施水播种灌水入渗和土壤松耕方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
免耕地施水播种是春旱严重时夏粮抢种保苗的重要手段,对西部旱区农业增产具有积极作用。但是,传统的施水播种灌水后,土壤湿润区的水平方向尺寸是垂直方向的1.5~2.5倍。提高灌水下渗深度,减少水分蒸发,是施水播种技术进一步节水增效的新途径。
     在保护性耕作条件下,本文首先对施(坐)水播种灌水下渗的影响因素进行了分析,研究了能加速灌水下渗的两种土壤状态,以及切块式和铲式两种土壤松耕方法。然后,探讨了切块式浅松法有利于灌水下渗的土壤结构体形状和大小,在陕西杨凌试验地(塿土)试验分析了切块式和铲式浅松法的松土灌水入渗效果,并与旋耕和免耕土壤施水效果进行了比较;建立了切块式浅松条件下的土壤湿润区数学模型。设计了具有切块式浅松功能、模拟人工挖穴作业的施水播种机,并对其稳定性进行了分析。最后,对结构更简单紧凑,具有铲式浅松和铲式开沟施水功能的施水播种联合作业机进行了田间试验。取得的主要结论如下:
     1、土壤中孔隙率的增加,是提高施水播种灌水下渗速度和深度的有效途径。因此,首先提出并研究了一种切块式浅松法,该方法产生的土壤结构体互相支撑,形成了有利于灌水下渗的大孔隙,并可以人为控制所切土块的大小,松土效果好,但刀具运动较复杂。其次,根据免耕地土壤较密实的特点,只在玉米种床部位灌水下渗的路径上铲式浅松土壤,增加土壤中的微孔隙,这种方法对应的施水播种联合作业机,结构简单紧凑,在目前的研究水平上,更具应用前景。
     2、当切块式浅松法产生的土壤结构体,最大尺寸范围为10~40mm时,灌水湿润峰下移速率大,遇水即散,含水率高,干容重小。使用的“Y”型刀具,自洁性好,切下的土块均匀度高,并分布于土层中上部,而碎土则基本位于土层中下部,灌水下渗快,无积水现象,土壤湿润区总体位置比免耕地和旋耕地对应的湿润区位置低13mm,总的水入渗深度比免耕地对应值提高约19.6mm,比旋松土壤对应值提高约24.6mm,灌水水平方向和垂直方向入渗深度的比值由1.27降低到0.8。合适的切土距离为10~30mm。
     3、针对切块式浅松法,建立了一种求解方便,由代数方程表示的灌水入渗数学模型,通过理论计算结果与试验结果的比较可知,两者湿润区剖面面积的重合度达90%。松耕作业形成的土壤结构体尺寸,种穴或种沟深度等参数,对土壤湿润区宽度的减少,深度的增加有很大影响。
     4、针对铲式和切块式浅松法,建立并验证了施水播种穴施水量和开沟间歇施水每次施水量的理论计算模型。
     5、通过对种床下铲式浅松,开沟间歇施水播种机进行的田间试验表明:铲式浅松法松土施水后,水入渗平均深度为76.1mm,比免耕地对应值大4.8mm,比旋松土壤对应值大5.2mm,在地表下50mm处土壤含水率由施水前的6.5%,提高到施水作业后的15.7%,玉米出苗率和苗高等相关指标均合格。机具其他性能参数如:点播距合格率94.7%,变异率4.6%,重播指数1.82%,漏播指数2.19%,种子离水湿润中心距的合格率96%,种水同穴率99.7%等,均满足农艺要求。
     研究的创新之处:
     1、提出了通过合理的松耕方法,增加土壤的孔隙率,增加施(坐)水播种灌水下渗速度和深度的方法。
     2、提出了一种能在土壤中形成大孔隙的切块式浅松法,该松耕方法形成的土壤结构体集中于松土层上部,有利于灌水下渗。
     3、提出了两侧土壤保持免耕状态下的带状铲式浅松法,增加灌水下渗路径上土壤的微孔隙率,提高灌水下渗速度和深度的方法。
The no-tillage farmland is an important measure for rush planting and protecting young plants in summer during the severe spring drought. It has a positive role in agricultural production in the arid western region . However, after the traditional Bed-irrigating sowing irrigation , the horizontal direction size of the soil moist areas is the 1.5 to 2.5 times of the vertical size. How to improve the depth of irrigation infiltration, and reduce evaporation, water seeding technique is to take the key to further water-saving efficiency of Bed-irrigating sowing.
