青藏铁路冻土区典型地段路基变形分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作者通过冻土学的基本理论并结合国内外的工程经验以及青藏铁路的特点,以来自铁路正线的变形和温度观测资料为基础,结合计算和数值预测,对青藏铁路冻土区路基变形和地温的现状以及发展趋势进行了分析研究和评价,认为目前青藏铁路冻土区路基变形趋于稳定,地温呈降低趋势,采用主动降温工程措施的冻土区路基工程基本处于稳定状态,未来运营期间青藏铁路冻土区路基稳定性可以得到保证,但是在个别的特殊地段需要重点观察,必要时需进行补强。文中对冻土路基的工程划分和对冻土路基变形发生、发展过程的阶段划分,属于创新的分类,并且,对于冻土变形机理的分析和结论,也是作者首次提出的。论文中的主要结论已经被青藏铁路的工程实践所证明是正确的,部分建议已经在工程中采纳。
In this paper the author analyzed the monitor data of roadbed deformation and ground temperature of Qinghai-Tibet railway and concluded that the deformation of permafrost roadbed is made up of frost-heaving and the deformation of thawing-collapse of soil of seasonal thawing layer and compression deformation of frozen soil with relative higher temperature under the frost-thawing interface. Thawing and freezing process of roadbed in permafrost region and its results under the effects of different environmental temperature and permafrost temperature are the mechanics and controlling factors of the roadbed deformation. And author classified roadbed construction in permafrost region of Qinghai-Tibet railway into three types which are roadbed constructions with low environmental atmospheric temperature and ground temperature, high environmental atmospheric temperature and low ground temperature, and high environmental atmospheric temperature and ground temperature. Analysis of deformation monitor data and computer simulation show that the deformation of the roadbed at present is stable and safe and the development trend of it can guarantee the safety of the railway in the following decades. But in the sectors of simple fill roadbed and low-height roadbed the reduction of fill temperature and lifting of permafrost table are limited because of the limitation of such roadbed structure. Therefore additional measures such as thermal rod roadbed structure should be used in such sectors in order to lift permafrost table, reduce ground soil temperature and guarantee the stability of roadbed construction in permafrost region.
引文
[1] 温智,盛煜,吴青柏.青藏铁路路基浅地表热状态动态监测初步分析.岩石力学与工程学报,2003,22(增2):2664-2668.
    [2] 盛煜,温智,马巍.青藏铁路北麓河试验段路基保温材料处理措施初步分析.岩石力学与工程学报,2003,22(增2):2659-2664.
    [3] 牛富俊,马巍,赖远明.青藏铁路北麓河试验段通风管路基工程效果初步分析.岩石力学与工程学报,2003,22(增2):2652-2658.
    [4] 张学富,赖远明,喻文兵,等.寒区隧道温度场三维空间数值分析.铁道学报,2003,25(3):84-90.
    [5] 赖远明,吴紫汪,张淑娟,等.寒区隧道保温效果的现场观察研究.铁道学报,2003,25(1):81-86.
    [6] 马巍,常小晓,王大雁.人工冻结开挖工程中冻土壁强度与变形分析.岩石力学与工程学报,2003.22(增2):2871-2874.
    [7] 赵淑萍,朱元林,何平,等.冻土动力学参数测试研究.岩石力学与工程学报,2003,22(增2):2677-2681.
    [8] 杨成松,何平,程国栋,等.冻融作用对土体干容重和含水量影响的试验研究.岩石力学与工程学报,2003,22(增2):2695-2699.
    [9] 凌贤长,徐学燕,邱明国,等.冻结哈尔滨粉质粘土动三轴试验CT检测研究.岩石力学与工程学报,2003,22(8):1244-1249.
    [10] 米隆,赖远明,吴紫汪,等.高原冻土铁路路基温度特性的有限元分析.铁道学报,2003,25(2):62-67.
    [11] 李栋梁,季国良,吕兰芝.青藏高原地面加热场强度对北半球大气环流和中国天气气候异常的影响研究.中国科学(D辑),2001,31(增):312-319.
    [12] 赖远明,张鲁新,张淑娟,等.气候变暖条件下青藏铁路抛石路基的降温效果.科学通报,2003,48(3):292-297.
