复合光催化剂的制备及其降解水中染料的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米半导体光催化技术作为一种有效的环境污染物治理方法被广泛研究。纳米氧化锌(纳米ZnO)作为一种重要的光催化剂,是极少数几个可以实现量子尺寸效应的氧化物半导体材料,更被证实在某些实验条件下具有比TiO_2更高的催化性能,近年来引起人们广泛关注,在污染物光催化降解方面显示出良好的应用前景。针对普通单一光催化半导体催化效率低的特点,对光催化剂的开发研究具有重要意义。目前对纳米ZnO的改性研究不如TiO_2广泛,所以如何对纳米ZnO光催化剂进行性能改进还需要一定的研究。并且对光催化降解机理等还有待于进一步的研究和完善。
     本文着眼于纳米ZnO的性能改进研究,利用一种既简单又廉价的合成路线制备高效的复合ZrO_2/ZnO光催化剂。这种新型催化剂不仅进一步拓宽了ZnO的复合氧化物型光催化剂的研究领域,并且通过其对偶氮染料的吸附和降解动力学以及降解途径的分析也进一步完善了光催化技术的机理研究,对其应用到实际废水中有机污染物的光催化治理过程中,具有一定的现实意义。
     采用共沉淀-热分解法制备了复合ZrO_2/ZnO光催化剂,利用XRD、SEM、TEM、TG-DTA和FT-IR等对其进行了表征,通过酸性红B的等温吸附实验和紫外光催化降解实验,系统地研究了不同锌源、煅烧温度、煅烧时间、Zr复合比例等对ZrO_2/ZnO光催化剂结构和催化活性的影响。通过实验结果证实了ZrO_2的复合降低了ZnO的粒径,提高了它的光催化活性,2.5%ZrO_2/ZnO的光催化效率相对纯ZnO提高了11%,略好于P25 TiO_2。
     考察了染料初始浓度、催化剂投加量、溶液pH值、溶液温度、过氧化氢浓度、光强、乙醇等因素对紫外光催化降解酸性红B的影响。光催化反应对反应体系的温度不敏感,溶液温度降低对反应速率和平衡吸附量影响不大。其它因素都能显著影响光催化反应的进行。催化剂投加量和过氧化氢都存在一个最佳浓度,超过最佳浓度反而会降低反应效果。溶液pH值是通过改变催化剂表面电性而引起吸附物种的改变来影响反应效果,在等电点附近酸性红B处理效果最差。除Ag~+外,Fe~(3+)、Fe~(2+)和Mn~(2+)都能提高酸性红B在催化剂表面的平衡吸附量,但只有Fe~(3+)和Ag~+能够通过抑制电子-空穴的复合而起促进作用,Fe~(2+)和Mn~(2+)浓度越高阻碍作用越明显。NO_3~-离子作用不明显,SO_4~(2-)和Cl~-通过竞争吸附和捕获·OH抑制吸附和降解过程。IO_4~-在紫外光作用下能够生成·OH从而对反应起到促进作用。在太阳光条件下,2.5%ZrO_2/ZnO同样具有较高的光催化效率。
     通过等温吸附实验考察了催化剂用量、酸性红B初始浓度和溶液pH值对平衡吸附量的影响,并运用Langmuir和Freundlich等温吸附模型对酸性红B在ZnO和2.5%ZrO_2/ZnO表面的吸附规律进行模拟,然后分别计算并对比各参数值以及吸附自由能Δ_(ad)G°来研究它们吸附性能的差异,说明2.5%ZrO_2/ZnO不仅具有较高的吸附能力,而且相对纯ZnO有所提高。
     酸性红B的光催化降解反应符合L-H准一级动力学模型。通过考虑中间产物等竞争吸附的影响对该模型进行修正。分别计算ZnO和2.5%ZrO_2/ZnO的修正前后的L-H反应动力学模型中各参数值以及半衰期表观值和计算值。说明2.5%ZrO_2/ZnO相对ZnO的较高的光催化活性,中间产物等对反应起到延迟作用。
     根据降解过程中TOC、pH、SO_4~(2-)、NO_3~-和NH_4~+无机离子生成量以及UV-Vis光谱变化来分析酸性红B的脱色降解过程。随着反应的进行,脱色率不断提高,但是TOC的去除相对缓慢一些。根据溶液中总S和总N的理论值与实际检测值推断酸性红B的降解过程中-SO_3~-磺酸基和N的转化过程。脱-SO_3~-磺酸基和脱色反应均为初始反应,大部分N是以N_2形式释放出。
     总而言之,通过酸性红B的等温吸附实验和光催化降解实验结果,证明了本文合成的新型2.5%ZrO_2/ZnO复合光催化剂具有较高的吸附性能和催化活性,通过ZrO_2的复合提高了纳米ZnO的光催化性能,达到了既定目标,并且通过对偶氮染料酸性红B的影响因素和降解机理的研究不仅进一步充实了光催化机理内容也为该技术应用于实际污水处理提供了必要的参考。
Nano-semiconductor photocatalytic technique has received considerable attentionfor treatment of environment pollutants. As an important photocatalyst, nano zincoxide (ZnO) was one of several semiconductors which could realize quantum sizeeffect and sometimes has better photocatalytic activities than TiO_2. In recent years, ithave attracted comprehensive attentions and showed a good prospect of applicationfor photocatalytic degradation of pollutants. But the photocatalytic efficiency ofsingle photocatalyst is relatively low, so it is of great importance to exploit novelphotocatalysts. At present, there are fewer studies on modification of nano ZnO thanTiO_2 so that how to improve its activities still need to be researched. And thephotocatalytic degradation mechanism still needs further study and perfection.
     The aim of this paper is to improve the photocatalytic activities of ZnO and prepareZnO-based composite catalysts coupled with ZrO_2 with excellent property by asimple and cheap synthesis route. The novel photocatalyst not only enlarge the typeof coupled oxide conductors with ZnO, but also perfect the photocatalyticmechanisms by kinetics of adsorption and degradation, and analysis of the reactionpathway. Moreover, it is of practical significance to realize its large-scale applicationin treatment of organic pollutants.
     The composite photocatalyst ZrO_2/ZnO was prepared by co-precipitation andthermal decomposition method, was characterized by X-ray diffraction (XRD),scanning electron microscopy (SEM), transmission electron microscopy (TEM),differential thermal analysis-thermogravimetry (TG-DTA) and Fourier TransformInfrared (FT-IR), and the effect of zinc source, calcinations temperature, calcinationstime and coupling ratio of Zr on the phase and catalytic property of ZrO_2/ZnO wasinvestigated. The results showed that owing to coupling with ZrO_2, the averagecrystallite size of 2.5%ZrO_2/ZnO was decreased, and its photocatalytic efficiency onacid red B was increased 11%, compared to pure ZnO, and slightly better thanDegussa P25 TiO_2, which showed photocatalytic activities of ZnO was improved.
