LRB隔震桥梁的可靠性与等效线性化方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地震是人类社会面临的最严重自然灾害之一,我国处于环太平洋和亚欧地震带之间,地震发生频率高、强度大、分布范围广、伤亡大、震灾严重。桥梁作为生命线工程,在抢险救灾和灾后重建中发挥关键性作用。隔震技术可以有效地减轻桥梁的地震灾害,但是由于取消了固定墩而全部采用隔震支座,其可靠性往往受到怀疑,国内缺少对这一领域的系统研究;另外,我国设计院目前采用的绝大部分桥梁设计软件都无法模拟隔震支座的非线性特性,所以急需对非线性隔震桥梁进行等效线性化以满足工程设计的需要。鉴于铅芯橡胶隔震支座(LRB)是应用最为广泛的隔震体系,本文以LRB隔震桥梁为研究对象,开展了以下几方面的研究工作:
     1、对LRB隔震桥梁的行车舒适度进行了评价。自编程序将行车荷载转化为动荷载,总结出移动荷载作用下桥梁响应的计算流程;通过分析LRB隔震支座的刚度对行车舒适度的影响,指出LRB隔震支座的各项参数中,只有竖向刚度与桥梁的行车舒适度有关;结合ISO规范、狄克曼指标与斯佩林指标,对不同结构形式的LRB隔震桥梁均得出行车舒适度良好的结论,同时指出其原因是LRB隔震支座的竖向刚度与非隔震桥梁使用的其它支座基本相同,其自身的固有特性决定了非常良好的行车舒适度。
     2、对LRB隔震桥梁在地震动作用下可能出现的碰撞响应进行了分析。在比较各种碰撞分析模型各自的特点与适用范围的基础上,选择了既能够较好反映碰撞物理事实又易于确定相关参数的Kelvin模型,解决了ANSYS平台中碰撞单元的模拟问题;通过对影响桥梁碰撞特性的各种参数进行深入分析,给出了避免LRB隔震桥梁在地震作用下发生碰撞的周期比范围建议,并确定了合理的碰撞单元刚度取值;通过分析LRB隔震支座水平刚度对隔震桥梁碰撞的影响,指出隔震支座水平刚度越小,桥梁发生碰撞的风险越大,碰撞响应也越大,不能片面追求隔震效果而一味地减小隔震支座的水平刚度,一定要进行地震作用下隔震桥梁的碰撞验算;通过对比隔震与不隔震桥梁的碰撞响应,指出发生碰撞时隔震桥梁可以对桥墩起到保护作用,为工程应用提出了指导。
     3、对LRB隔震桥梁进行了地震作用下的第一类和第二类动力稳定分析。根据Liapunov动力稳定性概念,解决了运用一次近似法判定多自由度复杂结构的第一类动力稳定性的问题;运用时程与特征值分析相结合的方法,自编程序,提出了第一类动力稳定分析的具体实现方法;基于纤维模型的非线性分析理论,针对LRB隔震桥梁提出了应用逐步增量动力分析法结合B-R判别准则对其进行第二类动力稳定分析;分析了不同结构形式LRB隔震桥梁的两类动力稳定问题,得出LRB隔震桥梁在地震作用下具有非常良好的动力稳定性的结论,并指出原因是隔震后墩顶位移大幅度减小,墩并没有进入塑性;为工程应用给出建议:墩较高、大震位移较大的连续梁桥,采用隔震技术后,动力稳定性能会有所减弱,需验算其动力稳定性。
     4、系统研究了LRB隔震桥梁的等效线性化方法。通过比较各种隔震支座等效线性化方法,提出了LRB隔震桥梁等效线性化的求解方法,给出了LRB隔震桥梁在地震作用下的反应谱分析计算步骤和LRB隔震桥梁在其他水平荷载作用下的验算标准,解决了计算LRB隔震桥梁地震响应时非线性问题与线性问题之间的矛盾,为工程技术人员进行LRB隔震桥梁的地震响应计算提供了一种简便有效的方法。
Earthquake is one of the most serious natural disasters that human society faces, China is located between circum-Pacific seismic belt and Eurasian seismic belt, earthquakes are characterized by high frequency, intensity, wide distribution, large casualties and severe loss. Work as a lifeline, bridges play a key role in disaster relief and reconstruction. Isolation technology can reduce earthquake disaster of bridge effectively, but its reliability is often in doubt because of the cancellation of the fixed piers and the adoption of the isolation bearings, the domestic research seldom invlovs this field; in addition, currently most of the bridge design software used in China Design Institute can not simulate the nonlinear characteristics of isolation bearings, so equivalent linear for nonlinear isolated bridges is starved for meeting the design requirements. View of the lead rubber bearings (LRB) is the most widely used isolation system, LRB isolated bridge is selected as the research object in this dissertation and corresponding study includes the following aspects:
     1、The riding comfort of LRB isolated bridge was evaluated. The vehicle load was transformed into dynamic load by self-compiling program, the process for calculating the response of bridge under dynamic load was summarized; the result that only the vertical stiffness of LRB beared on the riding comfort among all of its factors was pointed out by analyzing the impact of the stiffness of LRB on the riding comfort; the riding comfort of different forms of LRB isolated bridges was analyzed with ISO standard, Diechmann indicator and Sperling indicator, the result showed that there riding comfort were well-drawn, which is determined by there own inherent characteristics, because the vertical stiffness of LRB and the bearings used in non-isolated bridges was basically the same.