     In conservation tillage, this article first applied Bed-irrigating sowing, influencing factors were analyzed to study the two soil status which can accelerate the infiltration of irrigation and two loose soil farming methods of cut and shovel .Then, the shape and size of the soil structure element which is beneficial to improve the depth of irrigation infiltration in the shallow digging of cut type were discussed. an experiment was carried out in Yangling, Shaanxi to test the effect of irrigation infiltration effect of the shallow digging of cut type and shovel type and compared the effect of irrigation with rotary tillage and no-tillage soil. established a mathematical model of cut-type light loose soil moist area. Designed an irrigating-sowing machine with a shallow cut loose type function, and simulation of artificial digging operations and analysised its stability.Finally an experiment was carried out in the farmland to test the combine irrigating-sower Which with spade and shovel loose shallow operations. The main conclusions obtained are as follows:
     1、The increase of soil porosity is the effective way to improve the water infiltration rate depth of irrigating-sowing. So, firstly proposed and studied a dicing style of topsoil cultivation method, which produces soil structure support each other, forming a favorable irrigation infiltration of large pores, and can be artificially control the cutting the size of clods, loose soil effect, but more complex tool movement. Secondly, according to a more dense soil characteristics of no-tillage farmland, shovel loose soil only on the path of irrigation infiltration shallow of the maize seed-bed parts, increase soil micro-pores, the corresponding irrigating-sowing joint operation machine has simple and compact structure, at the present research level, has more application prospect.
     2. When the soil structure produced by shallow digging of cut type, which the largest size ranges of 10 ~ 40mm, the irrigation wetting peak moves down quickly, goes off when encountering the water, high moisture content, dry bulk density small. Using of the "Y"-type tools, the self-cleaning is good, the cut clods has a high degree of homogeneity, and distributed in the upper soil layers, while the pulverizer is basically located in the lower part of soil, irrigation infiltration fast, no water phenomenon , the overall position of humid regions is 13mm lower than in soil-free and spin-cultivated land area corresponding to the position of humid, the total depth of water infiltration is more than the corresponding values for free land increased by about 19.6mm, loosen the soil than the corresponding value increase of about 24.6mm, the ratio of irrigation horizontal and vertical infiltration depth decreases from the 1.27 to 0.8. The suitable soil-cut distance is 10 ~ 30mm.
     3. Aiming at the method of loosening the soil by cutting up clod on the surface, an easy solved mathematical model was set up. It gives a description of watering and penetrating through the soil.
     By contrasting the results of theoretical computation with the results of the experiments, it showed the two areas of cross-section of the humid region coincided up to 90%. The parameters of the depth of the seed hole, the depth of furrow depth and the measurement of soil particle formed in the loosening cultivation played an important role in reducing the width of the humid region and increasing its depth.
     4. Aiming at the method of shovel-like topsoil cultivation and the method of loosening the soil by cutting up clod on the surface, a theoretical calculation model was set up. It certified the water supply of irrigation per hole and per water supply of intermittent watering in the process of ditching.
     5. Through the field experiments on the shove-like surface tillage ditching and intermittent watering sowing machine, it shows: after scarification and watering by using the method of shovel-like topsoil cultivation, the average depth of the water seeping into the soil was 76.1mm. It is 4.8mm deeper than that of the no-tillage farmland and 5.2mm deeper than that of the rotary tilling soil. Under the earth surface about 50mm, the moisture content of the soil increased from 6.5% to 15.7%. Targets about the emergence rate, the seeding height of the corn and so on were all up to standard.
     The other performance parameters machinery such as: the yield of hill-seeding distance is 94.7%, the variation rate is 4.6%, the Index of reseeds is 1.82% , the index of leakage sowing is 2.19% ,the yield of seeds from water moist center distance is 96%, the rate of water and seeds in the same hole is 99.7% and so on, and those can meet the agricultural requirements.