     The influence of operational variables, such as initial dye concentration, catalyst dosage, pH, solution temperature, hydrogen peroxide concentration, light intensityand ethanol on UV photodegradation of acid red B was investigated. As thephotocatalytic reaction is not sensitive to solution temperature, and the decrease ofsolution temperature has limited impact on the reaction. Other factors have asignificant impact on the reaction. There is an optimal concentration of catalyst andhydrogen peroxide, and over it the reaction efficiency will be reduced. The effect ofpH on the reaction efficiency was affected by the change of electric adsorptionspecies on the catalyst surface and the worst effect was observed at isoelectric pointof 2.5%ZrO_2/ZnO. Except Ag~+, Fe~(3+), Fe~(2+) and Mn~(2+) can improve the adsorption ofAcid Red B on the catalyst surface. Ag~+ and Fe~(3+) favored the photocatalyticdegradation of acid red B, which was caused by the reduction of electron/holerecombination, the negative effect of Fe~(2+) and Mn~(2+) is enhanced with the increase oftheir concentration. NO_3~- has little effect on the reaction rate and adsorption of acidred B on catalyst surface. The inhibiting effect of SO_4~(2-)和Cl~- was caused by theircompetitive adsorption and capturing hydroxyl radical. IO_4~- can produce·OH topromote the reaction under UV. Under sunlight, 2.5%ZrO_2/ZnO still possesses higherphotocatalytic property.
     The effect of catalyst dosage, initial dye concentration and solution pH on theequilibrium adsorption amount of acid red B on catalyst in the adsorption isothermexperiment was investigated. The Langmuir and Freundlich isotherm adsorptionmodel was used to simulate the adsorption kinetics of acid red B on pure ZnO and2.5%ZrO_2/ZnO. Then their model parameters and free adsorption energy△_(ad)G°were calculated and compared to study the differences of their adsorption properties.The results showed that 2.5%ZrO_2/ZnO not only have excellent adsorption property,but also was increased compared to pure ZnO.
     The photocatalytic degradation of acid red B follows L-H kinetic model. Themodel was modified for considering the competitive adsorption of intermediates. Thekinetic parameters before and after modification, the apparent and simulated half-lifevalues were calculated. It was showed 2.5%ZrO_2/ZnO has better photocatalyticproperty than pure ZnO and the intermediates have the inhibiting action.
     The decolorization and degradation of acid red B was analyzed according to the TOC decrease, pH variation, inorganic ion production of the dye solutions, such asSO_4~(2-), NO_3~- and NH_4~+, and change of UV-Vis spectra. With the reaction proceeded,decolorization rate was increased, but TOC removal was slower. The transformationof -SO_3~- and -N=N- in the degradation of acid red B was inferred from differencesbetween the theoretical value and the detected value of total S and total N. The -SO_3~-release and decolorization was the initial step, with the nitrogen of azo grouptransformed predominantly to N_2.
     To sum up, according to the experimental results of isothermal adsorption andphotocatalytic degradation of acid red B, if was proven that 2.5%ZrO_2/ZnOcomposite photocatalyst have higher adsorption and catalytic property and nano ZnOwas improved through coupling with ZrO_2, which achieve the research objective.Studies on the influence factors and degradation mechanism further enriched thephotocatalytic theory and provide the necessary information for the actual wastewatertreatment.
引文
[1] Chung K T, Stevens S E. Degradation of azo dyes by environmental microorganisms and helminthes [J]. Environ. Toxical. Chem., 1993, 13: 2121~2132.
    [2] Lei J, Liu C S, Li F B, et al. Photodegradation of orange I in the heterogeneous iron oxide-oxalate complex system under UVA irradiation [J]. J. Hazard. Mate. B, 2006, 137: 1016~1024.
    [3] 朱虹,孙杰,李剑超编著.印染废水处理技术.北京:中国纺织出版社(第一版),2004.16~18.
    [4] Hess E V. Environmental" chemicals and autoimmune disease: cause and effect [J]. Toxicology, 2002, 181~182: 65~70.
    [5] Poulios I, Makri D, Prohaska X. Photocatalytic Treatment of Olive Milling Waste Water: Oxidation of Protocatechuic Acid [J]. Global Nest Int J., 1999, 1(1): 55~61.
    [6] Arslan I, Balcioglu I A, Bahnemann D W. Advanced chemical oxidationof reactive dyes in simulated dyehouse effluents by ferrioxalate-Fenton/UVA and TiO_2/UVA processes [J]. Dyes Pigm., 2000, 47: 207~218.
    [7] Tanaka K, Padermpole K, Hisanaga T. Photocatalytic degradation of commercial azo dyes[J]. Wat. Res., 2000, 34: 327~333.
    [8] 凌芳,李光明.染料废水的治理现状及展望[J].江苏环境科技,2006,19(S2):98~101.
    [9] 李茵.染料废水处理技术的研究进展[J].化工时刊,2005,19(10):60~63.
    [10] Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 37: 238~245.
    [11] 石庆平,齐若滨,吴鸣.光催化专利文献的统计分析[J].知识与进展,1999.
    [12] 杨志伊主编.纳米科技.北京:机械工业出版社(第一版),2004.56-57.
    [13] 井立强,孙晓君,郑大方等.ZnO超微粒子的量子尺寸效应和光催化性能[J].哈尔滨工业大学学报,2001,33(3):344~348.
    [14] Bouvy C, Marine W, Sporken R, et al. Nanosized ZnO confined inside a Faujasite X zeolite matrix: Characterization and optical properties[J]. Colloi. Surf. A: Physicochem. Eng. Aspects, 2007, 300(1): 145~149.
    [15] 张茂林.纳米ZnO/SnO_2等符合光催化剂的制备及其降解有机污染物研究.博士学位论文.中国科学院广州地球化学研究所,2004.
    [16] 郑文裕,陈潮钿,陈仲丛.二氧化锆的性质、用途及其发展方向[J].无机盐工业,2000,32(1):18~21.
    [17] Perez O L, Romeu D, Yacaman M J. Distribution of surface sites on small metallic particles[J]. Appl. Surf. Sci., 1982, 13(3~4): 402~413.
    [18] 王长安.半导体物理基础.上海科学技术出版社,1985:87~98.
    [19] 张金龙,陈锋,何斌编著.光催化.上海:华东理工大学出版社(第一版),2004.8~38.
    [20] 邵忠宝,王成艳,陈雪冰等.纳米ZnO/Ag的制备及其光催化性能[J].材料研究学报, 2005,19(1):59~63.
    [21] 邓南圣,吴峰主编.环境光化学.北京:化学工业出版社(第一版),2003.308~408.
    [22] Olliis D F, Al-Ekabi H, Eds. Prec. 1st Int. Conf. TiO_2 Photocatalytic Purification Treatment of Water and Air. Amsterdam: Elsevier, 1993, 747~756.
    [23] Michael R H, Scot T M, Choi W Y, et al. Environmental Applications of Semiconductor Photocatalysis[J]. J. Chem. Rev., 1995, 95: 69~96.
    [24] 潘吉浪,伊荔松,高松华等.纳米ZnO光催化降解有机物研究进展[J].纳米材料与应用,2006,3(5):18~21.
    [25] 郑小明,周任贤.环境保护中的催化治理技术(第一版).北京:化学工业出版社,2002.264~281.
    [26] Okazaki M, Shiga T, Shigera S, et al. Isotope Enrichment by Electron Spin Resonance Transition of the Intermediate Radical Pair[J]. J. Phys. Chem., 1988, 92: 1402~1404.
