Ki Hyun, Kim Hyun Ran, et al. Cloning and phylogenetic characterization of coat protein genes of two isolates of Apple mosaic virus from‘Fuji’apple[J]. The Plant Pathology journal, 2002, 18(5): 259-265.
    [100] Akbas Birol, Degirmenci Kemal. Simultaneous detection of Apple mosaic virus in cultivated hazelnuts by one-tube RT-PCR[J]. African Journal of Biotechnology, 2010, 9(12): 1753-1757.
    [101] Arli Sokmen M, Kutluk Yilmaz N D, Mennan H, et al. Natural weed hosts of Apple mosaic virus in hazelnut orchards in Turkey[J]. Journal of Plant Pathology , 2005, 87(3): 239-242.
    [102] Paduch-Cichal E, Szyndel M S, Tomala K. Preliminary results of the study on viruses occurring in‘Mutsu’apple cultivar trees[J]. Phytopathol. Pol., 2005, 37: 87-90.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700