     The innovation of the research:
     1. Put forward by increasing the micro porosity and the big porosity, to improve (by) water infiltration rate and depth of sowing irrigation methods. Corresponding to the two soils situation, separately studied two methods which can increase the soil porosity:
     (1) Propose and study a shallow digging of cut type method, which produces the basic focus of soil structure loose soil on top, and mutual support, Led to the formation of large pores which is in favor of irrigation infiltration. An irrigating-sowing machine for plant corn which can sow and irrigation for each hole was Designed with slider crank reciprocating motion, driving the cutter to loose soil and dig.
     (2) Took use of no-tillage farmland more compact, we proposed shallow shovel loose ribbon, with a direction perpendicular to keep the farmland no-till soil condition, and the method of increase the micro-porosity which on the path of irrigation soil infiltration. Studied and tested an irrigating-sowing machine which with shallow digging of shovel type to loose soil and ditch.
     2. Established a convenient for solving mathematical model of infiltration in irrigation.
     3. Established a theoretical model of Water supply for each hole in the Bed-irrigating sowing and Water supply of irrigation in the Ditching intermittence.
引文
北京林学院土壤教研组.1981.土壤学实习实验指导书(电子文档).31~32 http://img.sslibrary.com/DsrPath?kid=6463676B6463666A3837343032333533&a=8A5E47B498409ED00CAF640A269F9BDE&pagenum=1&pagetype=&pages=-1&template=templatessl&fav[2010-4-27]
    柏雪原,程卫东,王相友.1998.国外几种新型深松机具的研究.农机与食品机械,总第256期(4):34~35
    曹杰.2010.推广保护性耕作技术迫在眉睫. http://www.chinacoop.com/HTML/2010/ 05/13/45537.html/[2010-8-10]
    常旭虹. 2004.保护性耕作技术的效益和应用前景分析.耕作与栽培,1:1~3
    陈礼德,鄂卓茂,王继成,王书茂,刘玉锋.2000.2BSL-1型垄作施水播种机的开发研究.中国农业大学学报.5(6):43~46
    陈君达,李洪文.1998.旱地玉米保护性耕作机具与作业工艺的组合研究.农业工程学报,14(3):129~134
    邓西平,山仑,稻永忍.1995.早地春小麦有限灌水高效利用的研究.干旱地区农业研究,13(13):43—46
    杜兵,李问盈,邓健,廖植樨等.2000.保护性耕作表土作业的田间试验研究.中国农业大学学报,第4期:65~67
    杜兵,廖植樨,邓健,张进,古润生.1997.小麦地保护性耕作措施和压实对水分保护的影响.中国农业大学学报,2(6):43~48
    鄂卓茂,刘清平,庞昌乐等.2005.行走式节水灌溉理论与实践.北京:中国农业出版社:40~215.
    樊桂菊.2004.温室电动爪式松土机的研制.[硕士学位论文].泰安:山东农业大学
    付静,李汝莘,张希升,从宏斌,孙贵宾.2007.摆环式松土机构的运动学分析.农业装备与车辆工程,总第187期(2):14~16
    高焕文.2007.美国保护性耕作发展动向. http://www.caein.com/index.asp?xAction =xReadNews&NewsID=27383 [2010-8-31]
    高仲弟,高媛,朱万海.1999.2BFS-2型下注式施水播种机的研究.粮油加工与食品机械,总第264期(6):15~17
    郭富春.2000.大力发展保护性耕作走农业可持续发展之路.山西农机,总第14期:39~41
    郭维东,房忠站,刘军安.1996.抗旱播种灌溉技术及相关理论的发展现状与展望.沈阳农业大学学报(专辑),27(12):58~62