    [27] Ishibashi K I, Fujishima A, Watanabe T, et al. Quantum Yields of Active Oxidative Species Formed on TiO_2 Photocatalyst[J]. J. Photochem. Photobio. A: Chem., 2000, 134: 139-142.
    [28] Assabane A, Yahia A I, Tahiti H, et al. Photocatalytic Degradation of Polycarboxylic Benzoic Acids in UV-irradiated Aqueous Suspensions of Titania: Identification of Intermediates and Reaction Pathway of the Photomineralization of Trimellitic Acid (1, 2, 4-benzene Tricarboxylic Acid)[J]. Appl. Catal. B: Environ., 2000, 24: 71~87.
    [29] Sobana N, Swaminathan M. The Effect of Operational Parameters on the Photocatalytic Degradation Of Acid Red 18 by ZnO[J]. Separa. Puri. Tech., 2007, in press.
    [30] 张爱勇,肖羽堂.光催化剂改性技术研究进展[J].水处理技术,2006,32(11):7~12.
    [31] Sakthivel S, Kisch H. Daylight Photocatalysis by Carbon-Modified Titanium Dioxide[J]. Angew. Chem. Int. Ed., 2003, 42(40): 4908~4911.
    [32] 谢立进,马峻峰,赵忠强等.半导体光催化剂的研究现状及展望[J].硅酸盐通报,2005,6:80~84.
    [33] 王中华.掺银TiO_2光催化降解活性艳红X-3B的研究[J].污染防治技术,2006,19(1):9~11.
    [34] Wu J J, Tseng C H. Photocatalytic properties of nc-Au/ZnO nanorod composites[J]. Appl. Catal. B: Environ., 2006, 66: 51~57.
    [35] Sai Wei Lam, Ken Chiang, Tuti M. Lim, et al. The effect of platinum and silver deposits in the photocatalytie oxidation of resorcinol[J]. Appl. Catal. B: Environ., 2007, 72(3~4): 363~372.
    [36] Jing L Q, Wang B Q, Xin B F, et al. Investigations on the surface modification of ZnO nanoparticle photocatalyst by depositing Pd[J]. J. Solid State Chem., 2004, 177: 4221~4227.
    [37] Yoshinaga M, Takahashi H, Yamamoto K, et al. Formation of metallic Ni nanoparticles on titania surfaces by chemical vapor reductive deposition method[J]. Appl. Catal. B: Environ., 2007, 309(1): 149~154.
    [38] Murray J H, Sotiris E P, Okorn M, et al. Ag-ZnO catalystes for UV-photodegradation of methylene blue[J]. Appl. Catal. B: Environ., 2006, 63: 305~312.
    [39] Sakthivel S, Shankar M V, Palanichamy M, et al. Enhancement of photocatalytic activity by metal deposition: characterization and photonic efficiency of Pt, Au and Pd deposited on TiO_2 catalyst[J]. Wat. Res., 2004, 38: 3001~3008.
    [40] 冯洁.掺铁纳米ZnO粉体的软化学法合成及其表征[J].浙江师范大学学报(自然科学版),2005,28(4):417~420.
    [41] Ekambaram S, IikuboY, Kudo A. Combustion synthesis and photocatalytic properties of transition metal-incorporated ZnO[J]. J. Alloy Comp., 2007, 433(1~2): 237~240.
    [42] Ren D S, Zhang Z J. Crystal Structure and Photocatalytic Characteristics of Nanoscale Sb-doped TiO_2 Thin Films[J]. Chin. J. Chem. Phys., 2006, 19(6): 549~555.
    [43] Alvarez M, L6pez T, Odriozola J A, et al. 2, 4-Dichlorophenoxyacetic acid (2, 4-D) photodegradation using an Mn~(2+)/ZrO_2 photocatalyst: XPS, UV-vis, XRD characterization[J]. Appl. Catal. B: Environ., 2007, 73(1~2): 34~41.
    [44] Xu J C, Shi Y L, Huang J E, et al. Doping metal ions only onto the catalyst surface[J]. J. Mole. Catal. A: Chem., 2004, 219: 351~355.
    [45] Hsiao K C, Liao S C, Chen Y J. Synthesis, characterization and photocatalytic property of nanostructured Al-doped ZnO powders prepared by spray pyrolysis[J]. Mate. Sci. Eng. A, 2007, 447: 71~76.
    [46] Anandan S, Vinu A, Mori T, et al. Photocatalytic degradation of 2, 4, 6-trichlorophenol using lanthanum doped ZnO in aqueous suspension[J]. Catal. Commun., 2007, 8: 1377~1382.
    [47] 于伟娜,刘素文,潘杰等.La~(3+),Ce~(3+)及Fe~(3+)的共掺杂对TiO_2粉末光催化性能的影响[J].中国陶瓷,2006,42(5):18~21.
    [48] 侯梅芳,李芳柏,李瑞丰等.钕掺杂提高TiO_2光催化活性的机制[J].中国稀土学报,2004,22(1):75~80.
    [49] Khan S U M, AI-Shahry M, Jr W B I. Efficient photochemical water splitting by a chemically modified n-TiO_2[J]. Science, 2002, 297: 2243~2245.
    [50] Asahi R, Morikawa T, Ohwaki T, et al. Visible-light photocatalysis in nitrogen-doped titaniumoxides[J]. Science, 2001, 293: 269~271.
    [51] Yin S, Ihara K, Aita Y, et al. Visible-light induced photocatalytic activity of TiO_2-xAy (A=N,S) prepared by precipitation route[J]. J. Photochem. Photobio. A: Chem., 2006, 179(1~2): 105~114.
    [52] Hsu S W, Yang T S, Chen T K, et al. Ion-assisted electron-beam evaporation of carbon-doped titanium oxide films as visible-light photocatalyst[J]. Thin Solid Films, 2007, 515(7~8): 3521~3526.
    [53] 赵秀峰,张志红,孟宪锋.B掺杂TiO_2/AC光催化剂的制备及活性[J].分子催化,2003,17(4):292~296.
    [54] Yu H F. Photocatalytic abilities of gel-derived P-doped TiO_2[J]. J. Phys. Chem. Solid, 2007, 68(4): 600~607.
    [55] 文晨,孙柳,张纪梅等.碘掺杂对纳米TiO_2催化剂光催化活性的影响[J].高等学校化学学报,2006,27:2408~2410.
    [56] Lu J F, Zhang Q W, Wang J, et al. Synthesis of N-doped ZnO by grinding and subsequent heating ZnO-urea mixture[J]. Powder Technol., 2006, 162: 33~37.
    [57] Zhang J Z. Interracial Charge Carrier Dynamics of Colloidal Semiconductor Nanoparticles[J]. J. Phys. Chem. B., 2000, 104: 7239~7253.
    [58] Moustaghfir A, Tomasella E, Jacquet M, et al. ZnO/Al_2O_3 coatings for the photoprotection ofpolycarbonate[J]. Thin Solid Films, 2006, 515(2): 662~665.
    [59] Wang C, Wang X M, Xu B Q, et al. Enhanced photocatalyfic performance of nanosized coupled ZnO/SnO_2 photocatalysis for methyl orange degradation[y]. J. Photochem. Photobio. A: Chem., 2004, 168: 47~52.
