RHIC能区椭圆流的演化分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高能重离子碰撞研究的目的是探索高温度高密度条件下核物质的性质,期望获得核物质的状态方程。理论和实验研究均表明,椭圆流对于核―核碰撞的演化过程较为敏感,是提取早期碰撞体系信息的重要实验观测量。本文利用两个唯象模型即相对论量子分子动力学(RQMD)模型和相对论流体动力学模型对RHIC能区Au+Au碰撞中椭圆流的产生机制及时空演化进行分析。
     计算了RQMD模型中冻出粒子的平均横向速度。分析了反应平面内外横向速度的时间和空间依赖关系,并与相对论流体动力学模型给出的源的膨胀速度进行了比较。结果显示,反应中存在明显的空间―动量关联。横向速度的时空依赖表明,对于早期的冻出粒子,在横向半径小于初始表面平均半径的范围内,反应平面内的横向速度大于反应平面外的横向速度,在横向半径大于初始表面平均半径的范围内,情况则相反;对于晚期的冻出粒子,在横向半径较大时,反应平面内外的横向速度一致。HBT关联是一种特殊的空间―动量关联,可以反映碰撞体系的时空结构。利用RQMD模型计算了质子的HBT关联函数。
     分别用RQMD模型和相对论流体动力学模型分析了椭圆流的时间和空间依赖关系。RQMD模型结果表明,对于冻出粒子,椭圆流随冻出时间增大而减小;相对论流体动力学模型结果表明,对于参与者区全部物质,椭圆流随时间增大而增大。研究了在不同的时间段椭圆流随横向半径的变化,RQMD模型和相对论流体动力学模型得到了类似的结果,即在早期阶段,椭圆流在初始表面平均半径附近出现峰值;在晚期阶段,椭圆流在初始表面平均半径附近达到了饱和,这一结果反映了粒子的坐标空间分布的演化。
     讨论了一级相变对椭圆流演化的影响。分析表明:在碰撞体系的演化过程中,当QGP相几乎完全转化为混合相时,混合相物质处于演化的主导地位,椭圆流可看作平均能量密度的增函数,参与者区的膨胀尤其是纵向膨胀导致的能量密度降低可能是出现一级相变时,椭圆流下降的重要原因。进一步研究了不同物质相对参与者区椭圆流的贡献,在半对心碰撞中,末态的椭圆流主要产生于QGP和混合相,而边缘碰撞中椭圆流受强子气体相的影响较大。
     在流体动力学模型中,当声速为定值时,椭圆流存在坐标空间离心率标度不变性。当态方程包含一级相变时,不同物质相中声速不同,分析了相互作用区扰动的传播规律,对于不同碰撞参数的系统,演化存在明显的差别。引入扰动传播的特征距离,并用碰撞系统的初始尺寸做标度,除边缘碰撞外,表现出了一致的规律。在此基础上,进一步讨论了椭圆流的空间离心率标度,对√sNN = 200GeV的Au+Au碰撞体系,流体动力学的计算表明,除了边缘碰撞外,椭圆流在演化过程中具有离心率标度不变性,而扰动的传播可以表征椭圆流的演化。
The goal of high energy heavy-ion collisions is to extract information about prop-erties of nuclear matter at high density and high temperature and to obtain the nuclearequation of state. Both the theoretical and experimental results demonstrate that the ellip-tic ?ow is sensitive to the evolution of the collision system and it is a important observableto extract the information of the early stage of the source. In this thesis, using the rela-tivistic quantum molecule dynamics(RQMD) model and relativistic hydrodynamic modelwhich are phenomenological models we study the mechanism of the generation of elliptic?ow and its space-time evolution for Au+Au collisions at RHIC energy.
     The average transverse velocity of the freeze out particles in the RQMD model iscalculated, and the time and space dependence of the transverse velocity in and out ofreaction plane is analyzed. The average transverse velocity of freeze out particles is com-pared with the expansion speed of the source calculated by the hydrodynamical model,the results show that the correlation between space and momentum exists in the processof interaction. The time and space dependence of transverse velocity demonstrates that atthe early stage, if the transverse radius of freeze-out particles are smaller than the averageradius of initial surface of the source, the transverse velocity is bigger in in-plane than thatin out-of-plane; if the transverse radius of freeze-out particles are more than the averageradius of initial surface of the source, the transverse velocity is bigger in out-of-plane.At lately stage, if the transverse radius is bigger than the initial surface, the transversevelocity of particles are nearly same for in-plane and out-of-plane. HBT is one kind ofspecial correlation and can re?ect the structure of space-time. We calculate the HBT ofprotons using RQMD model.