    郭维东,李宝筏,纪志军.2001.坐水播种时耕层土壤水分入渗的二维数值模拟.农业工程学报,17(2):24—27
    郭维东,夏桂敏,王晓刚,张杰华.2003.坐水播种时土壤临界含水率的确定.灌溉排水学报,22(4):12~21
    郭文斌,廖敏超,田阳,赖松江,张文和. 1996.我国深松机具的现状及发展方向探讨.中国农机化,(5):39~41
    郭志军,佟金,周志立,任露泉.2001.深松技术研究现状与展望.农业工程学报,17(6):169~174
    韩宾.2007.保护性耕作措施对农田土壤健康状况的影响及作物响应研究.[博士学位论文].泰安:山东农业大学
    韩世祥.1999.内蒙古乌盟干早区发展节水灌溉技术的探讨.农机与食品机械,(6):30~31
    何进.2004.玉米免耕播种深松联合作业机的研究.[硕士学位论文].北京:中国农业大学
    华孟,王坚.1993.土壤物理学.北京:中国农业出版社:91~99
    黄昌勇.2000.土壤学.北京:中国农业出版社:80~82
    江门日报记者.2010-3-19.大旱持续.江门日报,A5版【时事纵横】版
    江遵元,胡敦俊,黄聿荣.1988.滚轮式膜上打孔精量播种机.农业机械学报,19(1):88--95
    金素贞.1999.全方位深松机械技术的推广应用.机械研究与应用,12(3):49~50
    靖凯,邓林军,侯志研,杨智慧.2009.辽西北半干旱地区玉米机械化播种保全苗技术集成.杂粮作物,29(6):401~402
    康绍忠.新的农业科技革命与21世纪我国节水农业的发展.中国农村水利水电,1997(增刊):63~66
    康绍忠,梁银丽,蔡焕杰著.1998.3.早区水一土一作物关系及其最优调控原理.第1版.北京:中国农业出版社
    雷志栋,杨诗秀,谢森传编.土壤水动力学.北京清华大学出版社.1988
    李保卫.2000.2BP—2型坐水式播种机实验考察.农机推广与安全,(2):31~33
    李光永.1995.微灌土壤水分分布规律及旱地果园蓄雨微灌的研究.[博士学位论文].北京:北京农业工程大学
    李洪文,陈君达,李问盈.2000.保护性耕作条件下深松技术研究.农业机械学报,31(6):42~45
    李洪文,高焕文.2000.旱地玉米保护性耕作经济效益分析.干旱地区农业研究,18(3):44~49
    李建柱,冯平.2008.基于大孔隙下渗理论的产流模型及其应用.天津大学学报,(4):467~470.
    李文哲,许绮川.2006.汽车拖拉机学第2册底盘构造与车辆理论.北京:中国农业出版社:199
    李艳.2007.多功能玉米秸秆还田机的研制.[硕士学位论文].泰安:山东农业大学
    李宗植.1999-02-01.干旱地区摆脱缺水困境须综合治理.光明日报,3
    李子强,郭雏东,杨天恩.2006.坐水播种时耕层土壤水分再分布的数值分析.安徽农业科学,34(1):108~109,195
    刘博.2005.浅旋在保护性耕作中的作用和地位.农机质量与监督,第3期:27~29
    刘明国,周旭,高连兴.2006.免耕坐水播种技术的研究.农机化研究,10:156~160
    刘鹏涛,冯佰利,慕芳,苏旺,徐芦,蔡晓青,刘月仙,朱瑞祥,薛少平.2009.保护性耕作对
    黄土高原春玉米田土壤理化特性的影响.干旱地区农业研究,27(4):171~175
    刘世平,庄恒扬,陆建飞.1998.免耕法对土壤结构影响的研究.土壤学报,35(1):33~37
    刘晓民,郝建国,武凤鸣,程国彦.2000.推行保护性耕作发展旱作农业.农村牧区机械化,4(44):8~10
    刘孝义.1982.土壤物理及土壤改良研究法.上海:上海科学技术出版社:9~32.
    吕贻忠,李保国.2006.土壤学.北京:中国农业出版社:17~18,30~37
    罗良国,任爱胜,王瑞梅等.2000.我国农业可持续发展的水危机及广泛开展节水农业前景初探.节水灌溉,(5):6~13
    孔德军.2004.浅松机设计及其参数优化.[硕士学位论文].北京:中国农业大学
    孔德军,高焕文,张永康,徐云峰.2006.保护性耕作条件下浅松作业的试验.农业机械学报,37(5):38~50
    孔德军,王世学,高焕文,陈君达.2004.1QJ一120型浅松机的研究设计.农机化研究,总第118期,第2期:126~130
    孔德军,王世学,高焕文.2004.保护性耕作条件下松耕作业机具的探讨.农机化研究,总第117期,第1期:184~186
    马成林,李成华,于海业.1999.打穴播种机研究的发展与现状.农业机械学报,30(1):1~6
    马春生.1995.1SQ一250型全方位深松机.石河子农学院学报,(l):53~57
    马旭,马成林,张守勤.1989.地膜覆盖播种机成穴器的研究.农业机械学报,20(4):20~27
    马莉娟.2002.试述我国水资源现状及应对措施.中共四川省委省级机关党校学报,(4):59~60
    农业部农业机械化管理司等.1995.旱地农业工程的理论与实践.第1版.北京:北京农业大学出版社:1~21
    农机设备总网.2010-01-19.保护性耕作机具介绍. http://www.zgny.com.cn/TechHtml/5/9/7/97063.html [2010-3-1]
    裴泽莲,张旭东,姚志刚,尤晓东,李秀娟,张旭.2005.2BQMS一2型坐水播种机施水效果初步研究.中国农机化,(5):69~71
    彭新华,张斌,李江涛,赵其国.2003.对多孔介质物体孔隙度-蜡封法改进的探讨--以土壤团聚体为例.土壤通报,34(3):19~20.