    [60] Spanhel L, WeUer H, Henglein A. Photochemistry of Semiconductor Colloids. 22. Electron Injection from Iluminared CdS into Attached TiO_2 and ZnO Particles[J]. J. Am. Chem. Soc., 1987, 109: 6632~6635.
    [61] Rabani J. Sandwich colloid of ZnO and ZnS in aqueous solutions[J]. J. Phys. Chem., 1989, 93: 7707~7713.
    [62] Wang C, Wang X M, Xu B Q, et al. Enhanced photocatalytic performance of nanosized coupled ZnO/SnO2 photocatalyst for methyl orange degradation[J]. J. Photochem. Photobio. A: Chem., 2004, 168: 47~52.
    [63] Zhang M L, Sheng G Y, Fu J M, et al. Novel preparation of nanosized ZnO-SnO_2 with high photocatalyfic activity by homogeneous co-precipitation method[J]. Mate. Lett., 2005, 59: 3641~3644.
    [64] Wang C, Xu B Q, Wang X M, et al. Preparation and photocatalytic activity of ZnO/TiO_2/SnO_2 mixture[J]. J. Solid State Chem., 2005, 178: 3500~3506.
    [65] Zhang Y H, Xiong G X, Yao N, et al. Preparation of titania-based catalysts for formaldehyde photocatalytic oxidation from TiCl_4 by the sol-gel method [J]. Catal. Today, 2001, 68(1~3): 89~95.
    [66] Zhang M L, An T C, Hu X H, et al. Preparation and photocatalytic properties of a nanometer ZnO-SnO_2 coupled oxide[J]. Appl. Catal. A: General, 2004, 260:215~222.
    [67] Sakthivel S, Geissen S U, Bahnemann D W, et al. Enhancement of photocatalytic activity by semiconductor heterojunctions: α-Fe_2O_3, WO_3 and CdS deposited on ZnO[J]. J. Photochem. Photobio. A: Chem., 2002, 46: 561~570.
    [68] Epling G A, Lin C. Photoassisted bleaching of dyes utilizing TiO_2 and visible light[J]. Chemospere, 2002, 46: 561~570.
    [69] Qing D, Rabani J. Photosensitization ofnanocrystalline TiO_2 films by anthocyanin dyes[J]. J. Photochem. Photobiol. A: Chem., 2002, 148: 17~24.
    [70] Kaur S, SinghV. Visible light induced sonophotocatalytic degradation of Reactive Red dye 198 using dye sensitized TiO_2[y]. Ultrason. Sonochem., 2007, 14(5): 531~537.
    [71] Savenije T J, Warman J M, Goossens A. Visible light sensitization of titanium dioxide using a phenylene vinylene polymer[J]. Chem. Phys. Lett., 1998, 287: 148~153.
    [72] Arango A C, Carter S A, Brock P J. Charge transfer in photovoltaics consisting of interpenetration networks of conjugated polymers and TiO_2 nanoparticles[J]. Appl. Phys. Lett., 1999, 74(12): 1698~1700.
    [73] Salafsky J S, Lubberhuizen W H, Schropp R E I. Photoinduced charge separation and recombination in a conjugated polymer-semiconductor nanocrystal composite [J]. Chem. Phys. Lett., 1998, 290: 297~303.
    [74] 郑小明,周任贤.环境保护中的催化治理技术(第一版).北京:化学工业出版社,2002,264~281.
    [75] Song L, Qiu R L, Mo Y Q, et al. Photodegradation of phenol in a polymer-modified TiO_2 semiconductor particulate system under the irradiation of visible light[J]. Catal. Commun., 2007, 8: 429~433.
    [76] Naman S A, A.-A.Khammas Z, Hussein F M. Photo-oxidative degradation of insecticide dichlorovos by a combined semiconductors and organic sensitizers in aqueous media. J. photochem[J]. Photobio. A: Chem., 2002, 153: 229~236.
    [77] Moon J W, Coon G, Hidalgo M C, et al. Photocatalytic activation of TiO_2 under visible light using Acid Red 44[J]. Catal. Today, 2003, 87: 77~86.
    [78] Uchihara T, Matsumura M, Ono J, et al. Effect of Ethylenediamine-tetraacetic Acid on the Photocatalytic Activities and Flat-Band Potentials of Cadmium Sulfide and Cadmium Selenide[J]. J. Phys. Chem., 1990, 94(1): 415~418.
    [79] Goon G Hidalgo M C, Navo J A. Photocatalytic behaviour of sulphated TiO_2 for phenol degradation[J]. Appl. Catal. B: Environ., 2003, 45: 39~50.
    [80] Liao S J, Huang D G, Yu D H, et al. Preparation and characterization of ZnO/TiO_2, SO_4~(2-)/ZnO/TiO_2 photocatalyst and their photocatalysis[J]. J. Photochem. Photobio. A: Chem., 2004, 168: 7~13.
    [81] 尹峰,林瑞峰.TiO_2表面电子结构及其光催化活性[J].催化学报,1999,20(3):343~346.
    [82] Kanade K (3, Kale B B, Baeg J O, et al. Self-assembled aligned Cu doped ZnO nanopartieles for photocatalytic hydrogen production under visible light irradiation[J]. Mate. Chem. Phys., 2007, 102: 98~104.
    [83] Cui W Q, Feng L R Xu C H, et al. Hydrogen production by photocatalytic decomposition of methanol gas on Pt/TiO_2 nano-film[J]. Catal. Commun., 2004, 5: 533~536.
    [84] Mizukoshi Y, Makise Y, Shuto T, et al. Immobilization of noble metal nanoparticles on the surface of TiO_2 by the sonoehemieal method[J]. Ultrason. Sonechem., 2007, 14: 387~392.
    [85] Gurunathan K, Maruthamuthu P, Sastrim V C. Photocatalytic hydrogen production by dye-seusitized Pt/SnO_2, and Pt/SnO_2/RuO_2 in aqueous methyl viologen solution[J]. Int. J. Hydrogen Energ., 1997, 22(1): 57~62.
    [86] 王桂赞,王延吉,赵新强等.CoO/SrTiO_3的合成及光催化分解水制氢性能[J].物理化学学报,2005,21(1):84~88.
    [87] Sathish M, Viswanathan B, Viswanath R P. Alternate synthetic strategy for the preparation of CdS nanoparticles and its exploitation for water splitting[J]. Int. J. Hydrogen Energ., 2006, 31: 891~898.
    [88] Kikuchi Y, Sunada K, Iyoda T, et al. Photocatalytic bactericidal effect of TiO_2 thin films: dynamic view of the active oxygen species responsible for the effect[J]. J. Photochem. Photobiol. A: Chem., 1997, 106: 51~56.
    [89] 孙华斌,唐木涛,王修德等.复合掺杂半导体光催化材料消毒技术的建立及效果评价[J].中国辐射卫生,2006,15(4):394~396.
    [90] Peller J R, Richard L W, Scott G, et al. TiO_2 as a photocatalyst for control of the aquatic invasive alga, Cladophora, under natural and artificial light[J]. J. Photochem. Photobiol. A: Chem., 2007, 186: 212~217.