     The time and space dependence of the elliptic ?ow is analyzed by using both theRQMD model and the relativistic hydrodynamical model. The results from RQMD showthat the elliptic ?ow of particles which freeze-out decreases with time. The results fromthe hydrodynamical model shows that the elliptic ?ow of the whole source increases withtime. The transverse radius dependence of the elliptic ?ow is analyzed at different stageand the results from RQMD model and hydrodynamical model are similar. The resultsshow that the elliptic ?ow reaches the peak value at the average radius of initial surface in the early stage, the elliptic ?ow reaches the saturation at the average radius of initialsurface in the lately stage. The results are related with the evolution of distribution ofparticles in coordinate space.
     The effect of first order phase transition on the evolution of the elliptic ?ow is dis-cussed. The analysis demonstrates that when the QGP phase nearly transform to themixed phase completely, the evolution of the source is mainly dominated by the mixedphase, the elliptic ?ow can be seen as the function of the energy density and increase withthe energy density. The decrease of the energy density from the expansion of the sourceespecially the longitudinal expansion maybe the main cause of that the elliptic ?ow de-crease with time. Further, we analyze the contribution of different matter phase to thetotal momentum anisotropy. The results demonstrate that the final elliptic ?ow is mainlygenerated by the QGP phase and mixed phase for semi-central collisions and by hadrongas phase for peripheral collisions.
     In the hydrodynamical model, if the speed of sound is a constant the eccentricityscaling invariance of elliptic ?ow can be seen. If the EoS contains the first order transitionthe speed of sound varies with the different phase. The transmission of the perturbation inthe source is analyzed, and the difference of the evolutions are distinct for collisions withdifferent impact parameters. The characteristic distance of the transmission of the pertur-bation is introduced and scaled by the initial size of the source. The eccentricity scalinginvariance of the characteristic distance can be seen except for peripheral collisions. Onthis basis, the eccentricity scaled elliptic ?ow is also analyzed. For√sNN =200 GeVAu+Au collisions, the results from the hydrodynamical model show the eccentricity scal-ing invariance of the elliptic ?ow, and the transmission of the perturbation can characterizethe evolution of the elliptic ?ow.
引文
1 Y. Akamatsu, T. Hatsuda, T. Hirano. Heavy Quark Diffusion with RelativisticLangevin Dynamics in the Quark-gluon Fluid. Phys. Rev. C. 2009, 79:054907
    2 J. Randrup. Phase Transition Dynamics for Baryon-dense Matter. Phys. Rev. C.2009, 79:054911
    3 R. J. Fries. Hadronization of Dense Partonic Matter. J. Phys. G: Nucl. Part. Phys.2006, 32:s151–s158
    4 T. Dent, S. Stern, C. Wetterich. Big Bang Nucleosynthesis as a Probe of Funda-mental‘constants’. J. Phys. G: Nucl.Part.Phys. 2008, 35:014005
    5 J. Cleymans, B. Kampfer, M. Kaneta. Centrality Dependence of Thermal Parame-ters Deduced from Hadron Multiplicities in Au+Au Collisions at√sNN=130 GeV.Phys. Rev. C. 2005, 71:054901