    [13] 牛富俊,张建明,张钊.青藏铁路北麓河试验段冻土工程地质特征及评价.冰川冻土,2002,24(3):264-269.
    [14] 牛富俊,张鲁新,俞祁浩.青藏高原多年冻土斜坡类型及典型斜坡稳定性研究.冰川冻土,2002,24(5):608-613.
    [15] 盛煜,刘永智,张建明,等.青藏公路多年冻土路基内的热状况.自然科学进展,2002,12(8):839-844.
    [16] 盛煜,张鲁新,杨成松,等.保温处理措施在多年冻土区道路工程中的应用.冰川冻土,2002,24(5):618-627.
    [17] 米隆,赖远明.冻土通风路基温度场的三维非线性分析.冰川冻土,2002,24(6):765-769.
    [18] 马巍,程国栋,吴青柏.多年冻土地区主动冷却地基方法研究.冰川冻土,2002,24(5):579-587.
    [19] 李述训,南卓铜,赵林.冻融作用对系统与环境间能量交换的影响.冰川冻土,2002,24(2):109-115.
    [20] 李述训,南卓铜,赵林.冻融作用对地气系统能量交换的影响分析.冰川冻土,2002,24(5):506-511.
    [21] 南卓铜,李述训,刘永智.基于年平均地温的青藏高原冻土分布制图及应用.冰川冻土,2002,24(2):142-148.
    [22] 吴青柏,朱元林,刘永智.人类工程活动下冻土环境变化评价模型.中国科学(D辑),2002,32(2):141-148.
    [23] 刘永智,吴青柏.多年冻土路基变形研究.冰川冻土,2002,23(1):10-15.
    [24] 吴青柏,施斌.试论青藏铁路修筑中的冻土环境保护问题.水文地质工程地质,2002,29(4):14-16.
    [25] 吴青柏,施斌,刘永智.青藏公路沿线多年冻土与公路间相互作用过程研究.中国科学(D辑),32(6):514-520.
    [26] 吴青柏,朱元林,刘永智.工程活动下多年冻土热稳定性评价模型.冰川冻土,2002,24(2):129-133.
    [27] 吴青柏,朱元林,刘永智.青藏高原多年冻土顶板温度和温度位移预报模型的应用.冰川冻土,2002,24(5):614-617.
    [28] 王根绪.程国栋,沈永平.青藏高原草地土壤有机碳库及其全球意义.冰川冻土,2002,24(6):693-700.
    [29] 王根绪,程国栋,沈永平,等.土地覆盖变化对高山草甸土壤特性的影响.科学通报,2002,47(23):1771-1777.
    [30] 胡泽勇,钱泽雨,程国栋,等.太阳辐射对青藏铁路路基表面热状况的影响.冰川冻土,2002,24(2):121-128.
    [31] 何平,程国栋,杨成松,等.非饱和冻土的强度分析.冰川冻土,2002,24(3):260-263.
    [32] 刘为民,何平,张钊.土体导热系数的评价与计算.冰川冻土,2002,24(6):770-773.
    [33] 赵淑萍,何平,朱元林,等.冻结砂土在动荷载下的蠕变特征.冰川冻土,2002,24(3):270-274.
    [34] 赵淑萍,朱元林,何平,等.冻土动力学研究现状与进展.冰川冻土,2002,24(5):681-686.
    [35] 李新,程国栋.冻土—气候关系模型评述.冰川冻土,2002,24(3):315-321.
    [36] 南卓铜,李新,李述训.“青藏铁路数字路基与仿真平台”体系架构设计.冰川冻土,2002,24(5):646-651.
    [37] 马明国,王雪梅,李新.青藏铁路信息系统数据库设计.冰川冻土,2002,24(5):652-658.
    [38] 王铁行,胡长顺,李宁.冻土地基应力变形数值模型.岩土工程学报,2002,24(2):193-197.
    [39] 陈飞熊,李宁,程国栋.饱和正冻土多孔多相介质的理论构架.岩土工程学报,2002,24(2):213-217.
    [40] 常斌,李宁.前馈逆传播算法优化及其在岩土工程中的应用.岩土工程技术,2002,5:249-251.
