客运专线路桥过渡段动力特性的试验研究与数值分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
线路的平顺性和乘客舒适是控制高速铁路线路设计的重要指标。若路桥过渡段刚度差别大,轨道平顺性差,当列车高速通过时,将会引起乘客舒适度降低,甚至直接危及行车安全。因此,过渡段问题是高速铁路必须解决的关键技术之一。本文在广泛查阅国内外相关研究成果的基础上,以秦沈客运专线路桥过渡段为工程背景,采用理论研究、数值模拟和现场试验相结合的方法,研究列车荷载作用下不同结构型式的路桥过渡段的动力响应特性,主要工作如下:
     1.在广泛收集国外过渡段设计、施工、检测、维修、养护、试验研究和理论分析等技术资料的基础上,通过深入分析其技术思想、设计方法、使用条件、应用效果及存在问题,提出适合秦沈客运专线具体情况的过渡段处理措施。
     2.根据秦沈客运专线工程地质条件和路桥过渡段型式,选取具有代表性的关家庄大桥沈端加筋土路桥过渡段(DK46+765.95~DK46+790.95)和胡家屯中桥级配碎石过渡段(DK44+590.31~DK44+640.31)为试验工点。
     3.制定适用于不同过渡段型式的现场试验方案,包括确定实测内容、合理选择量测元件和仪器设备、测点布置、测试内容与动力测试方案。
     4.根据现场实测结果,分析不同型式过渡段在不同运营速度下的动力响应规律,研究动应力、动位移和加速度与列车速度的关系以及其沿路基深度的衰减规律。结果表明:路基的振动加速度和动应力随列车速度的提高而增强,但其影响主要在基床范围以内;
     5.考虑列车荷载的特性和过渡段的结构型式,基于商业软件FLAC(Fast Lagrangian Analysis of Continua in 2 Dimensions),建立不同型式过渡段的动力分析模型。
     6.利用所建过渡段动力分析模型,对不同列车速度下过渡段的动力响应进行数值仿真计算,结果表明:路基动应力峰值与加速度峰值均随行车速度的提高而增大,路基动应力随深度呈衰减趋势,计算所得动力响应规律与现场实测结果一致,验证模型的正确性。
     7.通过现场实测、有限差分分析,对级配碎石过渡段和土工格栅过渡段的动应力和振动加速度的变化规律进行对比分析,评判两种不同形式过渡段的处理效果。
     8.对两种不同形式过渡段的沉降规律进行实测,评判其控制工后沉降的效果。
The line's easement and the passengers' comfortability are the key indicators of controlling the design of the high-speed railway line. If the road bridge's stiffness has big differences and the line's easement is poor, it will decrease the passengers' comfortability, even endanger the safety. Thus the passing road phase is one of the must key technologies. The thesis has studied the aerodynamic response characteristics of the different structures' road bridge passing phases under the train load influence. It has adopted the combination of three methods: numerical modeling, theoretical research, and field test, on the ground of the QingShen passenger line and on the basis of lots of relevant research at home and abroad. The main jobs include:
     1. Based on the widespread collection of foreign technical data about design, construction, monitoring, maintenance, experimental study and theoretical analysis of Transition Part of road & bridge, the technical mechanism, design method, exploitation conditions, application effect and the existence question of transition part of road & bridge were thoroughly analyzed, the ground improvement measures which suits the Qinghuangdao-Shenyang dedicated passenger line's special details were proposed.
     2. Based on the geological conditions and the styles of Qinghuangdao-Shenyang dedicated passenger line, the representative test project were choosed, named geogrid transition part on Guanjiazhuang bridge (DK46+765.95-DK46+790.95) and graded broken stone transition part on Hujiatun bridge (DK44+590.31-DK44+640.31).
     3. The field test schemes that fit to different passing styles were established, including: deciding the test contents, selecting the measuring element and equipments, the assignment of the test ports and the dynamic test schemes.
     4. In terms of the test results,the dynamic response characteristics of the different structures' transition part of road & bridge under the different speed were analyzed. The relationships of dynamic stress ,dynamic displacement and acceleration ,and decrease rule with the depth of the subgrade bed. The results indicate the vibration acceleration and dynamic stress increase with the increase of the train speed but mainly within the bedding confination.
     5. The dynamic analyzing models of different transition styles were established on the basis of the commercial software FLAC(Fast Lagrangian Analysis of Continua in 2 Dimensions),which considering the train load characteristics and the structures of transition part.