    [91] Liu H L, C.-K. Yang T. Photocatalytic inactivation of Escherichia coli and Lactobacillus helveticus by ZnO and TiO_2 activated with ultraviolet light[J]. Process Biochem, 2003, 39: 475~481.
    [92] Seven O, Dindar B, Aydemir S, et al. Solar photocatalytic disinfection of a group of bacteria and fungi aqueous suspensions with TiO_2, ZnO and Sahara desert dnst[J]. J. Photochem. Photobio. A: Chem., 2004, 165(1~3): 103~107.
    [93] 祖庸,王训,吴金龙.新型无机抗菌剂—超微细氧化锌[J].化工时刊,1999,13(1):7~9.
    [94] Rajagopal G, Maruthamuthu S, Mohanan S, et al. Biocidal effects of photocatalytic Semiconductor TiO_2[J]. Coll. Surf. B: Biointerfaces, 2006, 51: 107~111.
    [95] Lee J H, Kang M, Choungetal S. The preparation of TiO_2 nanometer photocatalyst film by a hydrothermal method and its sterilization performance for Giardia lamblia[J]. Wat. Res., 2004, 38(3): 713~719.
    [96] 朱融融,汪世龙,陈小平等.纳米二氧化钛对卵巢肿瘤细胞的选择性凋亡的诱导作用[J].化学学报,2006,64(21):2161~2164.
    [97] 王浩,赵文宽,方佑龄等.二氧化钛光催化杀灭肿瘤细胞的研究[J].催化学报,1999,20(3):373~374.
    [98] Cai R, Hashimoto K, Itoh K, et al. Photokilling of malignant cells with ultrafine TiO_2 powder[J]. Bull. Chem. Soc. Jpn, 1991, 64: 1268~1273.
    [99] 曾帜涛,陈爱平,古政荣.光催化技术在饮用水深度净化中的应用[J].净水技术,2002,21(1):16~19.
    [100] 李青松,高乃云,马晓雁等.TiO_2光催化降解水中内分泌干扰物17β-雌二醇[J].环境科学,2007,28(1):120~125.
    [101] Wist J, Sanabria J, Dierolf C, et al. Evaluation of photocatalytic disinfection of crude water for drinking-water production[J]. J. Photochem. Photobio. A: Chem., 2002, 147: 241~246.
    [102] Lonnen J, Kilvington S, Kehoe S C, et al. Solar and photocatalytic disinfection of protozoan, fungal and bacterial microbes in drinking water[J]. Wat. Res., 2005, 39(5): 877~883.
    [103] 冯小刚,卫涛,袁春伟.饮用水中微囊藻毒素污染及其光催化降解的研究进展[J].东南大学学报(自然科学版),2004,34(5):705~710.
    [104] Ishibai Y, Sato J, Aldta S, et al. Photocatalytic oxidation of NO_x by Pt-modified TiO_2 under visible light irradiation[J]. J. Photochem. Photobio. A: Chem., 2007, 188: 106~111.
    [105] 井立强,孙晓君,徐自立等.ZnO超微粒子光催化氧化SO_2的研究[J].催化学报,2002,23(1):37~40.
    [106] Huang G L, Zhang C, Zhu Y F. ZnWO_4 photocatalyst with high activity for degradation of organic contaminants[J]. L Allo. Comp., 2007, 432(1~2): 269~276.
    [107] Li D, Haneda H J, Ohashi N, et al. Synthesis of nanosized nitrogen-containing MO_x-ZnO (M=W, V, Fe) composite powders by spray pyrolysis and their visible light driven photocatalysis in gas phase acetaldehyde decomposition[J]. Catal. Today, 2004, 93~95: 895~901.
    [108] Kanno S, Tamata S, Yamashita H, et al. Development of a catalytic decomposition system for ehlorofluorocarbous[J]. Electr. Eng. Jpn., 2000, 132(1): 57~63.
    [109] Miiller K, Suja G N, Bolan N S. A critical review of the influence of effluence irrigation on the fate of pesticides in soil[J]. Agric. Ecosy. Environ., 2007, 120+ 93~116.
    [110] Devipriya S, Yesodharan S. Photocatalytic degradation of pesticide contaminants in water[J]. Sol. Energ. Mater. Sol. Cell., 2005, 86: 309~348.
    [111] Burrows H D, Canle M, Santaballa J A, et al. Reaction pathways and mechanisms of photodegradation of pesticides[J]. J. Photochem. Photobio. B: Biology, 2002, 67: 71~108.
    [112] Kormali P, Dimotieali D, Tsipi D, et al. Photolytic and photocatalytic decomposition of fenitrothion by PW_(12)O_(40)~(3-) and TiO_2: a comparative study[J]. Appl. Catal. B: Environ., 2004, 48(3): 175~183.
    [113] Mahalakshmi M, Arabindoo B, Palanichamy M. Photocatalytic degradation of carbofuran using semiconductor oxides[J]. J. Hazar. Mater., 2007, 143(1~2): 240~245.
    [114] Evgenidou E, Fytianos K, Poulios I. Photocatalytic oxidation of dimethoate in aqueous solutions[J]. J. Photochem. Photobio. A: Chem., 2005, 175(1): 29~38.
    [115] Anandan S, Vinu A, Venkatachalam N, et al. Photocatalytic activity of ZnO impregnated Hβ and mechanical mix of ZnO/Hβ in the degradation of monocrotophos in aqueous solution[J]. J. Mole. Catal. A: Chem., 2006, 256: 312~320.
    [116] Rabindranathan S, Devipriya S, Yesodharan S. Photocatalytic degradation of phosphamidon on semiconductor oxides[J]. J. Hazard. Mate., 2003, 102(2~3): 217~229.
    [117] 刘春英,弓晓峰,张政辉.光催化氧化法降解有机磷农药的研究[J].四川环境,2006,25(6):5~8.
    [118] Naman S A, A.-A.Khammas Z, Hussein F M. Photo-oxidative degradation of insecticidedichlorovos by a combined sesmiconductors and organic sensitizers in aqueous media[J]. J. Photochem. Photobio. A: Chem., 2002, 153: 229~236.
    [119] 董俊明.TiO_2/GeO_2复合膜光催化氧化降解农药废水的研究[J].环境工程学报,2007,1(3):75~79.
    [120] Kansal S K, Singh M, Sud D. Studies on photodegradation of two commercial dyes in aqueous phase using different photocatalysts[J]. J. Hazar. Mate., 2007, 141(3): 581~590.
    [121] Sobana N, Swaminathan M. Combination effect of ZnO and activated carbon for solar assisted photocatalytic degradation of Direct Blue 53[J]. Sol. Energ. Mater. Sol. Cell., 2007, 91(8): 727~734.
    [122] Chakrabarti S, Dutta B K. Photocatalytic degradation of model textile dyes in wastewater using ZnO as semiconductor catalyst[J]. J. Hazar. Mater. B, 2004, 112: 269~278.
    [123] 周莉,李莉,马禹等.纳米复合材料TiO_2-ZrO_2光催化降解可溶性染料的研究[J].光谱实验室,2006,23(3):516~519.
    [124] Wang H H, Xie C S, Zhang W, et al. Comparison of dye degradation efficiency using ZnO powders with various size scales[J]. J. Hazar. Mate., 2007, 141(3): 645~652.