    [41] 常斌,李宁.软件开发中的错误处理技术的原理与实践.计算机应用研究,2002,增刊:284-285.
    [42] 王可丽,程国栋.青藏铁路沿线地表和路基热力学模式(Ⅰ):物理过程与实验方案.冰川冻土,2002,24(6):759-764.
    [43] 张学富,赖远明,喻文宾,等.寒区涵洞现浇混凝土基础水化热的影响分析.公路,2003,2:50-56.
    [44] 牛富俊,俞祁浩,赖远明.青藏铁路管道通风试验路基地温变化及热状况分析.冰川冻土,2003,25(6):614-620.
    [45] 张建明,盛煜,赖远明.铁路碎石道碴层导热系数测试研究.冰川冻土,2003,25(6):628-631.
    [46] 程国栋,马巍.国际冻土工程研究进展—第五届冻土工程国际学术研讨会综述.冰川冻土,2003,25(3):303-308.
    [47] 赖远明,张鲁新,张淑娟,等.气候变暖条件下青藏铁路抛石路基的降温效果.科学通报,2003,48(3):292-297.
    [48] 冯文杰,马巍,吴志坚,等.遮阳棚在寒区道路工程中的应用研究.岩土工程学报,2003,25(5):567-570.
    [49] 王兰民,张冬丽,吴志坚,等.地温对冻土动力特性及其场地地震动参数的影响.中国地震,2003,19(3):195-205.
    [50] 赖远明,张鲁新,徐伟泽,等.青藏铁路抛石路基的温度特性研究.冰川冻土,2003,25(3):291-296.
    [51] 宁建国,李伟,郝玖锋,等.平面应变条件下孔洞化不稳定性问题研究.固体力学学报,2003,24(3):359-363.
    [52] 王建省,宁建国.冻士力学研究的重要领域及问题.北方:工业大学学报,2003,15(1):77-88.
    [53] 李栋梁,郭慧,王文,等.青藏铁路沿线平均年气温变化趋势预测.高原气象,2003,22(5):431-439.
    [54] 汤懋苍,钟海玲,李栋梁.青藏铁路沿线的四季划分及其温度变化分析.高原气象,2003,22(5):440-444.
    [55] 秦宁生,邵雪梅,靳立亚,等.青海南部高原圆柏年轮指示的近500年来气候变化.科学通报,2003,48(19):2068-2072.
    [56] 秦宁生,邵雪梅,时兴合,等.青南高原树轮年表的建立及与气候要素的关系.高原气象,2003,22(5):445-450.
    [57] 徐影,丁一汇,李栋梁.青藏地区未来百年气候变化.高原气象,2003,22(5):451-457.
    [58] 高学杰,李栋梁,赵宗慈,等.温室效应对青藏高原及青藏铁路沿线气候影响的数值模拟.高原气象,2003,22(5):458-463.
    [59] 蔡英,李栋梁,汤懋苍,等.青藏高原近50年来气温的年代际变化.高原气象,2003,22(5):464-470.
    [60] 张艳武,吕世华,李栋梁,等.初冬青藏高原冻土过程的数值模拟.高原气象,2003,22(5):471-477.
    [61] 魏丽,李栋梁.青藏高原地区NCEP新再分析地面通量资料的检验.高原气象,2003,22(5):478-487.
    [62] 魏丽,李栋梁.NCEP/NCAR再分析资料在青藏铁路沿线气候变化研究中的适用性.高原气象,2003,22(5):488-494.
    [63] 王文,李栋梁.青藏铁路沿线超长期气候变化预测的概率估计.高原气象,2003,22(5):495-498.
    [64] 董安祥,李栋梁,龚建福,等.用模糊均生函数模型作青藏高原气候冷暖预测.高原气象,2003,22(5):499-502.
    [65] 董安祥,白虎志,李栋梁.青藏铁路沿线气温和地温的极值推算.高原气象.2003,22(5):499-502.
    [66] 马晓波,李栋梁.青藏高原近代气温变化趋势及突变分析.高原气象,2003,22(5):507-512.
