基于代理模型的车身吸能结构抗撞性优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为一个在汽车领域的“发展中国家”,我国许多整车厂家很大程度上缺乏完全自主研发的能力。但随着自主知识产权意识的不断加强,广大车企对自主研发的需求逐步增加。对于这一现状,政府出台了一系列针对汽车产业的调整规划,特别是对自主品牌、自主创新的支持力度非常巨大,这也激发了民族汽车产业的迅猛发展。国家“十二五”发展规划中提出了“建设原理创新、产品创新和产业化创新体系。推广结构轻量化、整车优化、推动汽车产品节能”的汽车产业的重点发展方向。“汽车可靠耐久、安全、节能减排关键技术”与“汽车轻量化技术与工艺材料应用开发”等汽车关键核心技术也被作为重大专项进行科技攻关。
     基于以上原因,要想真正发展我国自己的汽车工业品牌,提高国际竞争力,整车的安全性是急需提高的一项内容,而抗撞性又是车辆安全中的关键一环。传统的车身设计流程由于存在耗费周期长,CAE分析不能有效地为前期设计进行指导等问题。因此,在进行设计及试验之前,提供一个比较完整充分的碰撞仿真分析作为参考是十分有必要的。然而针对车辆碰撞这类非线性程度较高、结构自由度巨大的问题,反复的计算和修改将耗费大量的财力和人力。因此对于这类问题,通过试验设计构建代理模型的方法可有效地减少计算时间,进一步的方便抗撞性优化设计,有效地提高车身设计的效率,并满足整车的安全性需求。另外针对详细有限元模型构建等效的简化模型也是有效规避计算量的方法。简化车身部件的基本单元是由梁、板、接头构成的,其中不同截面的梁占很大成分,因此应通过对不同类型薄壁梁的几何及力学特性的基础理论分析,考虑车身结构几何特性、力学特性及工艺因素,对轿车碰撞参数化结构的建模方式进行研究,分别建立轿车车身部件的有限元模型及其相应的参数化简化模型,为轿车参数化结构建模及优化奠定基础。
     本文依托2009年国家自然科学基金项目,2009年及2012年吉林省科技发展计划重大专项的资助,以及课题组与中国第一汽车集团技术中心车身部多年来的合作,使用自主开发的简化车身框架结构参数的快速优化专用系统平台,建立原结构参数化模型及相应的代理模型,以轻量化、高吸能性为目标,实现车身产品在概念设计阶段的快速参数化建模及基于代理模型的车身主要吸能部件的抗撞性优化设计,有效提高模型修改及优化的效率。主要工作包括:
     (1)碰撞安全性仿真理论及抗撞性优化方法。
     详细介绍了汽车碰撞安全性仿真理论,针对非线性有限元法的适用条件进行探讨,给出了相关的运动方程、守恒方程和边界条件等公式的推导过程,以及单元计算的单点高斯积分方法和沙漏现象。此外,重点针对本文所研究的基于代理模型的抗撞性优化方法进行研究,介绍了试验设计的两种常用方法和几种代理模型的构建原理,并对不同构建代理模型方法的适用范围进行了对比分析。最后,概述了粒子群优化算法的基本原理和求解流程。
     (2)正碰工况下基于代理模型的吸能盒结构抗撞性优化设计。
     以车身前部抗撞部件吸能盒结构的常见类型:方形截面薄壁锥管为研究对象,在低速冲击工况下研究其具有最佳抗撞性能的优化设计方案。将压溃力效率及比吸能作为评价指标,建立加权组合形式的多目标优化模型。分析并探讨分布设置诱导槽对结构吸能与压溃力的影响,选择诱导槽设定的可行区域。以槽的个数、非均匀分布的槽间距离及槽的深度等作为优化参数。在根据试验设计方法合理选取样本点后,分别应用三次多项式响应面法及径向基法构建其有效代理模型,并采用粒子群法进行优化设计,得出使结构最优的诱导槽位置分布及数量,并与对应参数的圆形截面锥管的抗撞性进行比较,发现正方形截面的抗撞性更好。通过仿真分析验证该方法的有效性。研究结果证明,这种科学合理施加诱导槽的方式可有效提高结构的抗撞性能,为吸能盒结构设计提供参考。
     (3)侧碰工况下基于代理模型的车门结构的抗撞性优化。
     对某款轿车车门的有限元模型进行了侧碰的仿真模拟,通过能量、碰撞接触力、变形位移及加速度的曲线分析其碰撞安全性。随后,基于均匀试验设计方法结合多项式响应面法,构建了该车门结构在特定工况下的吸能量、最大碰撞力和总质量关于板厚参数的代理模型,采用粒子群算法对响应面模型进行优化设计。在对原结构质量和最大碰撞力分别进行约束的情况下,给出车门主要部件厚度的优化设计方案,从而有效提升车门结构的吸能值,最大程度改善了整车的抗撞性能。
     (4)六边形截面、槽型截面混合截面薄壁梁结构的弯曲特性分析及B柱结构简化模型的建立。
     通过对六边形截面及槽形截面薄壁梁的弯曲特性的研究,基于能量守恒定律,推导了六边形截面和槽型截面薄壁梁通过各条塑性铰线耗散能量的计算表达式,得到它们的弯矩与转角关系,即M (θ)-θ曲线。由此可以基于LS-DYNA软件快速定义非线性转动弹簧相关属性,并将这种零尺寸的非线性转动弹簧放置于B柱弯曲时产生塑性铰的区域。这样便建立了由非线性刚梁和转动弹簧所构成的B柱简化模型。通过对详细模型与简化模型的变形效果、位移曲线和能量曲线的比较,验证了简化模型的有效性。同时为整车模型的简化及提高其抗撞性优化效率奠定了基础。
As a developing country in vehicle domain, most of vehicle manufacturers are lack ofthe ability for independent research. However, with the gradual enhancement of the awarenessfor independent intellectual property rights, many vehicle companies pay attention to theindependent research and development. Hence, especially for the independent brands, thegovernment publishes series of programming, which improves the fast development ofnational vehicle industries. The innovation of construction principle, product innovation andindustrial innovation system were put forward in the national ‘12th Five Year Plan’.Consequently, structure lightweight, vehicle optimization and energy-saving for vehicleproducts have been focused on as a key development for vehicle industry. Moreover, not onlythe main technologies for reliability, safety and energy conservation, but also the developmentfor lightweight and materials application have been researched as major projects in thedomain of vehicle.