    [125] Nishio J, Tokumaura M, Znad H T, et al. Photocatalytic decolorization of azo-dye with zinc oxide powder in an external UV light irradiation slurry photoreactor[J]. J. Hazar. Mate., 2006, 138(1~2): 106~115.
    [126] Byrappa K, Subramani A K, Ananda S, et al. Impregnation of ZnO onto activated carbon under hydrothcrmal conditions and its photocatalytic properties[J]. J. Mater. Sci., 2006, 41: 1355~1362.
    [127] Hidaka H. Photodegradation of surfactants with TiO_2 semiconductor for the environmental wastewater treatment[J]. P. Indian As Chem. Sci., 1998, 110(3): 215~228.
    [128] Dillert P,, Bahnemann D, Hidaka H. Light-induced degradation of perfluorocarboxylic acids in the presence of titanium dioxide[J]. Chemosphere, 2007, 67: 785~79.
    [129] Hamerski M, Grzechulska J, Morawski A W. Photocatalytic purification of soil contaminated with oil using modified TiO_2 powders[J]. Sol. Energy, 1999, 66 (6): 395~399.
    [130] Gernjak W, Maldonado M I, Malato S, et al. Pilot-plant treatment of olive mill wastewater by solar TiO_2 photocatalysis and solar photo-Fenton[J]. Sol. Energy, 2004, 77: 567~572.
    [131] Roberta L Z, Wilson F J. Photocatalytic decomposition of seawater-soluble crude-oil fractious using high surface area colloid nanoparticles of TiO_2[J]. J. Photochcm. Photobio. A: Chem., 2002, 147: 205~222.
    [132] Grzechulska J, Hamerski M, Antoni W M. Photocatalytic decomposition of oil in water[J]. Wat. Res., 2000, 34(5): 1638~1644.
    [133] 陈士夫,程雪莉.空心玻璃微球负载TiO_2清除水面漂浮的油层[J].中国环境科学,1999,19(1):47~50.
    [134] 张海燕,王宝辉,陈颖.光催化氧化处理含油污水的研究[J].化工进展,2003,22(1):67~70.
    [135] Hoffmann M R, Martin S T, Choi W, et al. Environmental applications of semiconductor photocatalysis[J]. Chem. Rev., 1995, 95: 69~96.
    [136] Wilcoxon J P. Catalytic Photooxidation of Pentachlorophenol Using.Semiconductor Nanoclusters[J]. J. Phys. Chem. B, 2000, 104(31): 7334~7343.
    [137] Hariharan C. Photocatalytic degradation of organic contaminants in water by ZnO nanoparticles: Revisited[J]. Appl. Catal. A: General, 2006, 304: 55~61.
    [138] 于永丽,翟秀静,王乃芝等.纳米氧化锌的制备及其对对硝基氯苯的降解[J].化工环保,2005,25(3):182~184.
    [139] Lathasree S, Rao A N, SivaSankar B, et al. Heterogeneous photocatalyfic mineralization of phenols in aqueous solutions[J]. J. Mole. Catal. A: Chem., 2004, 223: 101~105.
    [140] Swarnalatha B, Anjaneyulu Y. Studies on the heterogeneous photocatalytic oxidation of 2, 6-dinitrophenol in aqueous TiO_2 suspension[J]. J. Mole. Catal. A: Chem., 2004, 223(1~2): 161~165.
    [141] Kaniou S, Pitaralds K, Barlagianni I, et al. Photocatalytic oxidation of sulfamethazine[J]. Chemosphere, 2005, 60(3): 372~380.
    [142] Mohammad H H, Hakimeh V. Photocatalytic degradation of some organic sulfides as environmental pollutants using titanium dioxide suspension[J]. J. Photochem. Photobio. A: Chem., 2005, 174: 45~52.
    [143] 胡春,刘星娟,李爽.ZnO催化剂对苯胺光降解的研究[J].环境科学学报,1998,18(1): 81~85.
    [144] Matthews R W. Kinetics of photocatalytic oxidation of organic solutes over titanium dioxide[J]. J. Catal., 1988,111: 264~272.
    [145] Mrowetz M, Selli E. Photocatalytic degradation of formic and benzoic acids and hydrogen peroxide evolution in TiO_2 and ZnO water suspensions[J]. J. Photochem. Photobio. A: Chem., 2006, 180: 15~22.
    [146] Peng F, Wang H J, Y H, et al. Preparation of aluminum foil-supported nanosized ZnO thin films and its photocatalytic degradation to phenol under visible light irradiation[J]. Mater. Res. Bull., 2006, 41(11): 2123~2129.
    [147] 弓晓峰,简敏菲,刘春英等.玻璃纤维布负载TiO_2处理垃圾渗滤液研究[J].重庆环境科学,2003,25(11):56~57.
    [148] 李芳柏,古国榜,陈伟彬等.絮凝-光催化处理实际染料废水的研究[J].土壤与环境,1999,8(3):189~192.
    [149] 张智宏,宋封琦.铁屑过滤-光催化氧化处理染料废水[J].江苏工业学院学报,2003,15(3):27~30.
    [150] 杨运平,唐金晶,方芳等.UV/TiO_2/Fenton光催化氧化垃圾渗滤液的研究[J].中国给水排水,2006,22(7):34~38.
    [151] Yang J K, Lee S M. Removal of Cr(Ⅵ) and humic acid by using TiO_2 photocatalysis[J]. Chemosphere, 2006, 63: 1677~1684.
    [152] Mokhtar M, Bayoumy W A, Khairy M, et al. Synthesis and structural characterization of TiO_2 and V_2O_5/TiO_2 nanoparticles assembled by the anionic surfactant sodium dodecyl sulfate[J]. Micro. Mes. Mater., 2006, 97: 66~77.
    [153] MKhalil L B, Rophael M W, Mourad W E. The removal of the toxic Hg(Ⅱ) salts from water by photocatalysis[J]. Appl. Catal. B: Environ., 2002, 36: 125~130.
    [154] 戴遐明,陈永华.半导体氧化物超细粉末对Cr(Ⅵ)的光催化还原作用研究[J].环境科学,1996,17(6):34~36.
    [155] Park S, Park H J, Yoo K, et al. Photocatalytic recovery of Ag ions from wastewater nsing ZnO nanopowders immobilized on microporous alumina substrates[J]. Coll. Surf. A: Physicochem. Eng. Aspects, 2007, 300(1~2): 30~34.
    [156] Karunakaran C, Anilkumar P. Semiconductor-catalyzed solar photooxidation of iodide ion[J]. J. Mole. Catal. A: Chem., 2007, 265(1~2): 153~158.
    [157] 汪洋.掺锌纳米二氧化钛复合材料处理废水中S~(2-)的光催化性能[J].商丘职业技术学院 学报,2006,5(5):92~94.
    [158] Zhu X D, Nanny M A, Butler E C. Effect of inorganic anions on the titanium dioxide-based photocatalytic oxidation of aqueous ammonia and nitrite[J]. J. Photochem. Photobio. A: Chem., 2007, 185: 289~294.
    [159] Navio J A, Colon G, Tvillas M. Hetergeneons photocatalysis reactions of nitrite oxidation and Cr(Ⅵ) reduction on ion-doped titantia prepared by the wet impregnation method[J]. Appl. Catal. B, 1998, 16(2): 187~196.