    [67] 时兴合,秦宁生,唐红玉,等.青藏铁路青海段夏季温度预测的精度检验.高原气象,2003,22(5):513-517.
    [68] 汪青春,周陆生,秦宁生,等.利用乌兰树木年轮重建托托河冬季温度序列.高原气象,2003,22(5):518-523.
    [69] 李林.朱西德,秦宁生,等.青藏高原气温变化及其异常类型的研究.高原气象,2003,22(5):524-530.
    [70] 朱西德,李林,等.青藏高原年降水量的气候变化及其异常类型研究.气象科学,2003,23(4):452-459.
    [71] 王根绪,沈永平,钱鞠,等.高寒草地植被覆盖变化对土壤水分循环影响的初步研究.冰川冻土,2003,25(6):653-659.
    [72] 李南生,李洪生,丁德文,等.非规则边界相变温度场的奇异摄动解法.冰川冻土,2003,25(4):453-460.
    [73] 程国栋,江灏,王可丽,等.冻土路基表面的融化指数与冻结指数.冰川冻土,2003,25(6):603-607.
    [74] 吴青柏.沈永平,施斌.青藏高原冻土及水热过程与寒区生态环境的关系.冰川冻土,2003,25(4):250-255.
    [75] 彭轩明,吴青柏,田明中.黄河源区地下水位变化与生态环境.冰川冻土,2003,25(6):667-671.
    [76] 汪双杰,吴青柏.沥青路面下多年冻土热稳定性和热融敏感性.中国交通科技,2003,20(4):20-22.
    [77] 何平,程国栋,杨成松,等.冻土融沉系数的评价方法.冰川冻土,2003,25(6):608-613.
    [78] 王丽霞,凌贤长,徐学燕,等.多年冻土场地路基地震响应动应力性状研究.地震工程与工程振动,2003,5.
    [79] 程国栋.局地因素对多年冻土分布的影响及其对青藏铁路设计的启示.中国科学(D辑),2003,33(6):602-607.
    [80] 程国栋.青藏高原多年冻土区路基工程地质研究.第四纪研究,2003,23(2):134-141.
    [81] 张义军,言穆弘,张翠华,等.甘肃平凉地区正地闪特征分析.高原气象,2003,22(3):295-300.
    [82] 张义军,Paul R.Krehbiel,刘欣生,等.闪电放电通道的三维结构特征.高原气象,2003,22(3):217-220.
    [83] 董万胜,刘欣生,陈慈萱,等.用宽带干涉仪观测云内闪电通道双向传输的特征.地球物理学报,2003,46(3):317-321.
    [84] 董万胜,刘欣生,张义军,等.云闪放电通道发展及其辐射特征.高原气象,2003,22(3):221-225.
    [85] 董万胜,刘欣生,张义军,等.25-100MHz频段闪电电磁脉冲辐射能量频谱特征.中 国电机工程学报,2003,23(3):104-107.
    [86] 张鸿发,郭三刚,张义军,等.青藏高原强对流雷暴云分布特征.高原气象,2003,22(6):678-684.
    [87] 郄秀书,Ralf Toumi.卫星观测到的青藏高原雷电活动特征.高原气象,2003,22(3):288-293.
    [88] 和礼红,汪稔.土结构性研究方法之现状.土工基础,2003,17(3):84-86.
    [89] 南卓铜,李新,李述训.“青藏铁路数字路基与仿真平台”集成设计研究.遥感信息.2003,1:15-18.
    [90] 李新,小池俊雄,程国栋.一个基于模拟退火法的陆面数据同化算法.地球科学进展,2003,18(4):632-636.
    [91] 李宁,陈波,陈飞熊.寒区复合地基的温度场、水分场与变形场三场耦合模型.土木工程学报,2003,36(10):66-71.
    [92] 王丽霞,凌贤长,徐学燕,等.多年冻土场地路基地震响应动应力性状研究.地震工程与工程振动,2003,5.
    [93] 南卓铜,高泽深,李述训,等.近30年来青藏高原西大滩多年冻土变化.地理学报,2003,58(6):817-823.
    [94] 李新,程国栋,卢玲.青藏高原气温分布的空间插值方法比较.高原气象,2003,22(6):565-573.