    6 D. E. Kharzeev, L. D. Mclerran, H. J. Warringa. The Effects of Topological Chargein Heavy Ion Collisions:“Event by Event P and CP Violation”. Nucl. Phys. A.2008, 803:227–253
    7 J. Y. Ollitrault. Anisotropy as a Signature of Transverse Collective Flow. Phys.Rev. D. 1992, 46:229–245
    8 S. A. Voloshin, Y. Zhang. Flow Study in Relativistic Nuclear Collisions by FourierExpansion of Azimuthal Particle Distributions. Z. Phys. C. 1996, 70:665–671
    9 G. Kestin, U. Heinz. Hydrodynamic Radial and Elliptic Flow in Heavy-ion Colli-sions. Eur. Phys. J. C. 2009, 61:545–552
    10 B. Andersson, S. Garpman, G. Gustafsson. Relativistic Heavy Ion Reactions. Phys-ica Scropta. 1986, 34:451–474
    11 C. Alt. Directed and Elliptic Flow of Charged Pions and Protons in Pb+Pb Colli-sions at 40A and 158 A GeV. Phys. Rev. C. 2003, 68:034903
    12 C. Nonaka, M. Asakawa. Hydrodynamical Evolution Near the QCD Critical EndPiont. Phys. Rev. C. 2005, 71:044904
    13 K. J. Escola, H. Honkanen. Predictions for Low-pt and High-pt Hadron Spectra inNearly Central Pb+Pb Collisions at√sNN=5.5 TeV Tested at√sNN=130 and 200GeV. Phys. Rev. C. 2005, 72:044904
    14 K. Adcox, S. S. Adler. Formation of Dense Partonic Matter in Relativistic Nucleus-nucleus Collisions at RHIC: Experimental Evaluation by the PHENIX Collabora-tion. Nucl. Phys. A. 2005, 757:184–283
    15 S. A. Bass, M. Gyulassy, H. Stocker. Signatures of QGP Formation in Heavy-ionCollisions :a Critical Review. J. Phys. G. 1999, 25:R1–R57
    16 U. Heinz and Primordial. Hadrosynthesis in the Little Bang. Nucl. Phys. A. 1999,661:140c–149c
    17 J. P. Blaizot. Signals of the Quark-Gluon Plasma in Nucleus-Nucleus Collisions.Nucl. Phys. A. 1999, 661:3c–12c
    18 B. Kampfer, M. Bluhm, R. Schulze. QCD Matter Within a Quasi-particle Modeland the Critical End Point. Nucl. Phys. A. 2006, 774:757–760
    19 K. Rajagopal. Mapping the QCD Phase Diagram. Nucl.Phys.A. 1999, 661:150–
    16120 R. Gavai, S. Gupta. The Critical End Point of Quantum Chromodynamics. PoSLAT2005. 2005:160
    21 M. Gyulassy, L. Mclerran. New Forms of QCD Matter Discoverd at RHIC. Nucl.Phys. A. 2005, 750:30–63
    22 A. Dumitru, Y. Nara. QCD Plasma Instabilities and Isotropization. Phys. Lett. B.2005, 621:89–95
    23 J. Takahashi. Test of Chemical Freeze-out at the Rhic. J. Phys. G: Nucl. Part. Phys.2009, 36:064074
    24 A. Mekjian. Properties of the Specific Heat and Chemical Potentials of HadronicMatter from CERN/RHIC Experiments at Relativistic and Ultrarelativistic Colli-sions Energies. Phys. Rev. C. 2006, 73:014901
    25 A. Bazavov, B. A. Berg, A. Velytsky. Glauber Dynamics of Phase Transitions Su(3)Lattice Gauge Theory. Phys. Rev. D. 2006, 74:014501
    26 L. Mclerran. Theory Summary: Quark Matter 2006. J. Phys. G: Nucl. Part. Phys.2007, 34:s583–s592
    27 E. Shuryak. Physics of Strongly Coupled Quark-Gluon Plasma. Progress in Particleand Nuclear Physics. 2009, 62:48–101
    28 B. Muller. The Flavours of the Quark-Gluon Plasma. J. Phys. G: Nucl. Part. Phys.2009, 36:064001
    29 J. Adams, M. M. Aggarwal, Z. Ahammed. Experimental and Theoretical Chal-lenges in the Search for the Quark Gluon Plasma: The STAR Collaboration’s Crit-ical Assessment of the Evidence from RHIC Collisions. Nucl. Phys. A. 2005,757:102–183