     For the reasons above, improving vehicle safety, especially the crashworthiness, is one ofthe urgent work, which will develop our own brand of automobile manufacturer and improveinternational competitiveness. The traditional procedure of carbody design requires long cycleand may not be effective guidance for preliminary design. Hence, it is necessary to take arelatively complete crash simulation analysis as a reference. However, vehicle collisionproblem, which is high nonlinear and contains huge degrees of freedom, will spend a lot offinancial resources and computation. In order to solve the problem, constructing surrogatemodels based on DOE method can effectively reduce the computation time, facilitate thecrashworthiness optimization design, and improve the efficiency of the carbody design, whichwill satisfy the security requirement of the vehicle. Moreover, computation of the simplified model equivalent to the detail FE model is less. The basic units of the simplified carbodycomponents are composed by beams, plates and joints. Especially, beams with differentsections take large proportions.
     Based on not only the analysis of geometrical properties and mechanical properties fordifferent types of thin-walled beams, but also the geometrical properties, mechanicalproperties and production process, this paper researches on the method of constructingparameterized structure for vehicle collision, and then establishes the FE models andcorresponding simplified models of the car body parts, which are the foundation forparametric modeling and optimization.
     This paper is supported by the National Natural Science Foundation of China, Scienceand Technology Development Plan of Jilin province in2009and2012, and the corporationwith body department of China Faw Group Corporation R&D Center. According to thespecial optimization platform for simplified vehicle frame structures which compliedindependently, fast parametric modeling and crashworthiness optimization for the mainenergy-absorbing components of vehicle based on surrogate models have been studied, whichare all considered for the concept design. During the process of optimization, both thelightweight and high energy conservation are taken as optimization objects. This may greatlyenhance the effectiveness of structure modification and optimization. The main work can beconcluded as follows.
     (1) Theories of crash safety simulation and crashworthiness optimization methods.
