HSP70介导RFA联合TAE治疗肝癌中T细胞免疫的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分射频消融联合肝动脉化疗栓塞对兔肝VX2肿瘤消融疗效的影响
     目的:通过观察肝动脉化疗栓塞(TACE)联合射频消融(RFA)、肝动脉化疗栓塞(TAE)联合RFA、RFA和TACE治疗兔VX2肝肿瘤的疗效及病理学改变,研究TACE和TAE增强RFA疗效的机制及病理学特点。
     材料与方法:24只荷瘤日本大耳白兔随机平均分为4组,每组6只:TACE+RFA组,TACE后15分钟行RFA治疗;TAE+RFA组,采用PVA(polyvinylalcoholparticles)TAE后15分钟行RFA治疗;RFA组,单独行射频消融;TACE组,单独行TACE。术后7天处死实验兔,比较肿瘤区凝固性坏死区或出血性梗死性区的最大切面积。对比典型的病理切片。
     结果:21只实验兔全部存活,实验成功率为87.5%(21/24),其中死亡3只。TAE+RFA组中一只实验兔死于介入术中腹腔出血,RFA组中一只死于术中气胸;术后2天TACE+RFA组中一只实验兔死于肝叶坏死。TACE+RFA组中的凝固性坏死最大面积与TAE+RFA组、RFA组和TACE组相比均有统计学差异。TAE+RFA组与RFA组坏死最大面积相比,具有统计学差异(P<0.05)。病理分析显示在TACE+RFA组和其他组相比具有更多的血管栓塞及坏死区、较少的岛屿状存活肿瘤细胞群。
     结论:TACE+RFA组取得最大治疗截面积为局部化疗效果、高热、减少肿瘤供血和它们之间的协同效应的结果。TACE+RFA治疗法能够比TAE+RFA、单独使用RFA和TACE治疗更能达到毁损肿瘤的目的。
     第二部分热休克蛋白70在射频消融联合TAE治疗兔VX2肿瘤后表达的实验研究
     目的:应用RFA联合TAE建立局部缺氧及高热条件,制作不同程度的HSP70高表达水平的动物肝癌模型。
     材料与方法:75只荷瘤日本大耳朵白兔随机平均分为5组,每组15只:TAE+RFA组TAE后15分钟行RFA治疗;RFA组,单独行射频消融;TAE组,单独行TAE;Sham组,采用射频消融针穿刺入肿瘤中心,打开多极针延伸至1cm,半分钟后收回多极针,主针撤出肝组织,采用明胶海绵条填塞穿刺道;Control组,不做治疗。各组分别于术后1、3、7天处死5只。采用免疫组化和Westernblot分析法测定HSP70表达;采用实时定量PCR测量HSP70mRNA。
     结果:TAE+RFA组中HSP70的表达在术后1天、3天、7天,消融区周边的残存肿瘤组织和肝组织的明显分别高于对应时间点其他组中两组织的HSP70的表达。TAE+RFA组中HSP70的表达术后3天的明显高于术后1天和7天的表达。TAE组肝组织及肿瘤组织内HSP70的表达术后1天分别高于对照组和假手术组中的表达。TAE、RFA和TAE+RFA组中,HSP70mRNA在消融区周边的残存肿瘤组织和肝组织内的表达,术后1天达到峰值,术后3天降低,7天恢复到基线水平。术后1天,HSP70mRNA在TAE+RFA、RFA组两组织内的表达要高于分别高于其他组的两组织内的表达。
     结论:TAE、RFA和TAE+RFA组中,残存肿瘤周边和消融区周边的肝组织HSP70的表达在术后1天明显增加,术后3天达到峰值,术后7天降低。TAE引起的缺氧能够增加HSP70在残存肿瘤组织内的表达。TAE联合RFA能够协同促进HSP70的表达。
     第三部分射频消融联合肝动脉栓塞治疗VX2兔肝肿瘤后激活CD8+T细胞肿瘤免疫的研究
     目的:TAE联合RFA治疗兔VX2肝肿瘤模型后,研究肿瘤周边和外周血中HSP70浓度与肿瘤周边浸润和外周血中CD8+T细胞数量之间的关系。探索RFA联合TAE治疗肝癌后HSP70介导的特异性抗肿瘤免疫的作用机制。
     材料与方法:54只荷瘤日本大耳白兔采用随机数字法被分为3组,每组18只:TAE+RFA组TAE后15分钟行RFA治疗;RFA组,单独行射频消融;Control组,不做治疗。分别于术后1、3、7天处死。采用免疫组化法检测残存肿瘤周边的HSP70表达和CD8+T细胞的浸润;采用免疫酶联反应检测外周血中的HSP70和采用流式细胞仪检测CD8+T细胞在淋巴细胞中的百分比。
     结果:术后1天、3天、7天TAE+RFA组中HSP70的表达明显分别高于对应时间点其他组中的表达;RFA组中HSP70的表达明显分别高于对应时间点Control组中的表达。TAE+RFA、RFA组中HSP70的表达术后3天的明显高于术后1天和7天的表达。术后1天、3天、7天残存肿瘤周边CD8+T细胞浸润数量,TAE+RFA组明显高于RFA组和Control组;RFA组高于Control组。TAE+RFA、RFA组残存肿瘤周边CD8+T细胞浸润数量中术后7天与术后1、3天相比,具有统计学差异。术后7天为TAE+RFA组和RFA组CD8+T细胞浸润数量的峰值期。RFA和TAE+RFA组外周血中的HSP70值在术后1天达到峰值,与此同时的是外周血中的CD8+T细胞百分比也达到峰值。
     结论:残存肿瘤周边HSP70的表达与周围CD8+T细胞的浸润数量呈正相关。血清中的HSP70诱导的抗肿瘤免疫随着血清中HSP70的降低而减弱。在兔VX2肝癌模型中TAE+RFA治疗法能够通过缺氧联合高热刺激HSP70高表达,继而产生更强的抗肿瘤免疫反应。
Purpose:To investigate the effect and histopathologic characteristics of radiofrequency ablation (RFA) combined with transcatheter arterial chemoembolization (TACE) and RFA combined with transcatheter arterial embolization (TAE) for rabbit VX2hepatic tumors.