    秦海生.2002.坐水播种机械集锦.农村新技术,第9期:18~19
    秦耀东,任理,王济.2000.土壤中大孔隙流研究进展与现状.水科学进展,(2):203—207.
    单慧勇.2001.坐水播种土壤水分入渗研究.[硕士学位论文].晋中:山西农业大学
    单慧勇.2003.坐水播种土壤水分入渗的数值模拟.天津农学院学报.10(2):15—20
    山仑.1999.我国西北半干旱地区农业可持续发展技术对策一发展有限灌溉农业是必然选择.中国科学基金,13(1):13~15
    山仑.邓西平.2000.黄土高原半干早地区的农业发展与高效用水.中国农业科技导报,(4):34~38
    沈荣开.1993.非饱和土壤水运动滞后效应的研究.土壤学报,30(2):210~216
    沈荣开,任理,张瑜芳.1997.夏玉米麦秸全覆盖下土壤水热动态的田间实验和数值模拟.水利学报,2:14~21
    隋红建.1989.不同覆盖条件对土壤水热分布影响的计算机模拟.[博士学位论文].北京:北京农业工程大学
    孙建华.1997.行走式节水灌溉播种机械技术讲义.北京:中国农业大学
    孙景生,康绍忠.2000.我国水资源利用现状与节水灌溉发展对策.农业工程学报,16(2):1~5
    孙骊,吕新民.1997.早地节水型播种机施水问题研究.干早地区农业研究.15(2):94~98
    孙廷琮.1986.农业机械测试技术[M].北京:机械工业出版社:105-106
    孙仕明,刘国平,张凯.1999.黑龙江省旱区补墒播种技术及配套机具研究.农机化研究,(2):32~35
    孙伟.2006.打穴式免耕播种机的研究.[硕士学位论文].兰州:甘肃农业大学
    孙彦君,陶延怀,周宙,刘之毅,王文秀.2000.2BFS—2暗式注水灌溉点播机的研制.林业机械与木工设备,28(12):10~11
    太白.2009.土壤结构的类型特征及改良.http://bbs.instrument.com.cn/shtml/20090316/1789291/[2010-4-14]
    唐启义,冯明光.2002.实用统计分析及其DPS数据处理系统.北京:科学出版社,38~40
    《拖拉机》编辑部.1980.拖拉机设计和计算.上海:上海科学技术文献出版社,22
    王果.2009.土壤学.北京:高等教育出版社:77~88
    王建政,古润生. 2003.旱地小麦保护性耕作增加播前地表处理的研究.农业工程学报,19(4):139~141
    王利强.2006.穴灌坐水播种机水路系统的设计与试验研究.[博士学位论文].沈阳:沈阳农业大学
    王利强,夏晓东,吴崇友,金诚谦. 2007.机械化保护性耕作与行走式节水补灌技术的集成研究.农机化研究,第12期:1~4
    王利强,吴崇友,高连兴,夏晓东,金诚谦.2005.2BSF-4型穴灌坐水播种机的设计与试验.农业工程学报,21(12):71~74
    王千.1991.降水入渗模型与模拟研究及其在耕作工程措施优化中的应用.[博士学位论文].北京:北京农业工程大学
    王维新,坎杂,田学艳,江英兰,陈永成,吴雪飞,丛锦玲.2001.2BCM-6型茬地免耕播种机的研制.农业工程学报,17(3):174~176
    王益,王益权,刘军,张兴昌.2007.黄土地区农田土壤块状结构体理化性状研究.干旱地区农业研究,25(3):110~114
    王益,王益权,刘军,张兴昌.2005.黄土地区影响土壤膨胀因素的研究.干旱地区农业研究,23(5):93~97
    魏宏安,邵世禄.2001.垂直插入式小麦覆膜穴播机的研究.农业机械学报,32(6):34~37
    温随良.1996.陇中旱地少免耕覆盖对提高土壤养分效益的研究.甘肃农业大学学报,36(1):27~31
    仵峰,彭贵芳,吕谋超,熊明洁.1996.地下滴灌条件下土壤水分运动模型.灌溉排水,15(3):24~29
    吴崇友,金诚谦,涂安富,卢晏,王利强. 2006.我国坐水播种机需重点解决的几个技术问题.中国农机化,第6期:23~25
    (美)希勒尔D.1988.土壤物理学概论.尉庆丰等译.西安:陕西人民教育出版社:27~34
    信辿诠,赵聚宝.1992.旱地农田水分状况与调控技术.北京:农业出版社.