     Theories of vehicle crash safety simulation are introduced in detail, such as discussionsabout the application conditions for non-linear FE method, derivations of motion equations,conservation equations and boundary conditions. Also, the Gaussian integration method basedon a single point for unit calculation and the hourglass phenomenon are illustrated. Moreover,methods for crashworthiness optimization based on surrogate models are focused on. Afterillustrating several methods for DOE and the construction of surrogate models, this paperanalyzes their application ranges. Finally, both the basic principles and solving process of theparticle swarm optimization method are summarized.
     (2) Crashworthiness optimization of crash box structure based on its surrogatemodel during front collision.
     The crashworthiness optimization with low velocity impact, according to thin-walledtaper tube with square cross section, which often appears as an energy absorbing part of crashbox, has been researched. A multi-objective optimization problem based on a combination ofCFE and SEA, has been put forward. Grooves are induced in the original structure. Afteranalyzed the relationship between energy absorption and crash force of structure withinducing grooves, the feasible design area of inducing grooves is obtained. The number,non-uniform intervals and depth of inducing grooves are taken as optimal parameters. Afterchosen sampling points reasonably, surrogate models are constructed by cubic polynomialsresponse surface method and radial basis function method respectively. Then the optimalnumber and distribution of inducing grooves are obtained by PSO method. FE analysisvalidates the effectiveness of this method. Results prove that compared with the structurewithout inducing groove, crashworthiness of the structure added inducing groovesscientifically is improved efficiently, which can be useful during the design of crash box.
     (3) Crashworthiness optimization of car door structure based on its surrogatemodel during side collision.
     Simulation for FE model of a certain car door structure during side collision has beenresearched. The curves of energy, collision contact force, deformation displacement andacceleration has been employed for analyzing the crashworthiness safety. Then, based on theuniform design and polynomial response surface method, surrogate models of the energy,maximum collision force and total mass of the car door structure under a special condition areconstructed respectively, as well as the thickness of planes are taken as variables. PSO methodis used as a tool for optimization of the surrogate models. As well as the mass and maximumcollision force of the original structure are treated as constraint conditions, the optimal designfor the main parts thickness of car door structure has been determined finally. With the design,one can effectively increase the energy of car door structure and improve the crashworthinessof the whole car.
     (4) Analysis about the bending behavior of thin-walled beams with hexagonal andchannel sections and construction for simplified model of B pillar.
     According to the researches on bending behavior of thin-walled beams with hexagonaland channel sections and the law for conservation of energy, formulas for calculating thedissipated energy of thin-walled beams through each plastic hinge line. The curve ofrelationship between the moment and rotation (i.e. M(θ)-θ) has been obtained. So therelative properties of non-linear rotation springs can be defined quickly by LS-DYNA. Bysetting the non-linear rotation springs into the zone appearing plastic hinges which are causedby the bending of B pillar, one can construct the simplified model of B pillar by non-linearbeams and rotation springs. After comparing the deformation effect, displacement curve andenergy curve of simplified model with those of detailed model, the effectiveness of simplifiedmodel is verified. The work is benefit to the construction for simplified model of vehicle andimprovement of effectiveness for crashworthiness optimization.
引文
[1] Paul DB, Clifford CC, Bahig BF, et al. Vehicle crashworthiness and occupantprotection[M]. Michigan:American Iron and Steel Institute,2004.
    [2]乐玉汉.轿车车身设计[M].北京:高等教育出版社,2000.
    [3]朱西产.实车碰撞试验法规的现状和发展趋势[J].汽车技术,2001,(4):44-46.
    [4]王大志.基于乘员保护的汽车正面碰撞结构设计与变形控制研究[D].清华大学博士学位论文,2006.
    [5] Giess M, Tomas J. Improving safety performance in frontal collisions by changing theshape of structural components[C]. Proceedings of16th International Technical Conferenceon the Enhanced Safety of Vehicles, Washington,1998,222-228.
    [6] Baker BC, Nolan JM, O'Neill B, et al. Crash compatibility between cars and light trucks:Benefits of lowering front-end energy-absorbing structure in SUVs and pickups[J]. AccidentAnalysis and Prevention,2008,40(1):116-125.
    [7] Hilmann J, Paas M, Haenschke A, et al. Automatic concept model generation foroptimisation and robust design of passenger cars[J]. Advances in Engineering Software,2007,38(11-12):795-801.