    [160] Chiang k, Areal R, Tran T. Photocatalytic Oxidation of Cyanide: Kinetic and Mechanistic Studies[J]. J. Mol. Catal. A: Chem., 2003, 193(1~2): 285~297.
    [161] Kim B R, Podsiadlik D H, Kalis E M, et al. Photochemical Destruction of Cyanide in Landfill Leachate[J]. J. Environ. Eng., 1998, 124(11): 1108~1113.
    [162] Chen S F, Cao G Y. Study on the photocatalytic reduction of dichromate and photocatalytic oxidation of dichlorvos[J]. Chemosphere, 2005, 60(9): 1308~1315.
    [163] 袁方丽,李普林,黄淑兰等.超细氧化锌的制备及应用新进展[J].材料导报,1998,12(6):34~35.
    [164] 张留成,蔡克峰.纳米氧化锌材料的最新研究和应用进展[J].材料导报,2006,20(Ⅵ):13~15.
    [165] 杜仕国.超微粉制备技术及其进展[J].功能材料,1997,28(3):237~253.
    [166] Akyol A, Yatmaz H C, Bayramoglu M. Photocatalytic decolorization of Remazol Red RR in aqueous ZnO suspensions[J]. Appl. Catal. B: Environ., 2004, 54: 19~24.
    [167] Comparelli R, Fanizza E, Curri M L, et al. UV-induced photocatalytic degradation of azo dyes by organic-capped ZnO nanocrystals immobilized onto substrates[J]. Appl. Catal., 2005, 60(1~2): 1~11.
    [168] Found O A, Ismail A A, Zaki Z I, et al. Zinc oxide thin films prepared by thermal evaporation deposition and its photocatalytic activity[J]. Appl. Catal. B: Environ., 2006, 62: 144~149.
    [169] Dindar B, Icli S. Unusual photoreactivity of ZnO under concentrated sun light[J]. Photochem. Photobiol. A: Chem., 2001, 140: 263~268.
    [170] Gouvea C A K, Wypych F, Moraes S G, et al. Semiconductor-assisted photocatalytic degradation of reactive dyes in aqueous solution[J]. Chemosphere, 2000, 40: 433~440.
    [171] 钟己未,万益群,付敏恭等.纳米氧化锌光催化降解有机染料性能的研究[J].分析实验室,2006,25(12):30~34.
    [172] 刘吉平,廖莉玲编著.无机纳米材料.北京:科学出版社(第一版),2003.64~68.
    [173] 牛新书,杜卫平,杜卫民等.掺杂稀土氧化物的ZnO材料的制备及气敏性能[J].稀土, 2004,24(6):44~47.
    [174] 王赞,阎永胜,沈湘黔等.ZnO包覆Al_2O_3的制备表征及光催化性能研究[J].环境科学与技术,2006,29(12):33~35.
    [175] 詹豪强.偶氮染料结构、光稳定性和光化学降解机理研究[J].化学进展,1998,10:415~426
    [176] Chung K, Fulk G E, Andres A W. Mutagenicity testing of some commonly used dyes[J]. Appl. Environ. Microbiol., 1981, 42: 641~648.
    [177] Pinheiro H M, Touraud E, Thomas O. Aromatic amines from azo dye reduction: status review with emphasis on direct UV spectrophotometric detection in textile industry wastewaters[J]. Dyes Pig., 2004, 61: 121~139.
    [178] Lukac J, Klementova M, Bezdicka P, et al. Influence of Zr as TiO_2 doping ion on photocatalytic degradation of 4-chlorophenol[J]. Appl. Catal. B: Environ., 2007, 74: 83~91.
    [179] 毕怀庆,袁文辉,韦朝海.掺锆纳米TiO_2制备表征及其对光催化活性的影响[J].材料科学与工程学报,2004,22(1):98~101.
    [180] 孙晓君,井立强,徐跃等.ZnO纳米粒子制备过程中的XRD研究[J].哈尔滨工业大学学报,2001,33(3):380~384.
    [181] Cheng X L, Zhao H, Huo L H, et al. ZnO nanoparticulate thin film: preparation, characterization and gas-sensing property[J]. Sens. Actu. B, 2004, 102: 248~252.
    [182] LOpez T, Alvarez M, Tzompantzi F, et al. Photocatalytic degradation of 2, 4-dichlorophenoxiacetic acid and 2, 4, 6-trichlorophenol with ZrO_2 and Mn/ZrO_2 sol-gel materials[J]. J. Sol-Gel. Sci. Technol., 2006, 37: 207~211.
    [183] 刘景林.在200-450℃区间无定形二氧化锆结晶的特点[J].国外耐火材料,2006,31(2):42~47.
    [184] Martin C, Solana G Rives V, et al. Physicochemical Properties of WO_3/TiO_2 Systems Employed for 4-Nitrophenol Photodegradation in Aqueous Medium[J]. Catal. Lett., 1998, 49(3~4): 235~243.
    [185] 刘红,刘潘,辜孔良等.锆改性纳米TiO_2的光催化性能研究[J].工业安全与环保,2006, 32(7):18~20.
    [186] 汤皎宁,龚晓钟,李均勤.均匀沉淀法制备纳米氧化锌的研究[J].无机材料学报,2006,21(1):65~69.
    [187] 宋力,宋玲,徐喜梅等.纳米二氧化锆的制备及其对对硝基氯苯的降解[J].信阳师范学院学报(自然科学版),2006,19(2):206~209.
    [188] 程晓丽,高山,霍丽华等.纳米氧化锌的IR及其薄膜的UV光谱研究[J].光散射学报,2003,15:197~199.
    [189] 辛显双,周白斌,杜华等.纳米ZnO的制备及其光学性质的研究[J].化学研究与应用,2005,17(3):303~307.
    [190] 何勇宁,沈孝良,马礼敦.纳米氧化锌的合成与表征[J].应用化学,1999,3(4):92~94.
    [191] Alhakimi G Studnicki L H, Al-ghazali M. Photocatalytic destruction of potassium hydrogen phthalate using TiO_2 and sunlight[J]. J. Photochem. Photobiol. A: Chem., 2003, 154: 219~228.
    [192] Garcia J C, Takashima K. Photocatalytic degradation of imazaquin in an aqueous suspension of titanium dioxide[J]. J. Photochem. Photobiol. A: Chem., 2003, 155:215~222.
    [193] Zhao H, Xu S H, Zhong J B, et al. Kinetic study on the photo-catalytic degradation of pyridine in TiO_2 suspension systems[J]. Catal. Today, 2004, 93~95: 857~861.
    [194] Chakrabrti S, Dutta B K. Photocatalytic degradation of model textile dyes in wastewater using ZnO as semiconductor catalyst[J]. J. Hazar. Mate. B, 2004, 112: 269~278.
    [195] Behnajady M A, Modirshahla N, Hamzavi R. Kinetic study on photocatalytic degradation of C.I. Acid Yellow 23 by ZnO photocatalyst[J]. J. Hazar. Mate. B, 2006, 133: 226~232
    [196] Akyol A, BARramoglu M. Photocatalytic degradation of Remazol Red F3B using ZnO catalyst[J]. J. Hazar. Mate. B., 2005, 124: 241~246.