    许一飞.2000.坐水种技术与播种灌水机.农业机械.(9):26~28
    解文艳,樊贵盛.2004.土壤结构对土壤入渗能力的影响.太原理工大学学报,35(4):381~384
    夏晓东,吴崇友.2005.保护性耕作与节水补灌技术组合应用.农机科技推广,(4):19~20
    薛少平,杨青,朱瑞祥,王虎全,姚万生.2005.机械化整秆覆盖膜侧沟播保护性耕作技术的试验研究.农业工程学报,21(7):81~83
    薛少平,杨青,朱瑞祥,赵西莲,醋富生.2003.黄土高塬地区机械化保护性耕作的回顾与展望.农业工程学报,19(增刊):56~58
    闫宝生.2004.机械化保护性耕作深松机具的研究现状与展望.科技情报开发与经济,14(4):115~116
    杨邦杰,隋红建著.1997.6.土壤水热运动模型及其应用.第1版.北京:中国科学技术出版社
    杨青,薛少平,朱瑞祥,韩思明,韩文霆.2003.陕西黄土高原旱作农田机械化降水高效利用技术体系的研究.农业工程学报,19(增刊):49~52
    杨青,薛少平,朱瑞祥.2001.早作节水农业与机械化集成技术体系的研究.农业工程学报, 17(1):69~73.
    杨青,杨术明,党小选,邢振,刘永利,安云飞,赵友亮,李敏通,王宏斌,刘志杰.2007-12-22.一种穴播穴施水播种机的水种同步装置.中国实用新型专利,200620136466
    尹光华,陈温福,刘作新,张旭东,张和喜.2007.中国北方半干旱区机械化坐水种技术研究.农业现代化研究,28(2):238~240
    游彩虹.2002.抗旱坐水覆膜播种机坐水部件的试验研究. [硕士学位论文].呼和浩特:内蒙古农业大学
    余卫东,闵庆文,李湘阁.2003.水资源承载力研究的进展与展望.干旱区研究,20(1):60~66
    曾辰,王全九,樊军.2010.初始含水率对土壤垂直线源入渗特征的影响.农业工程学报, 26(1):24~28.