    30 V. Ramillien, P. Dupieux, J. P. Alard. Sideward Flow in Au + Au Collisions at 400a Mev. Nucl. Phys. A. 1995, 587:802–814
    31 H. A. Gustafsson, H. H. Gutbrod, B. Kolb . Collective Flow Observed in RelativisticNuclear Collisions. Phys. Rev. Lett. 1984, 52(18):1590
    32 G. Buchwald, G. Graebner, J. Theis. Kinetic Energy Flow in Nb(400A Mev) +Nb:Evidence for Hydrodynamic Compression of Nuclear Matter. Phys. Rev. Lett. 1984,52:1594–1596
    33 L. McLerran. From AGS-SPS to RHIC and Onwards to the LHC. Quark MatterConference 2008, Jaipur, India, February 4-10, 2008
    34 P. Danielewicz, G. Odyniec. Tansverse Momentum Analysis of Collective Motionin Relativistic Nuclear Collisions. Phys. Lett. B. 1985, 157:146–149
    35 G. M. Welke, M. Prakash, T.T.S.Kuo. Azimuthal Distribution in Heavy Ion Colli-sions and the Nuclear Equation of State. Phys. Rev. C. 1988, 38:2101–2107
    36 S. Wang, Y. Z. Jiang, Y. M. Liu. Measurement of Collective Flow in Heavy IonCollisions Using Particle-pair Correlations. Phys. Rev. C. 1991, 44:1091–1095
    37 P. J. Siemens, J. O. Rasmussen. Evidence for a Blast Wave from CompressedNuclear Matter. Phys. Rev. Lett. 1979, 42:880–883
    38 I. Bouras, L. Cheng, A. El. Viscous Effects on Elliptic Flow and Shock Waves.Progress in Particle and Nuclear Physics. 2009, 62:462–467
    39 S. C. Jeong. Collective Motion in Selected Central Collisions of Au + Au at 150 aMeV. Phys. Rev. Lett. 1994, 72(22):3468–3471
    40 M. A. Lisa et al. Radial Flow in Au + Au Collisions at E=(0.25-1.15) A Gev. Phys.Rev. Lett. 1995, 75:2662–2665
    41 H. W. Barz, J. P. Bondorf, R. Donangelo. Analysis of Central Events in the Reactionof 16O and 36Ar with Emulsion at 210 and 65 Mev Per Nucleon. Nucl. Phys. A.1992, 548:427–434
    42 P. F. Kolb, R. Rapp. Transverse Flow and Hadro-chemistry in Au + Au Collisionsat√sNN=200 GeV. Phys. Rev. C. 2003, 67:044903
    43 H. Appelshauser, J. Bachler, S. J. Bailey. Directed and Elliptic Flow in 138GeV/nucleon Pb+Pb Collisions. Phys. Rev. Lett. 1998, 80:4136–4140
    44 I. Vitev. Testing the Theory of QGP-induced Energy Loss at RHIC and the LHC.Phys. Lett. B. 2006, 639:38–45
    45 L. W. Chen, V.Greco, C.M.Ko. Pseudorapidity Dependence of Anisotropic Flowsin Relativistic Heavy-ion Collisions. Phys. Lett. B. 2005, 605:95–100
    46 A. M. Poskanzer and S. A. Voloshin. Methods for Analyzing Anisotropic Flow inRelativistic Nuclear Collisions. Phys. Rev. C. 1998, 58:1671–1678
    47 S. Wang et al. In-plane Retardation of Collective Expansion in Au + Au Collisions.Phys. Rev. Lett. 1996, 76:3911–3914
    48 M. B. Tsang et al. Squeeze-out of Nuclear Matter in Au + Au Collisions. Phys.Rev. C. 1996, 53:1959–1962
    49 G. Stoicea et al. Azimuthal Dependence of Collective Expansion for SymmetricHeavy-ion Collisions. Phys. Rev. Lett. 2004, 92:072303
    50 C. Pinkenburg et al. Elliptic Flow: Transition from Out-of-plane to In-plane Emis-sion in Au + Au Collisions. Phys. Rev. Lett. 1999, 83:1295–1298
    51 P. B. Munzinger, J. Stachel. Dynamics of Ultra-relativistic Nuclear Collisions withHeavy Beams: An Experimental Overview. Nucl. Phys. A. 1998, 638:3c–18c