    [197] Daneshvar N, Rabbani M, Modirshahla N, et al. Kinetic modeling of photocatalytic degradation of Acid Red 27 in UV/TiO_2 process[J]. J. Photochem. Photobiol. A: Chem., 2004, 168: 39~45.
    [198] Qamar M, Saquib M, Muneer M. Photocatalytic degradation of two selected dye derivatives, chromotrope 2B and amido black 10B, in aqueous suspensions of titanium dioxide[J]. Dyes Pig., 2005, 65: 1~9.
    [199] Wu C H. Comparison of azo dye degradation efficiency using L/V/single semiconductor and UV/coupled semiconductor systems[J]. Chemosphere, 2004, 57: 601~608.
    [200] Bekbolet M, Balcioglu I. Photocatalytic degradation kinetics of humic acid in aqueous TiO_2 dispersions[J]. Wat. Sci. Teclmol., 1996, 34: 73~80.
    [201] Leng W H, Liu H, Cheng S A, et al. Kinetics of photocatalytic degradation of aniline in water over TiO_2 supported on porous nickel[J]. J. Photochem. Photobiol. A: Chem., 2000, 131: 125~132.
    [202] Wang K H, Hsieh Y H, Chou M Y, et al. Photocatalytic degradation of 2-chloro and 2-nitrophenol by titanium dioxide suspensions in aqueous solution[J]. Appl. Catal. B: Environ., 1999, 21: 1~8.
    [203] Abdullah M, Low G K-C, Matthews R W. Effect of inorganic anions on rate of photocatalytic oxidation of organic carbon over illuminated titanium dioxide[J]. J. Phys. Chem., 1990, 94: 6820~6825.
    [204] Sirori C, Altvater P K, Freitas A M, et al. Degradation of aqueous solutions of camphor by heterogeneous photocatalysis[J]. J. Hazar. Mater. B: 2006, 129: 110~115.
    [205] Muruganandham M, Shobana N, Swaminathan M. Optimization of solar photocatalytic degradation conditions of Reactive Yellow 14 azo dye in aqueous TiO_2[J]. J. Mole. Catal. A: Chem., 2006, 246: 154~161.
    [206] 王爱民,曲久辉,宋玲玲等.活性炭纤维电极生成羟基自由基降解酸性红B[J].化学学报,2006,64(8):767~771.
    [207] Titus M P, Molina V G, Banos M A, et al. Degradation of chlorophenols by means of advanced oxidation processes: a general review[J]. Appl. Catal. B, 1999, 33: 1379~1387.
    [208] Titus M P, Molina V G, Banos M A, et al. Degradation of chlorophenols by means of advanced oxidation processes[J]. Appl. Catal. B, 2004, 47: 219~256.
    [209] Yang Y, Guo Y H, Hu C W, et al. Synergistic effect of Keggin-type[X~(n+)W_(11)O_(39)~((12-n)-) and TiO_2 in macroporous hybrid materials[X~(n+)W_(11)O_(39)~((12-n)-)-TiO_2 for the photocatalytic degradation of textile dyes[J]. J. Mater. Chem., 2003, 13: 1686~1694.
    [210] Uddin M M, Hasnat M A, Samed A J F, et al. Influence of TiO_2 and ZnO photocatalysts on adsorption and degradation behaviour of Erythrosine[J]. Dyes Pig., 2007, 75(1): 1~6.
    [211] Hasnat M A, Uddin M M, Samed A J F. Adsorption and photocatalyfic decolorizationo of a synthetic dye Erythroisine on anatase TiO_2 and ZnO surfaces[J]. J. Hazar. Mater., 2007, in press.
    [212] El-Sharkawy E A, Soliman A M, Al-Amer K M. Comparative study for the removal of methylene blue via adsorption and photocatalytic degradation[J]. J. Coll. Int. Sci., 2007, 310(2): 498~508.
    [213] Niwas R, Gupta U, Khan A A, et al. The adsorption of phosphamidon on the surface of styrene supported zirconium tungstophosphate: A thermodynamic study[J]. Coll. Surf. Physicochem. Eng. Asp, 2000, 164(2): 115~119.
    [214] Guettai N, Amar H A. Photocatalytic oxidation of methyl orange in presense of titanium dioxide in aqueous suspension[J]. Desalination, 2005, 185: 439~448.
    [215] Al-Ekabi H, Serpone N, Pelizzetti E, et al. Kinetic studies in heterogeneous photocatalysis[J]. Langmuir, 1989, 5: 250~255.
    [216] Li Y J, Li X D, Li J W, et al. Photocatalytic degradation of methyl orange by TiO_2-coated activated carbon and kinetic study[J]. Wat. Res., 2006, 40: 1119~1126.
    [217] Sanjay P K, Sudhir B S, Vishwas G P. Heterogenous photocatalyfic degradation of P-toluenesulfonic acid using concentrated solar radiation in slurry photoreactor[J]. J. Hazar. Mater., 2007, 140: 149~154.
    [218] Heredia J B, Torregrosa J, Dominguez J R, et al. Oxidation of p-hydroxybenzoic acid by UV radiation and by TiO_2/UV radiation: comparison and modelling of reaction kinetic[J]. J. Hazar. Mater., 2001, 83: 255~264.
    [219] Daneshvar N, Rasoulifard M H, Khataee A R, et al. Removal of C.I.Acid Orange 7 from aqueous solution by UV irradiation in the presense of ZnO nanopowder. J. Hazar. Mater., 2006, 143: 95~101.
    [220] Zhang F, Zhao J, Shen T, et al. Photoassisted degradation of dye pollutants Ⅱ: adsorption and degradation kinetics of eosin in TiO_2 dispersions under visible light irradiation[J]. Appl. Catal. B: Environ., 1998, 15(1~2): 147~156.
    [221] Stylidi M, Kondarides D I, Verykios X E. Pathways of solar light-induced photocatalytic degradation of azo dyes in aqueous TiO_2 suspensions[J]. Appl. Catal. B: Environ, 2003, 40(4): 271~286.
    [222] Muruganandham M, Swaminathan M. Photocatalytic decolourisation and degradation of reactive orange 4 by TiO_2-UV process[J]. Dyes Pig., 2006, 68: 133~142.
    [223] Lachheb H, Puzenat E, Houas A, et al. Photocatalytic degradation of various types of dyes (Alizarin S, Crocein Organge G, Methyl Red, Congo Red, Methylene Blue) in water by UV-irradiated titania[J]. Appl. Catal. B: Environ., 2002, 39(1): 75~90.
    [224] Qamar M, Saquib M, Muneer M. Titanium dioxide mediated photocatalytic degradation of two selected azo dye derivatives, chrysoidine R and acid red 29 (chromotrope 2R), in aqueous suspensions[J]. Desalination, 2005, 186: 255~271.
    [225] 钱湛,铁柏清,孙建等.UV/Fe~(3+)/H_2O_2体系降解活性艳橙X-GN废水[J].印染,2006,2:12~17.
    [226] Karkmaz M, Puzenat E, Guillard C, et al. Photocatalytic degradation of the alimentary azo dye amaranth mineralization of the azo group to nitrogen[J]. Appl. Catal. B: Environ., 2004, 51: 183~194.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700