    [8] Melosh RJ, Kamat MP. Computer simulation of a light aircraft crash[J]. Journal ofAircraft,1977,14:1009-1014.
    [9] Avery M, Weekes AM. The development of a new low-speed impact test to improvebumper performance and compatibility[J]. International Journal of Crashworthiness,2006,11(6):573-581.
    [10] Aya N, Takahashi K. Energy absorption characteristics of vehicle body structure[C].Proceedings of Transaction of the Society ofAutomotive Engineers, Japan,1974,1-7.
    [11] Magee CL, Thornton PH. Design consideration in energy absorption by structuralcollapse[C]. SAE780434presented at SAE Annual Meeting. Detroit,1978,4-34.
    [12] Mahmood HF, Paluszny A. Design of thin walled columns for crash energymanagement-their strength and mode of collapse[C]. Proceedings of the Fourth InternationalConference on Vehicle Structural Mechanics, Detroit,1981,7-18.
    [13] Kamal MM. Analysis and simulation of vehicle-to-barrier impact[C]. Proceedings ofSAE Transportation, Detroit,1970,4-14.
    [14] Ni CM, Song JO. Computer-aided design analysis methods for crashworthinessdesign[C]. Proceedings of Symp Vehicle Crashworthiness Including Impact Biomechanics,Canada,1986,10-20.
    [15] Belytschko T, Welch RE, Bruce RW. Finite element analysis of automotive structuresunder crash loadings[C]. Proceedings of IIT Research Institute,America,1975,37-46.
    [16] Benson DJ, Hallquist JO. The application of DYNA3D in large scale crashworthinesscalculations[C]. Proceedings of ASME International Computers in Engineering Conference,America,1984,8-12.
    [17]黄世霖,李一兵,张金换,等.汽车被动安全性试验研究[J].汽车工程,1992,(4):193-199.
    [18]林逸,郭九大,王望予.汽车被动安全性研究综述[J].汽车工程,1998,20(1):1-8.
    [19]陈弘,董丽莉,赵航;. CATARC汽车模拟碰撞试验系统的研究[J].汽车技术,1996,(10):28-32.
    [20]贾宏波,黄金陵,郭孔辉.汽车车身结构碰撞性能的计算机模拟、评价与改进[J].吉林工业大学学报,1998,2:6-11.
    [21]刘振闻,雷正保.受冲薄壳弹塑性大变形力学特性的有限元分析[J].长沙交通学院学报,1999,15(2):17-21.
    [22]雷正保,钟志华.受冲薄壁结构后屈曲分析的显式有限元法[J].应用力学学报,2000,17(4):158-163.
    [23]朱西产,钟荣华.薄壁直梁件碰撞性能计算机仿真方法的研究[J].汽车工程,2000,22(2):85-89.
    [24]宋宏伟,赵桂范,杜星文.玻璃/环氧圆柱管撞击性能研究[J].汽车工艺与材料,2001,1:23-26.
    [25]雷正保,钟志华.汽车被动安全性研究中的几个问题及对策[J].湖南大学学报,1999,26(1):33-37.
    [26]雷正保,杨应龙,钟志华.结构碰撞分析中的动态显式有限元方法及应用[J].振动与冲击,1999,18(3):71-77.
    [27]钟志,杨济匡.汽车安全气囊技术及其应用[J].中国机械工程,2000,11(1-2):234-238.
    [28]张维刚,钟志华.非线性动态有限元碰撞仿真技术的工程应用研究[J].计算机仿真,2002,19(2):85-88.
    [29]曹立波,钟志华,杨济匡.机械储能式汽车碰撞试验系统的研究[J].客车技术与研究,2003,25(3):11-13.
    [30]何文,钟志华.显式有限元技术在车身薄壁梁结构件数值模拟中的应用[J].湖南大学学报,2005,32(1):1-5.
    [31]钟志华,郭正康.汽车抗碰撞分析中的摩擦力计算[J].汽车工程,1993,15(6):39-44.
    [32]雷正保,钟志华.汽车前部纵向力学特性优化设计[J].上海汽车,1998,2:9-10.
    [33]张维刚,钟志华.汽车正碰吸能部件改进的计算机仿真[J].汽车工程,2002,24(1):6-10.