     6.Utilizing the dynamic analysis models, the numeral simulation calculation of transition part's dynamic response under different train speed have done. The results show that the peak value of the dynamic press and the acceleration on subgrade bed were increased with the increase of the train speed ; the subgrade bed dynamic stress decrease with the depth of the subgrade bed. The calculated results is in accord with the field test, the accuracy of analyzing model was testified.
     7.Field test and the finite difference method were performed, the contrastive analysis on distribution trend of dynamic stress and vibration acceleration of graded broken stone transition part and geogrid transition part. The effect of these two kinds of transition parts were compared.
     8.The settlement distribution of graded broken stone transition part and geogrid transition part were monitored, whose control effects to post-construction settlement were estimated.
引文
[1] 胡晓旭.关于桥头跳车问题的初探[J].华东公路,1996(2):39~41
    [2] 史存林.路基与桥梁过渡段的技术措施[J].路基工程,1999(5):27~31
    [3] 王永和,杨果林,李献民等.路桥过渡段设置方式试验报告[R].秦沈客运专线综合试验科技攻关项目(项目编号:2000G47-C),长沙:中南大学,2003
    [4] 卢乃宽.世界高速铁路发展趋势[J].中国铁路,2000,(3):19~24
    [5] 孙翔.世界各国的高速铁路[M].成都:西南交通大学出版社,1992
    [6] 孙永福.高速铁路:成功与挑战[J].中国铁路,2003,(8):11~14
    [7] 钱仲侯.高速铁路概论[M].北京:中国铁道出版社,1999
    [8] 刘友梅.中国铁路高速探索.中国铁路发展论谈论文集,湖南长沙:2003,33~41
    [9] C. H. Gobel, U. C. weisemann. Effectiveness of a reinforcing geogrid in a railway subbase under dynamic loads[J]. Geotextiles and Geomembranes, 1994(13):91~99
    [10] 铁道第三勘察设计院.路桥过渡段设置方式试验报告[R].秦沈客运专线综合试验科技攻关项目(项目编号:2000G47-C),天津:2003
    [11] 杨广庆,刘宪富,叶朝良.高速铁路路基与桥梁过渡段技术措施分析[J].铁道标准设计,1999,(5):38~39
    [12] Zarembski,Allan Reduction of Dynamic Wheel/Rail IMPact Forces at Grade Crossings Using Stiffness Transition. Rail Transportation Division,2001, (21):97~116
    [13] 张宏,王劲松.路桥过渡段结构形式设计与施工方法探讨[J].公路,2001(9):49~53
    [14] 梁波,蔡英,罗强等.土工合成材料在高速铁路桥路过渡段中的应用[J].铁路学报,1999,21(4):64~67
    [15] Hunt, H. E. M. Settlement of railway track near bridge abutments.Proceedings of the Institution of Civil Engineers,Transport, 1997,123 (1):68~73
    [16] 胡晓旭.关于桥头跳车问题的初探[J].华东公路,1996,(2):39~41
    [17] 史存林.路基与桥梁过渡段的技术措施[J].路基工程,1999,(5):27~31
    [18] 徐浚,宁士亮.秦沈客运专线过渡段的设计和施工[J].铁道建筑,2001,(2):8~10
    [19] 杨广庆,刘树山,刘田明.高速铁路路基设计与施工[M].北京:中国铁道出版社,1999,95~111
    [20] 罗林,罗文灿.干线轨道不平顺紧急补修技术准则[J].铁道建筑,1990(10):9~13
    [21] 陈鹏,郑传超.路桥过渡段搭板应力分析[J].西安公路交通大学学报,1998,18(3B):244~251
    [22] 李守鹏,柳杨春.高速铁路路基级配碎石过渡段填筑技术[J].西部探矿工程,2001(2):3~4
    [23] 毛世福,马克相,刘向东.某路涵过渡段级配砂砾石填筑工艺试验研究[J].西部探矿工程,2001(增刊):45~48
    [24] 尹建勋,刘扬.秦沈客运专线路桥过渡段级配砂砾石填筑技术[J].铁道标准设计,2001,21(10):48~50
    [25] 刘向东,毛世福.路基过渡段级配碎石生产与施工技术[J].西部探矿工程,2001(4):25~57