    [95] 常斌,李宁.BP网络非线性系数取值研究及其在岩土工程中的应用.西安理工大学学报,2003,19(1):30-34.
    [96] 李宁,朱远明,张平,等.酸性环境中钙质矫捷砂岩的化学损伤模型.岩土工程学报,2003,25(4):395-399.
    [97] 程国栋,张建明,盛煜,等.保护冻土的原理.上海师范大学学报(自然科学版),2003,32(4):1-6.
    [98] 程国栋.用冷却路基的方法修建青藏铁路.中国铁道科学,2003,24(3):1-4.
    [99] 马巍.青藏铁路建设中冻土区岩土工程工程问题.第九届土力学及岩土工程学术会议论文集.北京:清华大学出版社,2003.155-162.
    [100] 全晓娟,李宁,苏波,等.冻土地区碎石路基的研究现状与进展.第九届土力学及岩土工程学术会议论文集.北京:清华大学出版社,2003.1281-1285.
    [101] 李国玉,全晓娟,李宁.用人工神经网络建立青藏高原高含冰量冻土的导热系数预测模型.第九届土力学及岩土工程学术会议论文集.北京:清华大学出版社,2003.1327-1330.
    [102] 苏波,李宁,全晓娟.人工调控条件下青藏铁路多年冻土段通风路基冷却机理数值试验研究.第九届土力学及岩土工程学术会议论文集.北京:清华大学出版社,2003.1377-1383.
    [103] 马巍.关于青藏铁路建设的若干重大问题.21世纪的岩土力学与岩土工程.全球华人中青年学者岩土力学与工程学术论坛、中国科学院岩土力学与工程学术研讨会,2003.90-101.
    [104] 和礼红,汪稔.特殊土结构性研究之现状.全国岩士与工程学术大会论文集.北京:人民交通出版社,2003.379-385.
    [105] 中铁西北科学研究院,航天科工哈尔滨风华有限公司.研究报告:青藏铁路冻土热管的传热分析.2003.7.
    [106] 江苏中圣石化有限公司.加固青藏铁路冻土路基用低温热管的技术条件.2003.2
    [107] 青藏铁路公司.青藏铁路公司热管技术规格和验收标准(暂行稿).2003.9.
    [108] 凌贤长,徐学燕,徐春华,等.冻结哈尔滨粉质粘土超声波速测定试验研究.岩土工程学报,2002,24(4):457-59.
    [109] Dong Wansheng, Liu Xinsheng, Chen Mingli, et al. Broadband Interferometer Observations of the Bi-directional Breakdown Process in Natural Lightning. Chinese Journal of Geophysics, 2003, 46(3): 449-456.
    [110] Niu Fujun, Sheng Yu, Jin Dewu. Field Study on Instability of Slopes in Permafrost Regions of the Qinghai-Tibet Plateau. Proceedings of the International Conference on Slope Engineering. HongKong: the University of HongKong, 2003. 380-385.
    [111] Q.H.Yu, G.D.Cheng. The progress of permafrost investigation with geophysical methods in China. Proceedings of the 8th International Conference on Permafrost. Tokyo: A.A. Balkema, 2003. 1271-1275.
    [112] F.J. Niu, G.D. Cheng, Y.M. Lai. Laboratory study on a duct-ventilation roadbed of the Oinghai-Tibet railway. Proceedings of the 8th International Conference on Permafrost. Tokyo: A.A. Balkema, 2003. 815-820.
    [113] Ma Wei, Chang Xiaoxiao. Comparison of strength of artificially frozen soil in two test modes. Proceedings of the 8th International Conference on Permafrost. Tokyo: A.A.BALKEMA Publishers, 2003. 747-752.
    [114] Q.Wu, B.Shi. Application of models for calculating thermal offset and annual mean permafrost-surface temperature(AMPST) in permafrost research on the Qinghai-Tibet Plateau. Proceedings of the 8th International Conference of Permafrost. Tokyo: A.A.BALKEMA Publishers, 2003. 1247-1252.