     Materials and Methods:Twenty four Japanese White rabbits with VX2hepatic tumors were randomly divided into four treatment groups:TACE+RFA, RFA followed15min later by TACE (n=6); TAE+RFA, RFA followed15min later by transcatheter arterial embolization (TAE) with poly vinyl alcohol particles (PVA)(n=6); RFA, RFA alone (n=6); and the TACE group, TACE alone (n=6).
     Results:The maximum diameters of the coagulation or infarcted zones in the gross specimens were compared. A rabbit in TAE-RFA group died of intraperitoneal bleeding and a rabbit in RFA group died of pneumothorax in the procedure and a rabbit in TACE+RFA group died of hepatic necrosis2days after the procedure. The procedures were successfully performed in the remaining animals (21/24;87.5%). Significantly larger areas of coagulation and infarction were observed in the TACE+RFA group compared with the TAE+RFA (P<0.05), RFA (P<0.05) and TACE groups (P<0.05). The TAE-RFA group showed larger treatment areas compared to the RFA group (P<0.05). Histopathological analysis revealed greater vascular thrombosis and necrosis and fewer islands of viable tumor cells in the TACE+RFA group compared with the other groups.
     Conclusions:The largest treatment dimensions were produced in the TACE+RFA group by the synergistic effect of local chemotherapy, hyperthermia and reduction of the blood flow feeding the tumors. TACE+RFA are more effective for achieving tumor destruction than TAE+RFA, RFA or TACE performed alone.
     Purpose:To establish over-expression HSP70model in a rabbit model of VX2hepatic tumors by TAE combined with RFA treatments.
     Materials and Methods:Japanese White rabbits (75animals) with VX2liver tumors were randomly divided into five groups:TAE+RFA, RFA followed15min later by transcatheter arterial embolization (TAE) with polyvinyl alcohol particles (PVA)(n=15); RFA, RFA alone (n=15); TAE group, TAE alone (n=15); Sham group, received sham procedure without radiofrequency ablation; Control group, received no procedure until sample collection time (n=15). Five rabbits in each group were sacrificed on day1,3,7after procedures, respectively. HSP70expression was detected by immunohistochemistry staining and Western blot analysis; HSP70mRNA expression was by RT-PCR.
     Results:HSP70expression in the liver and residual tumor in TAE+RFA group were significantly greater than others groups on dayl,3and7, respectively. HSP70expression in the liver and residual tumor in TAE+RFA group on day3had statistically significant compared with on day1,7respectively. TAE induced greater HSP70expression than control group and sham group in residual tumor on dayl. In TAE, RFA and TAE+RFA groups, HSP70mRNA expressed in the both tissues peaked on day1, dropped on day3and dropped to base line on day7after treatment. TAE+RFA and RFA groups showed a stronger HSP70mRNA expression compared with others groups in both tissues on day1.
     Conclusions:The expression of HSP70was noted in residual tumors and liver tissue in the marginal area of necrosis area due to different treatments, increased on day1, peaked on day3and dropped on day7after treatment in TAE, RFA and TAE+RFA groups. Hypoxia caused by TAE can enhance HSP70expression in residual tumor. RFA combined with TAE showed the synergistic effect on HSP70expression.
     Purpose:To explore the relationship between the expression of HSP70surrounding residual tumor and in peripheral blood and CD8+T cells surrounding the residual tumors and in peripheral blood in a rabbit model of VX2hepatic tumor after TAE+RF A treatment.
     Materials and Methods:Japanese White rabbits (54animals) with VX2liver tumors were randomly divided into three groups:TAE+RFA, RFA followed15min later by TAE (n=18); RFA, RFA alone (n=18); Control group, received no procedure until sample collection time (n=18). Six rabbits in each group were sacrificed on day1,3,7after procedures, respectively. HSP70expression and infiltration of CD8+T cells surrounding the residual tumors were detected by immunohistochemistry staining; HSP70expression and the positive percentage of CD8+T cells in lymphocyte in the peripheral blood was detected by ELISA Kit and measured by flow cytometry, respectively.