    [34]曹立波,钟志华,白中浩,等.台车碰撞试验用机械缓冲吸能装置研究[J].汽车工程,2002,24(3):228-231.
    [35]谢庆喜,张维刚,钟志华.电动汽车电池架的抗撞性仿真设计与优化[J].汽车科技,2005,(3):24-27.
    [36]谢庆喜,张维刚,钟志华.波形梁半刚性护栏与汽车碰撞的仿真分析及其结构优化[J].客车技术与研究,2006,1:10-12.
    [37]朱西产,刘玉光,郑宏.汽车车身结构碰撞性能的试验研究[J].汽车技术,1994,(4):20-22.
    [38] Alexander JM. An approximate analysis of the collapse of thin cylindrical shells underaxial loading[J]. Quarterly Journal of Mechanics and Applied Mathematics,1960,13(1):10-15.
    [39] Pugsley A, Macaulay M. The large scale crumpling of thin cylindrical columns[J].Quarterly Journal of Mechanics and Applied Mathematics,1960,13(1):1-9.
    [40] Al-Hassani STS, Johnson W, Lowe WT. Characteristics of inversion tubes under axialloading[J]. Journal of Mechanical Engineering Sciences,1972,14:370-381.
    [41] Johnson W, Soden PD, Al-Hassani STS. Inextensional collapse of thin-walled tubesunder axial compression[J]. Journal of Strain Analysis,1977,12:317-330.
    [42] Wierzbicki T, Abramowicz W. On the crushing mechanics of thin-walled structures[J].Journal ofApplied Mechanics,1983,50:727-734.
    [43] Abramowicz W, Jones N. Dynamic axial crushing of circular tubes[J]. InternationalJournal of Impact Engineering,1984,2(3):263-281.
    [44]薛量,林忠钦,姜正旭.闭口帽型薄壁梁结构碰撞性能的数值模拟[J].华东船舶工业学院学报,1999,13(4):24-28.
    [45]吴阳年,姜平,杨士钦.汽车薄壁杆件的轴向耐撞性分析[J].合肥工业大学学报,2000,23(4):542-545.
    [46] Yamazaki K, Han J. Maximization of the crushing energy absorption of cylindricalshells[J]. Advance in Engineering Software,2000,31:425-434.
    [47]姚松,田红旗.车辆吸能部件的薄壁结构碰撞研究[J].中国铁道科学,2001,22(2):55-60.
    [48] Lanzi L, Castelletti LML, Anghileri M. Multi-objective optimization of compositeabsorber shape under crashworthiness requirements[J]. Composite Structures,2004,65:433-441.
    [49] Anghileri M, Chirwa EC, Lanzi L, et al. An inverse approach to identify the constitutivemodel parameters for crashworthiness modeling of composite structures[J]. CompositeStructures,2005,68:65-74.
    [50] Yamashita M, Gotoh M. Impact behavior of honeycomb structures with various cellspecifications-numerical simulation and experiment[J]. International Journal of ImpactEngineering,2005,32:618-630.
    [51] Xiang YJ, Wang Q, Fan ZJ, et al. Optimal crashworthiness design of a spot-weldedthin-walled hat section[J]. Finite Element in Analysis and Design,2006,42:846-855.
    [52] Nagel GM, Thambiratnam DP. Dynamic simulation and energy absorption of taperedthin-walled tubes under oblique impact loading[J]. International Journal of ImpactEngineering,2006,32:1595-1620.
    [53]贾宏波,黄金陵,谷安涛.车辆典型薄壁梁结构碰撞模拟研究与参数选择[J].农业机械学报,1998,29(1):24-28.
    [54] Zarei HR, Kroger M. Multiobjective crashworthiness optimization of circular aluminumtubes[J]. Thin-Walled Structures,2006,44:301-308.
    [55] Liu YC. Crashworthiness design of multi-corner thin-walled columns[J]. Thin-WalledStructures,2008,46(12):1329-1337.
    [56] Liu YC. Crashworthiness design of thin-walled curved beams with box and channel crosssections[J]. International Journal of Crashworthiness,2010,15(4):413-423.
    [57] Camotim D, Basaglia C, Silvestre N. Silvestre N. GBT buckling analysis of thin-walledsteel frames: Astate-of-the-art report[J]. Thin-Walled Structures,2010,48(10-11):726-743.