    [115] Zhao S.P., Y.L. Zhu, P.He. Recent Progress in research on the dynamic response of frozen soil. Proceedings of the 8th International Conference on Permafrost. Tokyo: A.A.BALKEMA Publishers, 2003. 1301-1306.
    [116] G-D.Cheng, X.Li. Constructing the Oinghai-Tibet Railroad: new challenges to Chinese permafrost scientists. Proceedings of the 8th International Conference on Permafrost. Tokyo: A.A.BALKEMA Publishers, 2003. 131-134.
    [117] He Ping, Cheng Guodong, Liu Weiming, et al. Analyses on Thermal Conductivity for Unfrozen and Frozen Soils. Proceedings of the International Geotechnical Conference on Reconstruction of Historical Cities and Geotechnical Engineering. Saint Petersburg-Moscow: ASV Publishers, 2003. 341-344.
    [118] Jian-xing Wang, Jian-guo Ning. A new theory of constitutive relation for thermo-elasto-plastic problems in porous medium. Proceedings of the 4~th International Conference on Nonlinear Mechanics. Shanghai: Shanghai University Press, 2002. 364-367.
    [119] #12
    [120] #12
    [121] #12
    [122] #12
    [123] #12
    [124] #12
    [125] #12
    [126] #12
    [127] #12
    [128] John Zarling, Tom Kinney. Design Aids for Thermal Analysis Final Report. State of Alaksa Department of Transportation and Public Facilities Statewide Research. 1991.2
    [129] John P. Zarling. High Capacity Intersection Thaw System. Alaska Cooperative Transportation and Public Facilities Research Program Final Report. 1995.2
    [130] Zarling, J. E, W. A. Braley. Thaw stabilization of roadway embankments constructed over permafrost, Federal Highway Administration Report No. FHWA-AK-RD-87-20., 1986
    [131] Zarling, J. P., Thermosyphon Installation of Chena Hot Springs Road, Report to Alaska Department of Transportation and Public Facilities, October, 1999.
    [132] Zarling, J. P., Analysis of Thaw Settlement of Pump Station No. 1, Consulting Report to Alyeska Pipeline Service Company, Fairbanks, Alaska. 1998.
    [133] Zarling, J.P.. Surface Modifications to Protect Permafrost, Alaska Department of Transportation and Public Facilities. Report No. SPR-UAF-92-18,363 pp. 1995.
    [134] Zarling, J.P.. High Capacity Intersection Thawing, Alaska Department of Transportation and Public Facilities. Report No. SPR-UAF-92-21,45 pp. 1995.
    [135] Williams, R., and J.P. Zarling, Thermosyphon-Coupled Heat Pumps, Report to the National Rural Electric Cooperative, Energy Research Division, 80 pp. 1995.
    [136] Zarling, J.P. and F.D. Haynes. Appendix D Thermosyphon Devices and Slab-on Grade Foundation Design, in Frozen Ground Engineering, Orlando Andresland and Branko Ladanyi, Van Nostrand Reinhold, New York, NY. 1993.
    [137] Cheng, K.C. and J.P. Zarling. Thermosyphon Applications in Cold Regions, Proceedings of the Sixth International Heat Pipe Conference, Vol. 2, Begell House, London, 1-32.1993.
    [138] Zarling, J.P. Thermosyphon applications in cold regions. Proceedings, Fourth International Symposium on Thermal Engineering and Science for Cold Regions, eds. V.J. Lunardini and S.L. Bowen. Hanover, New Hampshire, 24-35.1993.
    [139] Zarling, J.P., F.D. Haynes, and V.L. Lunardini. Thermal design in permafrost regions. Proceedings, 11th International Conference on Offshore Mechanics and Arctic Engineering, ASME, Calgary Canada, Vol. IV, 113-122.1992.
    [140] Haynes, F.D., J.P. Zarling and GE. Gooch. Performance of a thermosyphon with a 37-meter-long horizontal evaporator. Cold Regions Science and Technology, Vol. 20, 261-269.1992.