    [26] 雷胜友.加筋土的强度理论及加筋土高挡墙[M].西安:西安地图出版社,2004
    [27] 杨果林.现代加筋土技术应用和研究发现[J].力学与实践,2002,24(1):9~17
    [28] Schlosser. F. Mechanically stabilized earth retaining structures[J]. Geotechnical special publication.ASCD, 1990,25:347~378
    [29] 陈玲灵.高速铁路涵洞洞顶不同填土厚度试验研究:[硕士学位论文].长沙:中南大学,2004
    [30] 梁波.高速铁路 路基的动力特性及土工合成材料的应用研究:[博士学位论文].成都:西南交通大学,1998
    [31] 梁波,蔡英.不平顺条件下高速铁路路基的动力分析[J].铁道学报,1999,21(12):84~88
    [32] 梁波,蔡英,朱东生.车-路垂向耦合系统的动力分析[J].铁道学报,2000,22(1):65~71
    [33] 杨灿文,龚亚丽.列车通过时路基的动应力和振动[J].土木工程学报,1963,9(2):49~57
    [34] 刘富,练松良.轨道纵向刚度变化对快速列车轮轨受力的影响[J].同济大 学学报,2001,29(11):1276~1281
    [35] 刘富,练松良.轨道刚度变化对轮轨冲击载荷的动力影响[J].同济大学学报,2002,30(4):427~430
    [36] Jones, D. V., Petyt, M.. Ground vibration in the vicinity of a rectangular load on a half-space [J].Journal of Sound and Vibration, 1993,166(1): 141~159
    [37] Jones, D. V., Petyt, M.. Ground vibration in the vicinity of astrip load A two-dimensional half-space model[J]. Journal of Sound and Vibration,1991,147(1):155~166
    [38] Jones, D. V., Petyt,M.. Ground vibration in the vicinity of astrip load.an elastic layer on a rigid foundation[J].Journal of Sound and Vibration, 1992,152(3):501~515
    [39] Jones, D. V., Petyt,M..Ground vibration in the vicinity of astrip load:an elastic layer on an elastic half-space[J]. Journal of Sound and Vibration, 1993,161 (1): 1~18
    [40] 聂志宏.高速铁路轨道路基竖向动力响应研究:[博士学位论文].长沙:中南大学,2005
    [41] 杨英豪,王杰贤.列车运行时振波在土中传递[J].西安建筑科技大学学报,1995,27(3):329~334
    [42] 周神根.铁路路基设计动荷载研究[J].路基工程,1996,68(5):6~11
    [43] 谢伟平,于艳丽,李红兵.高速移动荷载下轨道系统振动模拟的数值算法[J].武汉理工大学学报,2001,23(12):57~67
    [44] 谢伟平,王国波.移动荷载作用下轨道系统的动力特性分析[J].郑州大学学报(工学版),2003,24(1):24~27
    [45] 谢伟平,王国波,于艳丽.移动荷载作用下基于薄层单元法的土动力分析[J].华中科技大学学报(城市科学版),2004,2:8~11
    [44] 李军世,李克钏.高速铁路路基动力反应的有限元分析[J].铁道学报,1995,17(1):66~75
    [47] 聂志红,李亮,刘宝琛,阮波.秦沈客运专线路基振动测试分析[J].岩石力学与工程学报,2005,24(6):1067~1071
    [48] Wu, S. F., Zhou, Z.. Simulation of vehicle pass-by noise radiation Transactions of the ASME[J].Journal of Vibration and Acoustics, 1999,121 (2): 197~203
    [49] Takemiya, H.. Field vibration mitigation by honeycomb WIB for pile foundations of a high-speed train viaduct[J]. Soil Dynamics and Earthquake Engineering,2004,24(1):69~87
    [50] Takemiya,H.,Fei,G.and Sukeyasu, Y. 2-D Transient Soil-Surface foundation interaction and wave propagation by time domain BEM[J].Earthquake engineering and structural Dynamics, 1994,23:931~945
    [51] Takemiya, H., Sukeyasu, Y..Transient response of rigid strip foundations on a half-space/stratum soil due to impulsive loads[J].Computer Methods and Advances in Geomechanics,1994,2:993~998