    52 H. Appelshauser. New Results from Ceres. Nucl. Phys. A. 2002, 698:253–260
    53 I. Arsene, I. G. Bearden and D. Beavis. Centrality Dependent Particle Productionat Y=0 and Y=1 in Au + Au Collisions at√sNN=200 GeV. Phys. Rev. C. 2005,72:014908
    54 S. J. Sanders. Rapidity and P(t) Dependence of Identified-particle Elliptic Flow atRHIC. J. Phys. G: Nucl. Part. Phys. 2007, 34:s1083–s1086
    55 R. S. Bhalerao, J. P. Blaizot, N. Borghini. Elliptic Flow and Incomplete Equilibra-tion at RHIC. Phys. Lett. B. 2005, 627:49–54
    56 H. Heiselberg, A. M. Levy. Elliptic Flow and Hanbury Brown Twiss Correlations.Phys. Rev. C. 1999, 59:2716
    57 S. A. Voloshin, A. M. Poskanzer, R. Snellings. Collective Phenomena in Non-central Nuclear Collisions. arxiv:nucl-ex. 2008, 0809:2949
    58 U. Heinz. Hydrodynamics at RHIC: How Well Does It Work, Where and HowDoes It Break Down? J. Phys. G. 2005, 31:S717~S724
    59 U. Heinz, S. M. H. Wang. Elliptic Flow from a Transversally Thermalized Fireball.Phys. Rev. C. 2002, 66:014907
    60 P. F. Kolb, P. Huovinen, U. Heinz. Elliptic Flow at SPS and RHIC:from KineticTransport to Hydrodynamics. Phys. Lett. B. 2001, 500:232–240
    61 P. Huovinen, P. F. Kolb, U. Heinz. Radial and Elliptic Flow at RHIC:further Pre-dictions. Phys. Lett. B. 2001, 503:58–64
    62 P. Huovinen. Anisotropy of Flow and the Order of Phase Tansition in RelativisticHeavy Ion Collisions. Nucl. Phys. A. 2005, 761:296–312
    63 S. S. Adler, S. Afanasiev, C. Aidala. Elliptic Flow of Identified Hadrons in Au +Au Collisions at√sNN=200 GeV. Phys. Rev. Lett. 2003, 91:182301
    64 B. I. Abelev et al. (STAR Collaboration). Mass, Quark-Number and√sNN De-pendence of the Second and Fourth Flow Harmonics in Ultrarelativistic Nucleus-Nucleus Collisions. Phys. Rev. C. 2007, 75:054906
    65 C. Adler, Z. Ahammed, C. Allgower. Azimuthal Anisotropy of kS0 andΛ+ΛProduction at Midrapidity from Au + Au Collisions at√sNN=130 GeV.Phys. Rev. Lett. 2002, 89:132301
    66 B. A. Li, C. M. Ko. Formation of Superdense Hadronic Matter in High Energy-ionCollisions. Phys. Rev. C. 1995, 52:2037–2063
    67 M. Gyulassy, I. Vitev, X. N. Wang. High Pt Azimuthal Asymmetry in NoncentralA + A at RHIC. Phys. Rev. Lett. 2001, 86:2537–2540
    68 D. Teaney. Effect of Shear Viscosity on Spectra, Elliptic Flow, and HanburyBrown╟twiss Radii. Phys. Rev. C. 2003, 68
    69 D. Molnar, M. Gyulassy. Saturation of Elliptic Flow and the Transport Opacity ofthe Gluon Plasma at RHIC. Nucl. Phys. A. 2002, 697:495–520
    70 D. Molnar, S. A. Voloshin. Elliptic Flow at Large Tansverse Momenta from QuarkCoalescence. Phys. Rev. Lett. 2003, 91:092301
    71 B. zhang, M. Gyulassy and C. M. Ko. Elliptic Flow from a Parton Cascade. Phys.Lett. B. 1999, 455:45–48
    72 J. Bleibel, G. Burau, C. Fuchs. Anisotropic Flow in Pb + Pb Collisions at LHCfrom the quark-gluon String Model with Parton Rearrangement. Phys. Lett. B.2008, 659:520–524
    73 E. V. Shuryak. Azimuthal Asymmetry at Large pt Seem to Be Too Large for a Pure‘jet Quenching’. Phys. Rev. C. 2002, 66:027902
    74 X. N. Wang. Jet Quenching and Azimuthal Anisotropy of Large pT Spectra inNoncentral High Energy Heavy-ion Collisions. Phys. Rev. C. 2001, 63:054902