    [141] Haynes, F.D., J.P. Zarling, GE. Gooch, and Zablinsky.. Laboratory tests with a thermosyphon in soil. Proceedings, 11th International Conference on Offshore Mechanics and Arctic Engineering, ASME, Calgary Canada, Vol. IV, 139-144.1992
    [142] Zarling, J.P. and T. Kinney. Design aids for thermal analysis. Alaska Department of Transportation and Public Facilities, Report No. FHWA-AK-RD-37-11.1991
    [143] Haynes, F.D., J.P. Zarling, W.F. Quinn, and GE. Gooch. Laboratory tests with a hybrid thermosyphon. Proceedings, 10th International Conference on Offshore Mechanics and Arctic Engineering. Vol. IV, 93-99.1991.
    [144] Zarling, J.P., and F.D. Haynes. Thermosyphon based designs and applications for foundations built on permafrost. Proceedings, International Arctic Technology Conference, Society of Petroleum Engineers, Anchorage, AK, 449-458.1991.
    [145] Zarling, J.P., F.D. Haynes and JJ. Gagnon. Thermal stabilization of permafrost with thermosyphons, ASME 9th International Conference on Offshore Mechanics and Arctic Engineering, Houston Vol. IV, 323-328.1990.
    [146] Haynes, F.D., and J.P. Zarling. Heat transfer performance of commercial thermosyphons with inclined evaporator sections. Proceedings of the Seventh International Conference on Offshore Mechanics and Arctic Engineering, Vol. IV, 275-280. 1988.
    [147] Zarling, J.P., and F.D. Haynes. Laboratory tests and analysis of thermosyphons with inclined evaporator sections. ASME 4th International Offshore Mechanics and Arctic Engineering Symposium, Dallas, TX. Vol. II, 31-37. 1985.
    [148] Zarling, J.P., and F.D. Haynes. Performance of a thermosyphon with an inclined evaporator and vertical condenser. ASME 3rd International Offshore Mechanics and Arctic Engineering Symposium, New Orleans, LA. Vol. Ⅲ, 64-68. 1984.
    [149] Haynes, ED., and J.P. Zarling. Thermosyphous and foundation design in cold regions. Cold Regions Science and Technology, Vol. 15, 251-259. 1988.
    [150] Zarling, J.P., and W.A. Braley. Geotechnical thermal analysis. Embankment design and construction in cold regions. Technical Council on Cold Regions Engineering, ASCE, New York, NY, 35-92. 1988.
    [151] Zarling, J.P., W.A. Braley and D.C. Esch. Thaw stabilization of roadway embankments constructed over permafrost. Proceedings of the V International Permafrost Conference, Trodhiem, Norway. 1988.
    [152] Zarling, J.P., F.D. Haynes and S.F. Daly. On the application of thermosyphons in cold regions. Proceedings of the Seventh International Conference on Offshore Mechanics and Arctic Engineering, Vol. Ⅳ, 281-286. 1988.
    [153] Haynes, ED., and J.P. Zarling. Heat transfer characteristics of thermosyphous with inclined evaporator sections. ASME 5th International Offshore Mechanics and Arctic Engineering Symposium, Tokyo, Japan. Vol. Ⅳ, 285-292. 1986.
    [154] Heuer, C.E., E.L. Long, and J.P. Zarling. Passive techniques for ground temperature control. Thermal Considerations in Frozen Ground Engineering, Monograph Series by ASCE Technical Council on Cold Regions Engineering, New York, 72-154. 1985.
    [155] Zarling, J.P., and F.D. Haynes. Thennosyphon devices and slab- on-grade foundation design. Alaska Department of Transportation and Public Facifities. Report No. AK-RD-86-16. 63 pp.1985.
    [156] Zarling, J.P., B. Connor, and D.J. Goering. Air duct systems for roadway stabilization over permafrost areas. Alaska Department of Transportation and Public Facilities. Report No. FHWA-AK-RD-84-10. 37 pp. 1984.
    [157] Haynes, ED., and J.P. Zarling. A comparative study of thermosyphons used for freezing soil. ASME Winter Annual Meeting, Phoenix, AZ. Paper No. 82-WA/HT-40. 5 pp. 1982.
    [158] Zarling, J.E Air-to-air heat recovery devices for small buildings. Proceedings of the Second International Cold Regions Engineering Conference, The Northern Community, ASCE, Seattle, WA, 381- 395. 1981.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700