    [52] H.Jenkins et al.The effect of track and vehicle parameter on Wheel/rail vertical dynamicforces[J].Railway Engineering,1974,3(1)
    [53] 潘昌实,GN.Pande.黄土隧道列车动荷载响应有限元[J].土木工程学报,1994,17(4):19~28
    [54] 李献民.高速铁路加筋过渡段静动力特性数值分析及试验研究:[博士学位论文].长沙:中南大学,2004年
    [55] 李献民.高速下过渡段路基动响应特性研究[J].岩土工程学报,2004,26(1):100~104
    [56] 陈雪华,律文田,王永和.高速铁路路桥过渡段路基动响应特性研究[J].振动与冲击,2006.3
    [57] 罗强,蔡英,瞿婉明.高速铁路路桥过渡段的动力学性能分析[J].工程力学,1999,16(5):65~75
    [58] 罗强,蔡英.高速铁路路桥过渡段技术处理措施的研究[J].铁道工程学报,1999,(3):30~33
    [59] 罗强,蔡英.高速铁路路桥过渡段变形限值与合理长度研究[J].铁道标准设计,2000,20(6-7):2~4
    [60] 王其昌,蔡成标,罗强等.高速铁路路桥过渡段轨道折角限制的分析[J].铁道学报,1998,20(3):109~113
    [61] 毛利军,雷小燕,杜厚智.提速线路轨道过渡段动力响应分析[J].华东交通大学学报,2001,18(1):35~40
    [62] 蔡成标,瞿婉明等.列车通过路桥过渡段时的动力作用研究[J].交通运输工程学报,2001(1):17~19
    [63] 陈果,翟婉明,左洪福.250km/h高速铁道轨道不平顺的安全管理[J],西南交通大学学报,2001,36(5):495~499
    [64] 罗强,蔡英,李成辉.高速铁路路桥过渡段的动力分析与结构设计[J].路基工程,1998,(1):1~5
    [65] 瞿婉明,蔡成标,王开云.轨道刚度对列车走行性能的影响[J].铁道学报,2000,22(6):80~83
    [66] 蔡成标,瞿婉明,王齐昌.不同轨下基础轨道连接的动力特性分析[J].铁道学报,2002,24(2):79~82
    [67] Zhai W M,True H.Vehicle-track dynamics on a ramp and on the bridge:simulation and measurement.Vehicle System Dynamic,2000, 33(suppl.):605~615
    [68] 王于,瞿婉明,王齐昌等.一种确定轨道过渡段长度的新方法[J].铁道工程学报,1999,(4):25~28
    [69] 董献付,辛文军.秦沈客运专线路基与桥梁、涵洞过渡段施工[J].铁道建筑技术,2001(增刊):3~6
    [70] 曾树谷.铁路散粒体道床[M].北京:中国铁道出版社,1997
    [71] 雷晓燕.铁路轨道结构数值分析方法[M].北京:中国铁道出版社,1998
    [72] 胡仁伟,王红,赵国堂.道碴动三轴试验研究[J].中国铁道科学,2001,22(2):101~106
    [73] 何兆益,黄卫,邓学钧.级配碎石弹性模量的动三轴试验研究[J].东南大学学报,1997,27(3):36~40
    [74] 王钊,王协群.土工合成材料加筋地基的设计[J].岩土工程学报,2000,22(6):731~735
    [75] 田小革,应荣华,张起森.应用土工格栅处理软土地基上的桥头跳车问题[J].岩土工程学报,2000,22(6):744~748
    [76] 李献民.土工格栅加固路桥过渡段的动测试分析[J].中南工业大学学报,2004.5
    [77] 杨果林.加筋土筋材长度荷载蠕变试验研究[J].煤炭学报,2001,26(2):132~136
    [78] 王钊.土工合成材料的蠕变试验[J].岩土工程学报,1994,16(6):96~104
    [79] 王钊,李丽华,王协群.土工合成材料的蠕变特性和试验方法[J].岩土力学,2004,25(5):723~727
    [80] 王协群,朱瑞赓.土工织物的蠕变性能和侧限蠕变试验研究[J].武汉理工 大学学报,2004,26(5):45~51
    [81] Giroud, J. P. and Noiray, L. Geotextile-reinforced unpaved road design. J. Geotech.Enger. ASCE. 1981.No.7,1233~1254
    [82] Giroud, J. P., Ah-line,C.,and Bonaparte R. Design of unpaved roads and trafficked aress with Geogrids. Proc. Symp. On Polymer Grid Reinforcement in Civ. Engr.,Thomas Telford. London. 1984.116~117
    [83] Yegian et al. Slip displacements of geosynthetic systems under dynamic excitation. Geotech. Spec.Publ.No.54,ASCE,N.Y, 1995
    [84] Kavazanjian et al. Seismic analysis of solid waste landfills. Geoenvironment 200, Geotech.Spec.Publ.No.46,ASCE,N.Y,1995
    [85] Yegian, Harb, and Kadakal. Dynamic response analysis procedure for landfills with geosynthetic liners. J. Geotech. Engr. ASCE, 1998.1027~1033