    [58] Tang ZL, Liu ST, Belingardi G. Energy absorption properties of non-convex multi-cornerthin-walled columns[J]. Thin-Walled Structures,2012,51:112-120.
    [59] Song J, Chen Y, Lu GX. Axial crushing of thin-walled structures with origami patterns[J].Thin-Walled Structures,2012,54:65-71.
    [60] Hosseinipour SJ, Daneshi GH. Energy absorbtion and mean crushing load of thin-walledgrooved tubes under axial compression[J]. Thin-Walled Structures,2003,41(1):31-46.
    [61] Elgalai AM, Mahdi E, Hamouda AMS. Crushing response of composite corrugated tubesto quasi-static axial loading[J]. Composite Structures,2004,66(1-4):665-671.
    [62] Cho YB, Bae CH, Suh MW, et al. A vehicle front frame crash design optimization usinghole-type and dent-type crush initiator[J]. Thin-Walled Structures,2006,44:415-428.
    [63] Jong KY, Luo SL, Hsieh WL. The application of crashworthiness to the development ofvehicle components[C]. Proceedings of SAE Transportation, America,1994,51-66.
    [64] Hajela P, Lee E. Topological optimization of rotorcraft subfloor structures forcrashworthiness considerations[J]. Computers&Structures,1997,64(1-4):65-76.
    [65] Yamazaki K, Han J. Maximization of the crushing energy absorption of tubes[J].Structural Optimization,1998,(16):37-46.
    [66] Kim HS. New extruded multi-cell aluminum profile for maximum crash energyabsorption and weight efficiency[J]. Thin-Walled Structures,2002,40:311-327.
    [67] Etman LEP, Adriaens JMTA, Van Slagmaat MTP, et al. Crashworthiness designoptimization using multipoint sequential linear programming[J]. Structural Optimization,1996,12:222-228.
    [68] Etman LEP. Optimization of multibody systems using approximations concepts[D]. Ph.D.thesis, Eindhoven University of Technology,1997.
    [69] Schramm U, Thomas H. Crashworthiness design using structural optimization[C].America:Proceedings ofAIAAPaper,1998,.
    [70] Sobieszczanski-Sobieski J, Kodiyalam S, Yang RJ. Optimization of car body underconstraints of noise, vibration, and harshness (NVH), and crash[J]. Structural andMultidisciplinary Optimization,2001,22(4):295-306.
    [71] Schramm U. Multi-disciplinary optimization for NVH and crashworthiness[C]. The firstMIT conference on computational fluid and solid mechanics, America,2001,721-724.
    [72] Lust R. Structural optimization with crashworthiness constraints[J]. StructuralOptimization,1992,4:85-89.
    [73] Shi QZ, Hagiwara I. Optimal design method to automobile problems using holographicneural network's approximation[J]. Japan Journal of Industrial and Applied Mathematics,2000,17(3):321-339.
    [74] Yu Q, Koizumi N, Yajima H, et al. Optimum design of vehicle frontal structure andoccupant restraint system for crashworthiness (a multilevel approach using SDSS)[J]. SolidMechanics and Material Engineering,2001,44(4):594-601.
    [75] Kurtaran H, Eskandarian A, Marzougui D, et al. Crashworthiness design optimizationusing successive response surface approximations[J]. Computational Mechanics,2002,29:409-421.
    [76] Redhe M, Forsberg J, Jansson T, et al. Using the response surface methodology and theD-optimality criterion in crashworthiness related problems[J]. Structural andMultidisciplinary Optimization,2002,24:185-194.
    [77] Chiandussi G, Avalle M. Maximization of the crushing performance of a tubular deviceby shape optimization[J]. Computers&Structures,2002,80:2425-2432.
    [78] Avalle M, Chiandussi G, Belingardi G. Design optimization by response surfacemethodology: application to crashworthiness design of vehicle structures[J]. Structural andMultidisciplinary Optimization,2002,24:325-332.
    [79] Lee SH, Kim HY, Oh SI. Cylindrical tube optimization using response surface methodbased on stochastic process[J]. Journal of Materials Processing Technology,2002,130-131:490-496.