    张丹,赵书勇.2010.云南旱灾级别百年一遇专家驳“大旱必有大涝说”.http://nc.people.com.cn/GB/11167901.html[2010-3-19]
    张波屏.1997.现代种植机械工程[M].北京:机械工业出版社:105~106
    张继儒,范洪奎.1993.2BFS-2型坐水单体播种机简介.吉林水利.(9)
    张建华,鹿良玉,高永才.2001.节水农业技术的现状.西南农业学报.(14):113-116
    张敏,王文录,葛在芝.1998.抗旱坐水播种经济效益及其估算方法的分析.吉林农业科学,(1):47-50
    张淑敏,尹丽娟,鄂卓茂.2001.施水沟播机的试验研究与结构设计.中国农业大学学报.6 (6):48-52
    张思聪,惠士博,雷志栋.1985.渗灌的非饱和土坡水二维流动的探讨.土壤学报,8
    张同娟,王益权,刘军,李建波,高会议,张希来.2007.黄土地区影响土壤膨胀性的因子分析.西北农林科技大学学报(自然科学版),35(6):185~189
    张晓梅,吕晶,郭维东.2006.坐水播种技术研究意义浅释.中国科技信息,第7期:129~134
    张新燕,蔡焕杰,王健.2005.沟灌二维入渗影响因素实验研究.农业工程学报,21(9):38~41
    中国农业机械化科学研究院.2007.农业机械设计手册(上册).北京,中国农业科学技术出版社,551~615
    赵红容,余松烈.1981.田间试验方法[M].北京:农业出版社:192~200
    中国科学院南京土壤研究所.1978.土壤理化分析.上海:上海科学技术出版社:511~514
    中国水利国际合作与科技网.2008-7-31.我国农业用水量占全国总用水量的比重有何变化. http://www.jlagri.gov.cn/yanbian/info.asp?id=10639 [2010-9-28]
    周蓓蓓,邵明安. 2007.不同碎石含量及直径对土壤水分入渗过程的影响.土壤学报,44(5):801~807
    周兴祥,高焕文,刘晓峰.2001.华北平原一年两熟保护性耕作体系试验研究.农业工程学报,17(6):841~843
    朱瑞祥,张军昌,薛少平,姚万生,李俊耀,邓海涛.2009.保护性耕作条件下的深松技术试验. 农业工程学报,25(6):145~147
    朱瑞祥,张秀琴,薛少平,姚万生.2000.对玉米施水硬茬播种的试验研究.西北农业大学学报,28(3):57~60
    朱瑞祥,薛少平,张秀琴,杨青,姚万生.2001.机械化玉米秸秆还田对土壤水肥状况的动态研究.农业工程学报,17(4):39~42
    朱亚环.2004.2BMS-2型免耕坐水精量播种机.新农业,第6期:57
    Blanco Canqui H, Lal R, Post W M, Izaurralde R C, Shipitalo M J.2007. Soil hydraulic properties influenced by corn stover removal from no-till corn in Ohio. Soil & Tillage Research , 92(1-2): 144-155
    Blevins R L,Thomas G W,Smith M S,et a1.1983.Changes in soil properties after 10 years continuous non-tilled and conventionally tilled com.Soil and Tillage Research,(3):135~146
    Braim M A,Chancy K,Hodson D R.1992.Effects of simplified cultivation on the growth and yield of spring barley growth;root;shoot relationships,inflow rates of nitrogen;water use. Soil and Tillage Research,22:173~187
    Cary J W. 1967. Punch planting to establish lettuce and carrots under adverse condi tions. Agronomy Journal. 59(9): 406~408
    Chan K Y, Oates A, Swan A D, Hayes R C, Dear B S, Peoples M B. 2006. Agronomic consequences of tractor wheel compactionon a clay soil. Soil & Tillage Research 89:13–21
    Choudhary M A,Baker C J. 1980. Physical effects of direct drilling equipment on undisturbed soils ⅰ.wheat seedling emergence under controlled climates. N.Z.Journal of Agri. Res, 23:489--496.
    Choudhary M A,Guo Pei Yu,Baker C J. 1985. Seed placement effects on seedling establishment in direct-drilled fields. Soil & Tillage Research, 6,79--934.
    Eynard A,Schumacher T E,Lindstrom M J.2004.Aggregate Sizes and Stability in Cultivated South Dakota Prairie Ustolls and Usterts.Soil Sci Soc Am J,68:1360--1365.
    Ferreras L A.2000. Effect of no-tillage on some soil physical properties of a structural degraded Petrocalcic Paleudoll ofthe southern“Pampa”Of Argentina.Soil and Tillage Research,54:31~39
    Foround N, Gerge E St,Entz T. 1996. Determination of infiltration rate from border irrigation advance and recession trajectories. Agricultural Water Management.(30):133~142
    Gardber W R.1958.Some steady-state solutions of unsaturated moisture flow equations with application to evaporation from a water table.Soil Sci.85:228~232
    Harisson H P,Licsko.Z.J. 1989. Soil Reacting Wrenches and Dynamics for Three Models of Bentleg Plows. Transactions of the ASAE. 32(1).
    Hamza M A, Anderson W K. 2003. Responses of soil properties and grain yields to deep ripping and gypsum application in acompacted loamy sand soil contrasted with a sandy clay loam soil in Western Australia. Aust. J. Agric. Res. 54, 273–282.