     Results:HSP70expression in the residual tumors in TAE+RFA group was significantly greater than others groups on day1,3and7, respectively; RFA group was significantly greater than Control group on day1,3and7, respectively. HSP70expression in the residual tumors in TAE+RFA, RFA groups on day3had statistically significant compared with on day1,7respectively. The number of infiltration of CD8+T cells surrounding the residual tumors in TAE+RFA group was significantly greater than others groups on day1,3and7, respectively; RFA group was significantly greater than Control group on day1,3and7. The number of infiltration of CD8+T cells surrounding the residual tumors TAE+RFA and RFA groups on day3had statistically significant compared with on day1,7, respectively. The serum HSP70levels were on peak in RFA and TAE+RFA groups on day1and the peak levels of CD8+T cells in RFA and TAE+RFA groups in peripheral blood at same time.
     Conclusions:There were positive correlations between HSP70expression levels and infiltration of CD8+T levels surrounding the residual tumors and in RFA, TAE+RFA groups. The ability of serum HSP70initiating of antitumor immunity may reduce with serum HSP70decreasing. TAE+RFA treatment can activate the strongest antitumor immunity by hyperpyrexia and hypoxia induction of the most significant HSP70proteins expression from residual tumors cells in rabbit VX2hepatic tumors.
引文
[1]陈敏华,严昆,杨薇等.343例肝恶性肿瘤射频消融疗效及并发症.北京大学学报(医学版),2005,37(3):292-296.
    [2]Seror O, N'Kontchou G, Ibraheem M, et al. Large (>or=5.0-cm) HCCs:multipolar RF ablation with three internally cooled bipolar electrodes--initial experience in26patients. Radiology,2008,248(1):288-296.
    [3]Wang YB, Chen MH, Yan K, et al. Quality of life after radiofrequency ablation combined with transcatheter arterial chemoembolization for hepatocellular carcinoma:comparison with transcatheter arterial chemoembolization alone. Qual Life Res,2007,16(3):389-397.
    [4]Kobayashi M, Ikeda K, Kawamura Y, et al. Randomized controlled trial for the efficacy of hepatic arterial occlusion during radiofrequency ablation for small hepatocellular carcinoma--direct ablative effects and a long-term outcome. Liver Int,2007;27(3):353-359.
    [5]Mostafa EM, Ganguli S, Faintuch S et al. Optimal strategies for combining transcatheter arterial chemoembolization and radiofrequency ablation in rabbit VX2hepatic tumors. J Vasc Interv Radiol,2008,19(12):1740-1748.
    [6]Nikfarjam M, Muralidharan V, Christophi C. Mechanisms of focal heat destruction of liver tumors. J Surg Res,2005,127(2):208-223.
    [7]Rai R, Richardson C, Flecknell P, et al. Study of apoptosis and heat shock protein (HSP) expression in hepatocytes following radiofrequency ablation (RFA). J Surg Res,2005,129(1):147-151.
    [8]Zerbini A, Pilli M, Penna A, et al. Radio frequency thermal ablation of hepatocellular carcinoma liver nodules can activate and enhance tumor-specific T-cell responses. Cancer Res,2006,66(2):1139-1146.
    [9]Schueller G, Kettenbach J, Sedivy R, et al. Heat shock protein expression induced by percutaneous radiofrequency ablation of hepatocellular carcinoma in vivo. Int J Oncol,2004,24(3):609-613.
    [10]Douglas WG, Wang Y, Gibbs JF, et al. Proinflammatory cytokines increase hepatocellular carcinoma cells thermotolerance:evidence of how local inflammation may negatively impact radiofrequency ablation local control rates. J Surg Res,2008,150(1):118-124.
    [11]吴华平,张国武,唐荣,等.RFA联合TACE和HFH对兔肝VX2肿瘤的作用.中国普通外科杂志,2008,17(1):16-20.
    [12]Liu Q, Zhai B, Yang W, et al. Abrogation of local cancer recurrence after radiofrequency ablation by dendritic cell-based hyperthermic tumor vaccine. Mol Ther,2009,17(12):2049-2057.
    [13]Brown DB, Gould JE, Gervais DA, et al. Transcatheter therapy for hepatic malignancy:standardization of terminology and reporting criteria. J Vasc Interv Radiol,2007,18(12):1469-1478.
    [14]Breedis C, Young G. The blood supply of neoplasms in the liver. Am J Pathol,1954,30(5):969-977.
    [15]Brown DB, Cardella JF, Sacks D, et al. Quality improvement guidelines for transhepatic arterial chemoembolization, embolization, and chemotherapeutic infusion for hepatic malignancy. J Vasc Interv Radiol,2006,17(2Pt1):225-232.
    [16]Liang B, Zheng C, Feng G, et al. Expression of hypoxia-inducible factor-lalpha in liver tumors after transcatheter arterial embolization in an animal model. J Huazhong Univ Sci Technolog Med Sci,2009,29(6):776-781.
    [17]Liang B, Zheng CS, Feng GS, et al. Correlation of hypoxia-inducible factor1alpha with angiogenesis in liver tumors after transcatheter arterial embolization in an animal model. Cardiovasc Intervent Radio1,2010,33(4):806-812.
    [18]Santoro MG. Heat shock factors and the control of the stress response. Biochem Pharmacol,2000,59(1):55-63.
    [1]Geschwind JF. Chemoembolization for hepatocellular carcinoma:where does the truth lie? J Vasc Interv Radiol,2002,13(10):991-994.