    [80] Jansson T, Nilsson L, Redhe M. Using surrogate models and response surfaces instructural optimization-with application to crashworthiness design and sheet metal forming[J].Structural and Multidisciplinary Optimization,2003,25:129-140.
    [81] Redhe M, Giger M, Nilsson L. An investigation of structural optimization incrashworthiness design using a stochastic approach[J]. Structural and MultidisciplinaryOptimization,2004,27:446-459.
    [82] Sheriff NM, Gupta NK, Velmurugan R, et al. Optimization of thin conical frusta forimpact energy absorption[J]. Thin-Walled Structures,2008,46(6):653-666.
    [83]王海亮,林忠钦,金先龙.基于响应面模型的薄壁构件抗撞性优化设计[J].应用力学学报,2003,20(3):61-66.
    [84]房加志,焦群英,常崇义,等.响应面法在薄壁结构碰撞吸能上的应用[J].中国农业大学学报,2005,10(1):81-85.
    [85]张立新,隋允康,高学仕.基于响应面方法的结构碰撞优化[J].力学与实践,2005,27(3):35-39.
    [86]张勇,李光耀,钟志华.基于移动最小二乘响应面方法的整车轻量化设计[J].机械工程学报,2008,44(11):192-196.
    [87]张翼峰,侯一丹,闫宏涛,等.客车正面碰撞安全性仿真分析[J].山东交通学院学报,2011,19(1):5-8.
    [88]张维刚.汽车碰撞安全性设计与改进技术[D].湖南大学博士学位论文,2002.
    [89]雷正保,谢玉洪.大变形结构的耐撞性[M].国防科技大学出版社,2005.
    [90]冯国忠.基于ANSYS/LS-DYNA的混凝土靶板侵彻问题的数值模拟与分析[D].中国地震局工程力学研究所硕士学位论文,2006.
    [91]贾宏波,黄金陵,谷安涛,等.汽车车身碰撞建模影响因素的研究[J].汽车技术,1998,(1):12-15.
    [92]邵鲁中,唐德高,王彦林,等.刚玉块石固结体抗侵彻性能的数值分析计算[J].解放军理工大学学报(自然科学版),2004,5(5):70-73.
    [93]赵方成.应用LS-DYNA对钢筋混凝土柱破坏的仿真[D].兰州理工大学硕士学位论文,2009.
    [94] Montgomery DC.试验设计与分析(英文版)[M].北京:人民邮电出版社,2007.
    [95]李云雁,胡传荣.试验设计与数据处理[M].北京:化学工业出版社,2008.
    [96]方开泰.均匀设计与均匀设计表[M].北京:科学出版社,1994.
    [97] Liang YZ, Fang KT, Xu QS. Uniform design and its applications in chemistry andchemical engineering[J]. Chemometics and Intelligent laboratory System,2001,58(1):43-57.
    [98] Fang KT. The uniform design: Appliaction of number-theoretic methods in experimentaldesign[J]. Acta MathematicaeApplagatae Sinica,1980,3(4):363-372.
    [99] Bundschuh P, Zhu Y. A method for exact calculation of the discrepancy oflow-dimensional finite point sets I[J]. Abhandlungen aus dem Mathematischen Seminar derUniversit t Hamburg,1993,63(1):115-133.
    [100]方开泰,郑胡灵.均匀性的新度量—最大对称差准则[J].应用概率统计,1992,8(1):1-14.
    [101]刘洋,李宏.关于weierstrass逼近定理的几点注记[J].数学的实践与认识,2009,39(2):208-211.
    [102] Kleijnen JPC, Sargent RG. A methodology for fitting and validating metamodels insimulation[J]. European Journal of Operational Research,2000,120(1):14-29.
    [103] Fang H, Rais-Rohani M, Liu Z, et al. A comparative study of metamodeling methodsfor multiobjective crashworthiness optimization[J]. Computers and Structures,2005,83(25-26):2121-2136.
    [104]陆金桂,余俊,王浩,等.基于人工神经网络的结构近似分析方法的研究[J].中国科学A辑,1994,(6):653-658.
    [105] Takuda H, Mori K, Hatta N. The application of some criteria for ductile fracture to theprediction of the forming limit of sheet metals[J]. Journal of Materials Processing Technology,1995,95(1-3):116-121.