    75 C. Adler, Z. Ahammed, C. Allgower. Disappearance of Back-to-back High-ptHadron Correlations in Central Au + Au Collisions at√sNN=200 GeV. Phys.Rev. Lett. 2003, 90:082302
    76 Z. W. Lin and C. M. Ko. Flavor Ordering of Elliptic Flow at High TransverseMomentum. Phys. Rev. Lett. 2002, 89:202302
    77 R. J. Fries, B. Muller, C. Nonaka. Hadronization in Heavy - Ion Collisions: Re-combination and Fragmentation of Partons. Phys. Rev. Lett. 2003, 90:202303
    78 S. Pratt, S. Pal. Quark Recombination and Elliptic Flow. Phys. Rev. C. 2005,71:014905
    79 Y. Liu, M. Bleicher, F. Liu et al. Anisotropic Flow at RHIC: How Unique Isthe Number-of-Constituent-Quark Scaling? J. Phys. G: Nucl. Part. Phys. 2006,32:1121–1129
    80 P. F. Kolb, J. Sollfrank, U. Heinz. Anisotropic Transverse Flow and the Quark-hadron Phase Transition. Phys. Rev. C. 2000, 62:054909
    81 Z. W. Lin, S. Pal, C. M. Ko. Charged Particle Rapidity Distributions at RelativisticEnergies. Phys. Rev. C. 2001, 64:011902
    82 K. H. Ackermann et al. Elliptic Flow in Au+Au Collisions at√sNN = 130GeV.Phys. Rev. Lett. 2001, 86:402–407
    83 J. Aichelin, H. Stocker. Quantum Molecular Dynamics-A Novel Approach Ro N-Body Correlations in Heavy Ion Collisions. Phys. Lett. B. 1986, 176(5):14–18
    84 G. Peilert, J. Konopka, H. Stocker. Dynamical Treatment of Fermi Motion in aMicroscopic Description of Heavy Ion Collisions. Phys. Rev. C. 1992, 46(4):1457–1473
    85 M. Begemann-Blaich, W. F. J. Muller, Aichelin. Quantum Molecular DynamicsSimulation of Multifragment Production in Heavy Ion Collisions at E/A=600 Mev.Phys. Rev. C. 1993, 48(2):610–617
    86 Z. W. Lin, C. M. Ko. Partonic Effects on the Elliptic Flow at Relativistic Heavy IonCollisions. Phys. Rev. C. 2002, 65:034904
    87 L. W. Chen, C. M. Ko, Z. W. Lin. Partonic Effects on Higher-order AnisotropicFlows in Relativistic Heavy-ion Collisions. Phys. Rev. C. 2004, 69:031901
    88 L. W. Chen, C. M. Ko. System Size Dependence of Elliptic Flows in RelativisticHeavy-ion Collisions. Phys.Lett.B. 2006, 634:205–209
    89 Z. W. Lin, C. M. Ko, S. Pal. Partonic Effects on Pion Interferometry at the Rela-tivistic Heavy-ion Collider. Phys. Rev. Lett. 2002, 89:152301
    90 T. Hirano, M. Gyulassy. Perfect Fluidity of the Quark Gluon Plasma Core as SeenThrough its Dissipative Hadonic Corona. Nucl. Phys. A. 2006, 769:71–94
    91 T. Hirano. Is Early Thermalization Achieved only Near Rapidity in Au+Au Colli-sions at√sNN = 130 GeV. Phys. Rev. C. 2001, 65:011901
    92 C. E. Aguiar, Y. hama, T. Kodama, T. Osada. Event-by-event Fluctuations in Hydro-dynamical Description of Heavy-ion Collisions. Nucl. Phys. A. 2002, 698:639c–642c
    93 H. Sorge . Collective Flow and QCD Phase Transition. Nucl. Phys. A. 1999,661:577–582
    94 H. Sorge. Highly Sensitive Centrality Dependence of Elliptic Flow– a Novel Sig-nature of the Phase Transition in QCD. Phys.Rev.Lett. 1999, 82:2048–2051
    95 D. J. Hofman. Latest Results from Phobos. J. Phys. G:Nucl. Part. Phys. 2007,34:s217–s223
    96 H. Sorge. Flavor Production in Pb(160A GeV) on Pb Collisions: Effect of ColorRopes and Hadronic Rescattering. Phys. Rev. C. 1995, 52:3291–3314
    97 H. Sorge. Temperatures and Non-ideal Expansion in Ultrarelativistic Nucleus-nucleus Collisions. Phys. Lett. B. 1996, 373:16–22