    [2]Livraghi T, Goldberg SN, Lazzaroni S, et al. Hepatocellular carcinoma: radio-frequency ablation of medium and large lesions. Radiology,2000,214(3):761-768.
    [3]Murakami T, Ishimaru H, Sakamoto I, et al. Percutaneous radiofrequency ablation and trans catheter arterial chemoembolization for hypervascular hepatocellular carcinoma:rate and risk factors for local recurrence. Cardiovasc Intervent Radiol,2007,30(4):696-704.
    [4]Veltri A, Moretto P, Doriguzzi A, et al. Radiofrequency thermal ablation (RFA) after transarterial chemoembolization (TACE) as a combined therapy for unresectable non-early hepatocellular carcinoma (HCC). Eur Radiol,2006,16(3):661-669.
    [5]Yamakado K, Nakatsuka A, Takaki H, et al. Early-stage hepatocellular carcinoma: radiofrequency ablation combined with chemoembolization versus hepatectomy. Radiology,2008,247(1):260-266.
    [6]Rossi S, Garbagnati F, Lencioni R, et al. Percutaneous radio-frequency thermal ablation of nonresectable hepatocellular carcinoma after occlusion of tumor blood supply. Radiology,2000,217(1):119-126.
    [7]Chinn SB, Lee FT, Jr., Kennedy GD, et al. Effect of vascular occlusion on radiofrequency ablation of the liver:results in a porcine model. AJR Am J Roentgenol,2001,176(3):789-795.
    [8]柳曦,李欣,赵俊功,等.兔VX2肝癌模型制作及综合影像评价.实用放射学杂志,2002,18(2):132-134.
    [9]Lu DS, Yu NC, Raman SS, et al. Radiofrequency ablation of hepatocellular carcinoma:treatment success as defined by histologic examination of the explanted liver. Radiology,2005,234(3):954-960.
    [10]Buscarini L, Rossi S. Technology for Radiofrequency Thermal Ablation of Liver Tumors. Semin Laparosc Surg,1997,4(2):96-101.
    [11]Mostafa EM, Ganguli S, Faintuch S, et al. Optimal strategies for combining trans catheter arterial chemoembolization and radiofrequency ablation in rabbit VX2hepatic tumors. J Vasc Interv Radiol,2008,19(12):1740-1748.
    [12]Wu H, Exner AA, Krupka TM, et al. Vasomodulation of tumor blood flow:effect on perfusion and thermal ablation size. Ann Biomed Eng,2009,37(3):552-564.
    [13]Lu DS, Raman SS, Vodopich DJ, et al. Effect of vessel size on creation of hepatic radiofrequency lesions in pigs:assessment of the "heat sink" effect. AJR Am J Roentgenol,2002,178(1):47-51.
    [14]Goldberg SN, Saldinger PF, Gazelle GS, et al. Percutaneous tumor ablation: increased necrosis with combined radio-frequency ablation and intratumoral doxorubicin injection in a rat breast tumor model. Radiology,2001,220(2):420-427.
    [15]Ahmed M, Liu Z, Lukyanov AN, et al. Combination radiofrequency ablation with intratumoral liposomal doxorubicin:effect on drug accumulation and coagulation in multiple tissues and tumor types in animals. Radiology,2005,235(2):469-477.
    [16]吴汉平,梁惠民,郑传胜,等.肝动脉栓塞碘油进入门静脉的相关因素及其临床意义.临床放射学杂志,2005,24(5):429-433.
    [17]Nakai M, Sato M, Sahara S, et al. Radiofrequency ablation in a porcine liver model: effects of transcatheter arterial embolization with iodized oil on ablation time, maximum output, and coagulation diameter as well as angiographic characteristics. World J Gastroenterol,2007,13(20):2841-2845.
    [18]Kong G, Anyarambhatla G, Petros WP, et al. Efficacy of liposomes and hyperthermia in a human tumor xenograft model:importance of triggered drug release. Cancer Res,2000,60(24):6950-6957.
    [19]Higuchi T, Kikuchi M, Okazaki M. Hepatocellular carcinoma after transcatheter hepatic arterial embolization. A histopathologic study of84resected cases. Cancer,1994,73(9):2259-2267.
    [29]Dudar TE, Jain RK. Differential response of normal and tumor microcirculation to hyperthermia. Cancer Res,1984,44(2):605-612.
    [21]Lencioni R, Crocetti L, Petruzzi P, et al. Doxorubicin-eluting bead-enhanced radiofrequency ablation of hepatocellular carcinoma:a pilot clinical study. J Hepatol,2008,49(2):217-222.
    [22]Spreafico C, Marchiano A, Regalia E, et al. Chemoembolization of hepatocellular carcinoma in patients who undergo liver transplantation. Radiology,1994,192(3):687-690.
    [23]Oldhafer KJ, Chavan A, Fruhauf NR, et al. Arterial chemoembolization before liver transplantation in patients with hepatocellular carcinoma:marked tumor necrosis, but no survival benefit? J Hepatol,1998,29(6):953-959.
    [24]Gazelle GS, Goldberg SN, Solbiati L, et al. Tumor ablation with radio-frequency energy. Radiology,2000,217(3):633-646.
    [1]Bhardwaj N, Strickland AD, Ahmad F, et al. Liver ablation techniques:a review. Surg Endosc,2010,24(2):254-65.