    [86] Kuhlemeyer, R. L.,and J. Lysmer. Finite Element Method Accuaracy for Wave Propagation Problems, J. soil Meth and Foundation,Div ASCE,99,421~427
    [87] 刘波,韩彦辉(美).FLAC原理、实例与应用指南[M].北京:人民交通出版社,2005.9
    [88] 国外高速铁路标准及规程汇编(第四、五册).德国铁路土工建筑规范(DS836).铁道部标准计量研究所,1995
    [89] 铁道部科学研究院铁道建筑研究所.高速列车作用下地基弹塑性与刚度的研究.国家“八五”计划科技攻关项目(85-402-02-02)研究报告之七,1995
    [90] 曾树谷主编.西班牙马德里一塞维利亚高速铁路赫塔费一科尔多瓦段工程施工.铁道部科学研究院编译,1999
    [91] 钱立新主编.世界高速铁路技术.中国铁道出版社,2003
    [92] 中华人民共和国铁道部建设司.秦沈客运专线路基技术施工细则(试行).[S]1999
    [93] 陈鹏.高速铁路路基的规定及对施工的几点认识[J].路基工程,2003.3
    [94] 中华人民共和国铁道部铁建管函1998279号.时速两百公里新建铁路线桥遂站设计站行规定.(Z)1998
    [95] 梁波,张艳美,韩自力.京秦提速工程车.路动力仿真与试验的对比研究[J].工程力学,2004,21(1):159~164
    [96] 刘波、韩彦辉.Flac原理、实例与应用指南[M].北京:人民交通出版 社,2005
    [97] Clark,C.W..Track loading fundamentals[J]. The railway Gazette
    [98] 翟婉明.机车-轨道耦合动力学理论及其应用[J].中国铁道科学,1996,17(2):58~73
    [99] M.JShenton.Deformation of railway ballast under repeated loading conditions.Railroad Track Mechanics and Technology, 1978:405~424
    [100] 罗克奇等.铁路道床振动计算与试验[J].长沙铁道学院学报,1996.(2)
    [101] 雷晓燕.铁路轨道结构数值分析方法[M].北京:中国铁道出版社,1998
    [102] Kunar, R.R.,P.J. Bereford and P.A Cundall."A test soil-structure model for surface structure,"in Proceedings of Symposium on Soil-structure Interation Vol, 1,137~144. India: sarit a Prakashan, 1977
    [103] Lysmer..and Kuhlemeyer, R.L.."Finite dynamic model for infinite media,"J,Eng.Mech.1969 859~877
    [104] 铁道部第三勘测设计院.京沪高速铁路线桥隧站设计暂行规定.天津1999
    [105] 王其昌.高速铁路土木工程[M].成都:西南交通大学出版社,1999
    [106] 周神根.高速铁路路基基床设计[J].路基工程,1997,72(3):1~5
    [107] Josef Eisenmann.Railroad track structure for high-speed lines. Railroad Track Mechanics and Technology, 1978:39~61
    [108] 铁道部第三勘测设计院.《时速200公里新建铁路线桥隧站暂行规定及条文说明》.北京,1998
    [109] 苏谦.高速铁路路基空间时变耦合系统动力分析模型及其应用研究:[博士学位论文].成都:西南交能通大学,2001
    [110] 吴世明.土动力学[M].北京:中国建筑工业出版社,2000
    [111] Fritz Birmann. Recent investigations of the dynamic modulus of elasticity of the track in ballast with regard to high speeds.Railroad Track Mechanics and Technology, 1978:197~220
    [112] Dingqing Li,Ernest T.Selig.Resilient modulus for fin-grained subgrade soils.J.of Geotech. Eng.ASCE, 1994; 120(6):939~957
    [113] Itasca Consulting Group,Inc.FLAC(Fast Lagrangian Analysis of Continua)User Manuals,Version 5.0,Minneapolis,Minnesota,2005.5
    [114] 刘军.土工格栅加筋档土墙数值模拟及特性研究.河海大学硕士学位论文2006
    [115] 刘伟.土工格栅加筋土边坡的数值试验研究.北京工业大学硕士学位论文2005
    [116] 铁道部高速铁路办公室.京沪高速铁路设计暂行规定[M].北京:中国铁道出版社,2003
    [117] 常杰峰.秦沈客运专线路基主要技术标准与设计[J].路基工程 2002,104(5)6~12
    [118] 陈希哲.土力学地基基础[M].北京:清华大学出版社,2003
    [119] 高大钊主编.土力学与基础工程[M].北京:中国建筑工业出版社,1998
    [120] 洪毓康.土质学与土力学[M].北京:人民交通出版社,2002
    [121] 陈仲颐,周景星,王洪瑾.土力学[M].北京:清华大学出版社,1987

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700