    98 H. Storge. Flavor Production in Pb(160A Gev) on Pb Collisions Probing the Equa-tion of State of High Excited Hadronic Matter. Phys. Rep. 277, 137:392
    99 S. A. Bass, M. Belkacem, M. Bleicher. Microscopic Models for UltrarelativisticHeavy Ion Collisions. Prog. Part. Nucl. Phys. 1998, 41:225–370
    100 J. Aichelin, H. Stocker. Quantum Molecular Dynamics―A Novel Approach toN-body Correlations in Heavy Ion Collisions. Phys. Lett. B. 1986, 176:14
    101 J. D. Bjorken. Highly Relativistic Nucleus-nucleus Collisions: The Central Rapid-ity Region. Phys. Rev. D. 1983, 27:140–151
    102 S. V. Afanasiev, T. Anticic, D. Barna. Energy Dependence of Pion and Kaon Pro-duction in Central Pb+Pb Collisions. Phys. Rev. C. 2002, 66:054902
    103 J. Y. Ollitrault. Relativistic Hydrodynamics. Eur. J. Phys. 2008, 29:275–302
    104 T. Hirano. Hydrodynamic Models. J. Phys. G: Nucl. Part. Phys. 2004, 30:S845–S851
    105 D. H. Rischkea, S. Bernardb, J. A. Maruhnb. Relativistic Hydrodynamics forHeavy-ion Collisions. I. General Aspects and Expansion Into Vacuum. Nucl. Phys.A. 1995, 595:346–382
    106 D. H. Richke, Y. Pursun, J. A. Maruhn. Relativistic Hydrodynamics for Heavy-ionCollisions.ii.compression of Nuclear Matter and the Phase Transition to the QuarkGluon Plasma. Nucl. Phys. A. 1995, 595:383–408
    107 R. Venugopalan, M. Prakash. Thermal Properties of Interacting Hadrons. Nucl.Phys. A. 1992, 546:718–760
    108 W. Busza, A. Goldhaber. Nuclear Stopping Power. Phys. Lett. B. 1984, 139:235
    109 G. D. Westfall, C. A. Ogilvie, D. A. Cebra. Collective Flow, Multi-fragmentEmission and Azimuthal Asymetries in Intermediate Energy Nucleus-nucleus Col-lisions. Nucl. Phys. A. 1990, 519:141c–156c
    110 N. Xu. Partonic Eos in High-energy Nuclear Collisions at RHIC. J. Phys. G: Nucl.Part. Phys. 2006, 32
    111 M. Gyulassy, K. Kauffmann, L. W. Wilson. Pion Interferometry of Nuclear Colli-sions. I. Theory. Phys. Rev. C. 1979, 20:2267–2292
    112 S. Pratt, T. Csorgo and M. Tohyma. Detailed Predictions for Two-pion Correlationsin Ultrarelativistic Heavy-ion Collisions. Phys. Rev. C. 1990, 42:2646–2652
    113 D. A. Brown, Daniewicz. Observing Non-gaussian Sources in Heavy-ion Reac-tions. Phys. Rev. C. 2001, 64:014902
    114 S. E. Koonin. Proton Correlations Picture. Phys. Lett. B. 1977, 70:43–47
    115 R. Lednicky, L. Matin, C. K. Gelbke. In?uence of Emitter Coulombfiels on TwoProton Correlation Functions. Nucl. Phys. A. 1996, 604:69–80
    116 P. M. Dinh, N. Borghini, J. Y. Ollitrault. Effect of Hbt Correlations on Flow Mea-surements. Phys. Lett. B. 2000, 477:51–58
    117 J. Y. Ollitrault, A. M. Poskanzer, S. A. Voloshin. Effect of Flow Fluctuations andNon?ow on Elliptic Flow Methods. Phys. Rev. C. 2009, 80:014904
    118 J. Adams, M. M. Aggarwal, Z. Ahammed. Azimuthal Anisotropy in Au + AuCollisions At√sNN=200 GeV. Phys. Rev. C. 2005, 72:014904
    119 P. F. Kolb, U. Heinz. Hydrodynamic Description of Ultrarelativistic Heavy-ionCollisions. arxiv:nucl-th. 2003, 0305084v2
    120 C. Sasaki, B. Friman, K. Redlich. Density Fluctuations in the Presence of SpinodalInstabilities. Phys. Rev. Lett. 2007, 99:232301