    [2]Lam CM, Ng KK, Poon RT, et al. Impact of radiofrequency ablation on the management of patients with hepatocellular carcinoma in a specialized centre. Br J Surg,2004,91(3):334-8.
    [3]Nikfarjam M, Muralidharan V, Christophi C. Mechanisms of focal heat destruction of liver tumors. J Surg Res,2005,127(2):208-23.
    [4]Schueller G, Kettenbach J, Sedivy R, et al. Heat shock protein expression induced by percutaneous radiofrequency ablation of hepatocellular carcinoma in vivo. Int J Oncol,2004,24(3):609-13.
    [5]Anderson KM, Srivastava PK. Heat, heat shock, heat shock proteins and death:a central link in innate and adaptive immune responses. Immunol Lett,2000,74(1):35-9.
    [6]Rai R, Richardson C, Flecknell P, et al. Study of apoptosis and heat shock protein (HSP) expression in hepatocytes following radiofrequency ablation (RFA). J Surg Res,2005,129(1):147-51.
    [7]Yang WL, Nair DG, Makizumi R, et al. Heat shock protein70is induced in mouse human colon tumor xenografts after sublethal radiofrequency ablation. Ann Surg Oncol,2004,11(4):399-406.
    [8]Chen T, Guo J, Han C, et al. Heat shock protein70, released from heat-stressed tumor cells, initiates antitumor immunity by inducing tumor cell chemokine production and activating dendritic cells via TLR4pathway. J Immunol,2009,182(3):1449-59.
    [9]Brown DB, Gould JE, Gervais DA, et al. Transcatheter therapy for hepatic malignancy:standardization of terminology and reporting criteria. J Vasc Interv Radiol,2007,18(12):1469-78.
    [10]Brown DB, Cardella JF, Sacks D, et al. Quality improvement guidelines for transhepatic arterial chemoembolization, embolization, and chemotherapeutic infusion for hepatic malignancy. J Vase Interv Radiol,2006,17(2Pt1):225-32.
    [11]Santoro MG. Heat shock factors and the control of the stress response. Biochem Pharmacol,2000,59(1):55-63.
    [12]Lindquist S, Craig EA. The heat-shock proteins. Annu Rev Genet,1988,22:631-77.
    [13]Nikfarjam M, Muralidharan V, Su K, et al. Patterns of heat shock protein (HSP70) expression and Kupffer cell activity following thermal ablation of liver and colorectal liver metastases. Int J Hyperthermia,2005,21(4):319-32.
    [14]Bhardwaj N, Dormer J, Ahmad F, et al. Heat Shock Protein70Expression Following Hepatic Radiofrequency Ablation is Affected by Adjacent Vasculature. J Surg Res,2010,1-9.
    [15]Liu Q, Zhai B, Yang W, et al. Abrogation of local cancer recurrence after radiofrequency ablation by dendritic cell-based hyperthermic tumor vaccine. Mol Ther,2009,17(12):2049-57.
    [16]Lehner T, Wang Y, Whittall T, et al. Functional domains of HSP70stimulate generation of cytokines and chemokines, maturation of dendritic cells and adjuvanticity. Biochem Soc Trans,2004,32(Pt4):629-32.
    [17]Chuma M, Sakamoto M, Yamazaki K, et al. Expression profiling in multistage hepatocarcinogenesis:identification of HSP70as a molecular marker of early hepatocellular carcinoma. Hepatology,2003,37(1):198-207.
    [18]Helmlinger G, Yuan F, Dellian M, et al. Interstitial pH and pO2gradients in solid tumors in vivo:high-resolution measurements reveal a lack of correlation. Nat Med,1997,3(2):177-82.
    [19]Liang B, Zheng CS, Feng GS, et al. Correlation of hypoxia-inducible factor lalpha with angiogenesis in liver tumors after transcatheter arterial embolization in an animal model. Cardiovasc Intervent Radiol,2010,33(4):806-12.
    [20]Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature,1998,392(6673):245-52.
    [1]Hansler J, Wissniowski TT, Schuppan D, et al. Activation and dramatically increased cytolytic activity of tumor specific T lymphocytes after radio-frequency ablation in patients with hepatocellular carcinoma and colorectal liver metastases. World J Gastroenterol,2006,12(23):3716-3721.
    [2]Schueller G, Kettenbach J, Sedivy R, et al. Heat shock protein expression induced by percutaneous radiofrequency ablation of hepatocellular carcinoma in vivo. Int J Oncol,2004,24(3):609-613.
    [3]Todorova VK, Klimberg VS, Hennings L, et al. Immunomodulatory effects of radiofrequency ablation in a breast cancer model. Immunol Invest,2010,39(1):74-92.
    [4]Anderson KM, Srivastava PK. Heat, heat shock, heat shock proteins and death:a central link in innate and adaptive immune responses. Immunol Lett,2000,74(1):35-39.
    [5]Tissieres A, Mitchell HK, Tracy UM. Protein synthesis in salivary glands of Drosophila melanogaster:relation to chromosome puffs. J Mol Biol,1974,84(3):389-398.
    [6]Hartl FU. Molecular chaperones in cellular protein folding. Nature,1996,381(6583):571-579.