    [106] Sacks J, Schiller SB, Welch WJ. Designs for computer experiments[J]. Technometrics1989,31(1):41-47.
    [107] Takuda H, Mori K, Fujimoto H, et al. Prediction of forming limit in bore-expanding ofsheet metals using ductile fracture criterion[J]. Journal of Materials Processing Technology,1999,92-93:433-438.
    [108] Hardy RL. Multiquadric equations of topography and other irregular surfaces[J].Journal of Geophysical Research,1971,76(8):1905-1915.
    [109] Kennedy J, Eberhart R. Particle swarm optimization[J]. IEEE Int. Conf. on NeuralNetworks,1995:1942-1948.
    [110] Jin SY, Altenhof W. Comparison of the load/displacement and energy absorptionperformance of round and square AA6061-T6extrusions under a cutting deformation mode[J].Int J Crashworthiness,2007,12(3):265-278.
    [111] Liu Y. Design optimisation of tapered thin-walled square tubes[J]. International Journalof Crashworthiness,2008,13(5):543-550.
    [112] Simpson TW, Lin DKJ, Chen W. Sampling strategies for computer experiments: designand analysis[J]. International Journal of Reliability and Applications,2001,2(3):209-240.
    [113] Jin R, Chen W, Simpson TW. Comparative studies of metamodelling techniques undermultiple modelling criteria[J]. Struct Multidisc Optim,2001,23(1):1-13.
    [114]郝亮,徐涛,崔健,等.参数化诱导槽设计的吸能盒结构抗撞性多目标优化研究[J].吉林大学学报(工学版),2013,43(1):39-44.
    [115] Wang DZ, Dong G, Zhang JH, et al. Car side structure crashworthiness in pole andmoving deformable barrier side impacts[J]. Tsinghua Science and Technology,2006,11(6):725-730.
    [116]李红建.轿车车体侧面抗撞性研究[D].吉林大学博士学位论文,2003.
    [117]李玉璇,林忠钦,蒋爱琴,等.材料模型参数设置对碰撞仿真结果的影响[J].汽车工艺与材料,2002,(10):26-28.
    [118]徐涛,郝亮,徐天爽,等.轿车侧碰中车门抗撞性优化的快速设计研究[J].吉林大学学报(工学版),2012,42(3):677-682.
    [119]李亦文,徐涛,左文杰,等.基于相对灵敏度的车身结构模型修改[J].吉林大学学报(工学版),2009,39(6):1435-1440.
    [120]高晖,李光耀,钟志华,等.汽车碰撞计算机仿真中的子循环法分析[J].机械工程学报,2005,41(11):98-108.
    [121]李亦文,徐涛,左文杰,等.概念车身的T型接头模型拓扑优化设计[J].吉林大学学报(工学版),2010,40(2):351-356.
    [122]鞠伟.车身结构中接头简化模型的研究[D].吉林大学硕士学位论文,2009.
    [123] Liu YC. Bending collapse of thin-walled beams with channel cross-section[J].International Journal of Impact Engineering,2006,11(3):251-262.
    [124] Abramowicz W. Simplified crushing analysis of thin-walled columns and beams[J].Engineering Transactions,1981,29(1):5-26.
    [125] Wierzbicki T, Recke L, Abramowicz W, et al. Stress profiles in thin-walled prismaticcolumns subjected to crush loading-II. Bending[J]. Computers&Structures,1994,51(6):623-641.
    [126] Liu YC, Day ML. Development of simplified thin-walled beam models forcrashworthiness analysis[J]. International Journal of Crashworthiness,2007,12(6):597-608.
    [127] Liu YC. Development of simplified models for crashworthiness analysis[D]. Ph.D.thesis, University of Louisville,2005.
    [128] Liu YC, Day ML. Multi-axis bending of channel section beam and modeling[J].Thin-Walled Structures,2008,46(11):1290-1303.
    [129] Hamza K, Saitou K, Nassef A. Design optimization of a vehicle B pillar subjected toroof crush using mixed reactive taboo search[C]. Proceedings of the ASME2003DesignEngineering and Technical Conference, Chicago,2003,1-9.
    [130] Xu T, Hao L, Li YW, et al. Research of simplified B pillar model for roofcrashworthiness[J]. Applied Mechanics and Materials,2010,(34-35):404-409.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700