    121 K. Morita, H. Lee. Critical Behavior of Charmonia Across the Phase Transition: AQCD Sum Rule Approach. Phys. Rev. C. 2008, 77:064904
    122 N. Yamamoto, T. Kanazawa. Dense QCD in a Finite Volume. Phys. Rev. Lett.2009, 103:032001
    123 F.Karsch. The Pressure in 2, 2+1 and 3 Flavour QCD. Phys. Lett. B. 2000, 478:447–
    455124 V. Koch, A. Majumder, J. Randrup. Signals of Spinodal Hadronization: StrangenessTrapping. Phys. Rev. C. 2005, 72:064903
    125 M. Kastner, O. Schnetz. Phase Transitions Induced by Saddle Points of VanishingCurvature. Phys. Rev. Lett. 2008, 100:160601
    126 S. Chandrasekharan, A. C. Mehta. Effects of the Anomaly on the Two-?avor QCDChiral Phase Transition. Phys. Rev. Lett. 2007, 99:142004
    127 K. A. Bugaev. Quark-gluon Bags with Surface Tension. Phys. Rev. C. 2007,76:014903
    128 A. Ipp, K. Kajantie, A. Rebhan. Pressure of Deconfined QCD for all Temperaturesand Quark Chemical Potentials. Phys. Rev. D. 2006, 74:045016
    129 V. Chandra, R. Kumar, V. Ravishankar. Hot QCD Equations of State and Relativis-tic Heavy Ion Collisions. Phys. Rev. C. 2007, 76:054909
    130 A. Chodos, R. L. Jaffe, K. Johnson. New Extended Model of Hadrons. Phys. Rev.D. 1974, 9:3471–3495
    131 J. F. Liao, E. V. Shuryak. What Do Lattice Baryonic Susceptibilities Tell Us aboutQuarks, Diquarks, and Baryons at T>Tc? Phys. Rev. D. 2006, 73:014509
    132 J. Sollfrank, P. Huovinen, M. Kataja. Hydrodynamical Description of 200A GeV/cS+Au Collisions: Hadron and Electromagnetic Spectra. Phys. Rev. C. 1997,55:392–410
    133 J. Sollfrank, P. Huovinen, M. Kataja. Hydrodynamical Description of 200 A GeV/cS+Au Collisions: Hadron and Electromagnetic Spectra. Phys. Rev. C. 1997,55:392–410
    134 K. Kajantie, J. Kapusta, L. Mclerran. Dilepton Emission and the QCD Phase Tran-sition in Ultrarelativistic Nuclear Collisions. Phys. Rev. D. 1986, 34:2746–2754
    135 P. F. Kolb, J. Sollfrank, U. Heinz. Anisotropic Flow from AGS to LHC Energies.Phys. Lett. B. 1999, 459:667–673
    136 G. Kestin, U. W. Heinz . Hydrodynamic Radial and Elliptic Flow in Heavy-ionCollisions from AGS to LHC Energies. Eur. Phys. J. C. 2009, 61:545–552
    137 S. A. Voloshin, M. Poskanzer. The Physics of the Centrality Dependence of EllipticFlow. Phys. Lett. B. 2000, 474:27–32
    138 B. Alver, B. B. Back, M. D. Baker. Importance of Correlations and Fluctuations onthe Initial Source Eccentricity in High-energy Nucleus-nucleus Collisions. Phys.Rev. C. 2008, 77:014906
    139 A. Adare, S. Afanasiev, C. Aidala. Scaling Properties of Azimuthal Anisotropy inAu+Au and Cu+Cu Collisions at =200 GeV. Phys. Rev. Lett. 2007, 98:162301
    140 S. A. Voloshin. Energy and System Size Dependence of Charged Particle EllipticFlow and v2/ Scaling. J. Phys. G: Nucl. Part. Phys. 2007, 34:s883–s886
    141 R. Nouicer. Elliptic Flow and Initial Eccentricity in Cu+Cu and Au+Au Collisionsat RHIC. J. Phys. G: Nucl. Part. Phys. 2007, 34:S887–S891
    142 R. Raniwala. Elliptic Flow of Inclusive Photons in Au-Au and Cu-Cu Collisions at√sNN = 200GeV. J. Phys. G: Nucl. Part. Phys. 2008, 35:104104
    143 M. Issah, A. Taranenko. Scaling Characteristics of Azimuthal Anisotropy at RHIC.arxiv:nucl-ex. 2006, 0604011

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700