    [7]Yang WL, Nair DG, Makizumi R, et al. Heat shock protein70is induced in mouse human colon tumor xenografts after sublethal radiofrequency ablation. Ann Surg Oncol,2004,11(4):399-406.
    [8]Tsan MF, Gao B. Cytokine function of heat shock proteins. Am J Physiol Cell Physiol,2004,286(4):C739-744.
    [9]Johnson JD, Fleshner M. Releasing signals, secretory pathways, and immune function of endogenous extracellular heat shock protein72. J Leukoc Biol,2006,79(3):425-434.
    [10]Pockley AG. Heat shock proteins as regulators of the immune response. Lancet,2003;362(9382):469-476.
    [11]Srivastava P. Interaction of heat shock proteins with peptides and antigen presenting cells:chaperoning of the innate and adaptive immune responses. Annu Rev Immunol,2002,20:395-425.
    [12]Chen T, Guo J, Han C, et al. Heat shock protein70, released from heat-stressed tumor cells, initiates antitumor immunity by inducing tumor cell chemokine production and activating dendritic cells via TLR4pathway. J Immunol,2009,182(3):1449-1459.
    [13]Zerbini A, Pilli M, Penna A, et al. Radiofrequency thermal ablation of hepatocellular carcinoma liver nodules can activate and enhance tumor-specific T-cell responses. Cancer Res,2006,66(2):1139-1146.
    [14]Zerbini A, Pilli M, Fagnoni F, et al. Increased immunostimulatory activity conferred to antigen-presenting cells by exposure to antigen extract from hepatocellular carcinoma after radiofrequency thermal ablation. J Immunother,2008,31(3):271-282.
    [15]Fagnoni FF, Zerbini A, Pelosi G, et al. Combination of radiofrequency ablation and immunotherapy. Front Biosci,2008,13:369-381.
    [16]Rai R, Richardson C, Flecknell P, et al. Study of apoptosis and heat shock protein (HSP) expression in hepatocytes following radiofrequency ablation (RFA). J Surg Res,2005,129(1):147-151.
    [17]Teng LS, Jin KT, Han N, Cao J. Radiofrequency ablation, heat shock protein70and potential anti-tumor immunity in hepatic and pancreatic cancers:a minireview. Hepatobiliary Pancreat Dis Int,2010,9(4):361-365.
    [18]Njemini R, Demanet C, Mets T. Inflammatory status as an important determinant of heat shock protein70serum concentrations during aging. Biogerontology.2004;5(1):31-38.
    [19]den Brok MH, Sutmuller RP, van der VoortR, et al. In situ tumor ablation creates an antigen source for the generation of antitumor immunity. Cancer Res,2004,64(11):4024-4029.
    [20]Bendz H, Ruhland SC, Pandya MJ, et al. Human heat shock protein70enhances tumor antigen presentation through complex formation and intracellular antigen delivery without innate immune signaling. J Biol Chem,2007,282(43):31688-31702.
    [21]Wissniowski TT, Hansler J, Neureiter D, et al. Activation of tumor-specific T lymphocytes by radio-frequency ablation of the VX2hepatoma in rabbits. Cancer Res,2003,63(19):6496-6500.
    [22]Sanchez-Ortiz RF, Tannir N, Ahrar K, et al. Spontaneous regression of pulmonary metastases from renal cell carcinoma after radio frequency ablation of primary tumor:an in situ tumor vaccine? J Urol,2003,170(1):178-179.
    [23]Kim H, Park BK, Kim CK. Spontaneous regression of pulmonary and adrenal metastases following percutaneous radiofrequency ablation of a recurrent renal cell carcinoma. Korean J Radio1,2008,9(5):470-472.
    [24]Liu GJ, Moriyasu F, Hirokawa T, et al. Expression of heat shock protein70in rabbit liver after contrast-enhanced ultrasound and radiofrequency ablation. Ultrasound Med Biol,2010,36(1):78-85.
    [25]Javid B, MacAry PA, Lehner PJ. Structure and function:heat shock proteins and adaptive immunity. J Immunol,2007,179(4):2035-2040.
    [26]Li Z, Menoret A, Srivastava P. Roles of heat-shock proteins in antigen presentation and cross-presentation. Curr Opin Immunol,2002,14(1):45-51.
    [27]Njemini R, Lambert M, Demanet C, et al. Elevated serum heat-shock protein70levels in patients with acute infection:use of an optimized enzyme-linked immunosorbent assay. Scand J Immunol,2003,58(6):664-669.
    [28]Kimura F, Itoh H, Ambiru S, et al. Circulating heat-shock protein70is associated with postoperative infection and organ dysfunction after liver resection. Am J Surg,2004,187(6):777-784.
    [29]Satoh M, Shimoda Y, Akatsu T, et al. Elevated circulating levels of heat shock protein70are related to systemic inflammatory reaction through monocyte Toll signal in patients with heart failure after acute myocardial infarction. Eur J Heart Fail,2006,8(8):810-815.
    [30]Pockley AG, Muthana M, Calderwood SK. The dual immunoregulatory roles of stress proteins. Trends Biochem Sci,2008,33(2):71-79.
    [1]Zerbini A, Pilli M, Laccabue D, et al. Radiofrequency thermal ablation for hepatocellular carcinoma stimulates autologous NK-cell response. Gastroenterology,2010,138(5):1931-1942.