    Hamza M A, Anderson W K. 2005. Soil compaction in cropping systems. A review of the nature, causes and possible solutions.Soil Tillage Res. 82, 121–145.
    Heinemann W H, Dilworth A E, Cary J W. 1973. Experimental machines for autodible planting. Transactions of the ASAE.16(2): 656~659
    Helling C S,Gish T J. Physical and chemical processes affecting preferential flow. In Preferential Flow Proc National Symposium. Gish T J,Shirmobammadi,eds. American Society of Agricultural Engineers,St Joseph,1991,77
    Javier Ekboir. 2002. Developing No-tiu Packages for Small-Scale Farmers. CIMMYT2000~2001 World Wheat Overview and Outlook
    J N Tullberg.1998.Controlled traffic:Progress and Potential,Proceedings of the Second National Controlled Traffic Conference of Australia,27~28 August
    Lambot S,Javaux M,Hupet F,Vanclooster M. 2002. A global multilevel coordinate search procedurefor estimating the unsaturated soil hydraulic properties. Water Resources Research,38(11):112-117
    McGarry D. 2001. Tillage and soil compaction. In: Garcia-Torres L, Benites J, Martinez-Vilela A. (Eds.), Proceedings of the Keynote Presentations of the 1st World Congress on Conservation Agriculture, FAO and ECAF, vol. 1, Madrid, Cordoba,Spain, October 1–5, pp. 281–291.
    Morrison J E,Allen R R,Wilkins D E. 1988. Conservation planter, drill and air-seeder selection guideline.Applied Engineering in Agriculture, 4(4),300--309.
    Morrison J E, Gerik T J. 1985. Planter depth-control: I. predictions and projected effects on crop emergence.Transa-tions of the ASAE, 28(5),1415--1418.
    Morrison J E, Gerik T J. 1985. Planter depth-control:ⅱ.Empirical testing and palnt responses. Transactions of the ASAE, 28(6),1744--1748.
    Mcgregor K C.1975. Erosion control with no-till cropping practice.Am. Soc. Agric. Trani,18:918~920
    Pikul J L,Aase J K. 1999. Wheat response and residual soil properties following subsoiling of a sandy loam in eastern Montana.Soil & TillageRes, 51:61-70.
    Raper R L.2005. Agricultural traffic impacts on soil. Journal of Terramechanics 42:259–280
    Raper R L,Reeves D W. 1998. Using in-row subsoiling to minimize soil compaction caused by traffic. Jcotton Sci, (2):130-135.
    Sakai K, Hata. S.I. 1993. Design Parameters of Four-shank Vibrating Subsoiler. Transactions of the ASAE. 36(1).
    Satumino, H.M., Landers, J.N., 2002. The Environment and Zero Tillage. Associacao de Plantio Direto no Cerrado. Brasilia, DF, p:144
    Schaaf D E, Hann S,Rogers B. 1979. The development of performance data on seed drill furrow openers. ASAE Paper. No. 79--1016.
    Shao Mingan Horton R. 1998. Intergral method for estimating soil hydraulic properties. Soil Sci.Soci.Amer,62:585--592
    Shaw L N, Fluck R C, Bryan H H. 1978.Energy conservation by recropping pl astic mulch covered tomato beds. ASAE Paper No.78-1509.
    Shukla L N, Chauhan A M, Dhaliwal I S. 1996. Development of Minimum Till Planting Machinery. Published in AMA, VOL.27, N0.4 :15-18.
    Srivastava A K, Anibal M E. 1981. A punch planter for conservation tillage. St. Joseph. Michigan. ASAE P aper No.81-1020
    Suzanne Brais.2001.Persistence of Soil Compaction and Effects on Seedling Growth in Northwestern Quebec.Soil Sci Soe Am J, 65:1263--1271.
    Tullberg J N, Yule D F, McGarry D.2007. Controlled traffic farming—From research to adoption in Australia. Soil & Tillage Research 97:272–281
    Urger P W.1994.Tillage effects on dry-land wheat and sorghum production in the Southern Great Plains. Agronomy Journal,86(2):310~314
    Wooding R A.1968.Steady infiltration from shallow circular pond.Water Resour.Res4:1259~1273

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700