    [2]Livraghi T, Goldberg SN, Lazzaroni S, et al. Hepatocellular carcinoma: radio-frequency ablation of medium and large lesions. Radiology,2000,214(3):761-768.
    [3]Neuhaus J, Blachut L, Rabenalt R, et al. Efficiency analysis of bipolar and multipolar radiofrequency ablation in an in vivo porcine kidney model using three-dimensional reconstruction of histologic section series. J Endourol,2011,25(5):859-867.
    [4]Somersan S, Larsson M, Fonteneau JF, et al. Primary tumor tissue lysates are enriched in heat shock proteins and induce the maturation of human dendritic cells. J Immunol,2001,167(9):4844-4852.
    [5]Fan R, Wang C, Wang Y, et al. Enhanced antitumoral efficacy and immune response following conditionally replicative adenovirus containing constitutive HSF1delivery to rodent tumors. J Transl Med,2012,10(1):101.
    [6]Deyhimi P, Azmoudeh F. HSP27and HSP70expression in squamous cell carcinoma:An immunohistochemical study. Dent Res J (Isfahan),2012,9(2):162-166.
    [7]Pawaria S, Binder RJ. CD91-dependent programming of T-helper cell responses following heat shock protein immunization. Nat Commun,2011;2:521.
    [8]Qian J, Yi H, Guo C, et al. CD204suppresses large heat shock protein-facilitated priming of tumor antigen gp100-specific T cells and chaperone vaccine activity against mouse melanoma. J Immunol,2011,187(6):2905-2914.
    [9]Fu Q, Wu Y, Yan F, et al. Efficient induction of a Her2-specific anti-tumor response by dendritic cells pulsed with a Hsp70L1-Her2(341-456) fusion protein. Cell Mol Immunol,2011,8(5):424-432.
    [10]Bajor A, Tischer S, Figueiredo C, et al. Modulatory role of calreticulin as chaperokine for dendritic cell-based immunotherapy. Clin Exp Immunol,2011,165(2):220-234.
    [11]Robert J, Gantress J, Rau L, et al. Minor histocompatibility antigen-specific MHC-restricted CD8T cell responses elicited by heat shock proteins. J Immunol,2002,168(4):1697-1703.
    [12]Fong Y. Surgical therapy of hepatic colorectal metastasis. CA Cancer J Clin,1999,49(4):231-255.
    [13]Solbiati L, Goldberg SN, Ierace T, et al. Hepatic metastases:percutaneous radio-frequency ablation with cooled-tip electrodes. Radiology,1997,205(2):367-373.
    [14]McGahan JP, Browning PD, Brock JM, et al. Hepatic ablation using radiofrequency electrocautery. Invest Radiol,1990,25(3):267-270.
    [15]Shibata T, Isoda H, Hirokawa Y, et al. Small hepatocellular carcinoma:is radiofrequency ablation combined with transcatheter arterial chemoembolization more effective than radiofrequency ablation alone for treatment? Radiology,2009,252(3):905-913.
    [16]Tissieres A, Mitchell HK, Tracy UM. Protein synthesis in salivary glands of Drosophila melanogaster:relation to chromosome puffs. J Mol Biol,1974,84(3):389-398.
    [17]Hatfield MP, Lovas S. Role of hsp70in cancer growth and survival. Protein Pept Lett,2012,19(6):616-624.
    [18]Maslov LN, Khaliulin IG, Pei JM, et al.[Role of heat shock proteins in the mechanism of cardioprotective effect of transient hyperthermia and delayed preconditioning]. Patol Fiziol Eksp Ter,2011,(4):64-73.
    [19]Chen T, Cao X. Stress for maintaining memory:HSP70as a mobile messenger for innate and adaptive immunity. Eur J Immunol,2010,40(6):1541-1544.
    [20]Retzlaff C, Yamamoto Y, Hoffman PS, et al. Bacterial heat shock proteins directly induce cytokine mRNA and interleukin-1secretion in macrophage cultures. Infect Immun,1994,62(12):5689-5693.
    [21]Tutar Y. Hsp70in oncology. Recent Pat DNA Gene Seq,2011,5(3):214-218.
    [22]Silver JT, Noble EG. Regulation of survival gene hsp70. Cell Stress Chaperones,2012,17(1):1-9.
    [23]Wang RE. Targeting heat shock proteins70/90and proteasome for cancer therapy. Curr Med Chem,2011,18(27):4250-4264.
    [24]Khalil AA, Kabapy NF, Deraz SF, et al. Heat shock proteins in oncology: Diagnostic biomarkers or therapeutic targets? Biochim Biophys Acta,2011,1816(2):89-104.
    [25]Jones Q, Voegeli TS, Li G, et al. Heat shock proteins protect against ischemia and inflammation through multiple mechanisms. Inflamm Allergy Drug Targets,2011,10(4):247-259.
    [26]Zeng Y, Feng H, Graner MW, et al. Tumor-derived, chaperone-rich cell lysate activates dendritic cells and elicits potent antitumor immunity. Blood,2003,101(11):4485-4491.
    [27]Jolesch A, Elmer K, Bendz H,, et al. Hsp70, a messenger from hyperthermia for the immune system. Eur J Cell Biol,2012,91(1):48-52.
    [28]Gao J, Luo SM, Peng ML, et al. Enhanced immunity against hepatoma induced by dendritic cells pulsed with Hsp70-H22peptide complexes and CD40L. J Cancer Res Clin Oncol,2012,138(6):917-926.
    [29]Kuppner MC, Gastpar R, Gelwer S, et al. The role of heat shock protein (hsp70) in dendritic cell maturation:hsp70induces the maturation of immature dendritic cells but reduces DC differentiation from monocyte precursors. Eur J Immunol,2001,31(5):1602-1609.
    [30]黄波,冯作化,张桂梅Hsp70-H22肿瘤细胞肽复合物与树突状细胞成熟的关系.华中科技大学学报(医学版),2002,(2):113-116.
    [31]黄丽,张文敏.热休克蛋白70抗肿瘤免疫的研究进展.医学综述,2011,17(2):205-207.
    [32]Xie Y, Bai O, Zhang H, et al. Membrane-bound HSP70-engineered myeloma cell-derived exosomes stimulate more efficient CD8(+) CTL-and NK-mediated antitumour immunity than exosomes released from heat-shocked tumour cells expressing cytoplasmic HSP70. J Cell Mol Med,2010,14(11):2655-2666.
    [33]Hirsh MI, Hashiguchi N, Chen Y, et al. Surface expression of HSP72by LPS-stimulated neutrophils facilitates gammadelta T cell-mediated killing. Eur J Immunol,2006,36(3):712-721.
    [34]Wan T, Zhou X, Chen G, et al. Novel heat shock protein Hsp70L1activates dendritic cells and acts as a Thl polarizing adjuvant. Blood,2004,103(5):1747-1754.
    [35]Stocki P, Wang XN, Dickinson AM. Inducible heat shock protein70reduces T cell responses and stimulatory capacity of monocyte-derived dendritic cells. J Biol Chem,2012,287(15):12387-12394.
    [36]Prohaszka Z, Singh M, Nagy K, et al. HSP70is a potent activator of the human complement system. Cell Stress Chaperones,2002,7(1):17-22.
    [37]Uto T, Tsujimura K, Uchijima M, et al. A novel vaccine strategy to induce mycobacterial antigen-specific Thl responses by utilizing the C-terminal domain of heat shock protein70. FEMS Immunol Med Microbiol,2011,61(2):189-196.
    [38]Melcher A, Todryk S, Hardwick N, et al. Tumor immunogenicity is determined by the mechanism of cell death via induction of heat shock protein expression. Nat Med,1998,4(5):581-587.
    [39]You HY, Zhang KX, Wang JX, et al.[Immunoadjuvant effect of Hsp70L1in tumor vaccine]. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi,2010,26(4):340-343.
    [40]Wells AD, Rai SK, Salvato MS, et al. Hsp72-mediated augmentation of MHC class I surface expression and endogenous antigen presentation. Int Immunol,1998,10(5):609-617.
    [41]Tamura Y, Peng P, Liu K, et al. Immunotherapy of tumors with autologous tumor-derived heat shock protein preparations. Science,1997,278(5335):117-120.
    [42]Huang XF, Ren W, Rollins L, et al. A broadly applicable, personalized heat shock protein-mediated oncolytic tumor vaccine. Cancer Res,2003,63(21):7321-7329.
    [43]Nikfarjam M, Muralidharan V, Su K, et al. Patterns of heat shock protein (HSP70) expression and Kupffer cell activity following thermal ablation of liver and colorectal liver metastases. Int J Hyperthermia,2005,21(4):319-332.
    [44]Yang WL, Nair DG, Makizumi R, et al. Heat shock protein70is induced in mouse human colon tumor xenografts after sublethal radiofrequency ablation. Ann Surg Oncol,2004,11(4):399-406.
    [45]Dickson JA, Calderwood SK. Temperature range and selective sensitivity of tumors to hyperthermia:a critical review. Ann N YAcad Sci,1980,335:180-205.
    [46]Bhardwaj N, Dormer J, Ahmad F, et al. Heat Shock Protein70Expression Following Hepatic Radiofrequency Ablation is Affected by Adjacent Vasculature. J Surg Res,2012,173(2):249-257.
    [47]Schueller G, Kettenbach J, Sedivy R, et al. Heat shock protein expression induced by percutaneous radiofrequency ablation of hepatocellular carcinoma in vivo. Int J Oncol,2004,24(3):609-613.
    [48]Liu Q, Zhai B, Yang W, et al. Abrogation of local cancer recurrence after radiofrequency ablation by dendritic cell-based hyperthermic tumor vaccine. Mol Ther,2009,17(12):2049-2057.
    [49]Chen T, Guo J, Han C, et al. Heat shock protein70, released from heat-stressed tumor cells, initiates antitumor immunity by inducing tumor cell chemokine production and activating dendritic cells via TLR4pathway. J Immunol,2009,182(3):1449-1459.
    [50]Skitzki JJ, Repasky EA, Evans SS. Hyperthermia as an immunotherapy strategy for cancer. Curr Opin Investig Drugs,2009,10(6):550-558.
    [51]Teng LS, Jin KT, Han N, et al. Radiofrequency ablation, HSP70and potential anti-tumor immunity in hepatic and pancreatic cancers:a minireview. Hepatobiliary Pancreat Dis Int,2010,9(4):361-365.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700