     2、The possible pounding response of LRB isolated bridge subjected to seismic excitation was analyzed. Kelvin impact model was selected based on comparing characteristics and scope of application of various impact analytical models, because it could reasonably account for physical nature of pounding phenomena and relevant parameters were easy to determine, the problem that simulation of pounding element in ANSYS was solved; the suggestion of scope of period ratio for avoiding pounding of LRB isolated bridge subjected to seismic excitation was given, and reasonable value of the pounding stiffness was determined by deeply analyzed some factors which influenced pounding characteristics; the result that smaller horizontal stiffness of the bearing induced greater risk of pounding and pounding response for bridge was pointed out by analyzing the impact of the horizontal stiffness of LRB on pounding response, so the horizontal stiffness of the bearing can't be reduced blindly to pursuit isolation effect, pounding of isolated bridge subjected to seismic must be checked; the result that isolated bridge played a protective role for the piers when earthquake happened was pointed out by comparing the pounding response between isolated and non-isolated bridges, guidance was proposed for project application.
     3、Two kinds of dynamical stability problems for LRB isolated bridge subjedted to seismic excitation were analyzed. The problem that use first approximation method to determine the first dynamical stability of multi-degree of freedom complex structure was solved based on Liapunov dynamic stability concept; a specific method for analyzing the first dynamical stability was proposed, the method of time-history combined with eigenvalue and self-compiling program were adopted; based on nonlinear theory of fiber model, the method that IDA combined with B-R criterion was proposed to analyse the second kind of dynamical stability problem of LRB solated bridge; two kinds of dynamical stability problems of different structure forms of LRB isolated-bridges were studied, the conclusion was that LRB isolated bridges had very good dynamical stability subjected to seismic excitation, the reason was that the displacements of pier tops were significantly reduced after isolation, the piers didn't come to range of plastic; recommendations for engineering applications was given:for isolated bridges with higher piers and larger earthquake displacements, dynamic stability needs to be checked, because their dynamic stability might be weakened after use of isolation technology.
     4、The equivalent linear method of LRB isolated bridge was studied systematically. The equivalent linear method for LRB isolated bridge is proposed by comparing various equivalent linear methods for isolated bearing, analysis approach of spectrum subjected to seismic excitation and checking standard subjected to other horizontal loads for LRB isolated bridge were given, the contradiction between linear and nonlinear problems wh en calculating seismic response of isolated bridges was solved, a simple and effective method for calculating eismic response was provided to engineers and technicians.
引文
[1]中华人民共和国国家标准.JTG/T B02-01-2008.公路桥梁抗震设计细则[S].人民交通出版社,2008.
    [2]唐家祥,刘再华.建筑结构基础隔震[M].武汉:华中理工大学出版社,1993.
    [3]叶昆,李黎.LRB基础隔震结构在近断层脉冲型地震作用下的动力响应研究[J].工程抗震与加固改造,2009,31(2):32-38.
    [4]徐家云.工程结构控制与控制结构的研究[D].武汉理工大学,1993.
    [5]于泳波.减隔震桥梁的空间动力分析及动力试验[D].长安大学,2004.
    [6]Ghobarah A., Ali J. M. Seismic performance of highway bridges[J]. Engineering Structure,1998,10(1):157-166.
    [7]Abe M., Fujino Y. J. Seismic performance evaluation of base-isolated bridges[C]. Control in Natural Disasters(CND 98) Tokyo, Japan, IFAC workshop,1998.
    [8]Pagnini L. C., Solari. Stochastic analysis of the linear equivalent response of bridge piers with aseismic device[J]. Journal of Structural Engineering and Structural Dynamic,1999,28(5):543-560.
    [9]Liao W. I., Loh C. H., Wan S. J. Dynamic response of bridges subjected to near-fault ground motions [J]. Journal of Chinese Institute of Engineering,2000, 23(4):455-464.
    [10]吴彬.铅芯橡胶支座力学性能及其在桥梁工程中减、隔震应用的研究[D].铁道科学研究院,2003.
    [11]McKay G. R., Chapman H. E., Kirkcaldie D. K. Seismic isolation:New Zealand applications [J]. Earthquake Spectra,1990,6(2):203-222.
    [12]杨德喜.LRB隔震连续梁桥若干问题研究[D].华中科技大学,2006.
    [13]徐秀丽,李雪红,刘伟庆等.大型减隔震桥梁结构分析方法[J].南京工业大学学报(自然科学版),2009,31(1):78-86.
    [14]中华人民共和国国家标准.JTJ 004—89.公路工程抗震设计规范[S].人民交通 出版社,2008.
    [15]康厚军.索拱结构的稳定与振动研究[D].湖南大学,2007.
    [16]宋志刚.基于烦恼率模型的工程结构振动舒适度设计新理论[D].浙江大学,2003.
    [17]王欣.某大跨斜拉桥车桥耦合的行车舒适度研究[D].华中科技大学,2007.
    [18]ISO 2631-1-1997. Mechanical vibration and shock evaluation of human exposure to whole-body vibration-part 1:general requirements[M]. Switzerland,1997.
    [19]Radhey K. G. Dynamic loading of highway bridges[J]. Journal of the Engineering Mechanics Division,1980,106(2):377-394.
    [20]Saadeghvaziri M. A. Finite element analysis of highway bridges subjected to moving loads[J]. Computers and Structure,1993,49(5):837-842.
    [21]4970-1996 G.T.汽车平顺性随机输入行驶试验方法[M].北京:中华人民共和国机械工业部,1996.
    [22]李国豪.桥梁结构稳定与振动[M].北京:中国铁道出版社,2002.
    [23]詹斐生.平稳性指标的历史回顾[J].铁道机车车辆,1994,11(4):43-52.
    [24]王进军,李杰.桥上行人对车桥振动的可容忍性(或舒适度)的判断[J].铁道建筑,2003,43(7):6-8.
    [25]陈晓麟.路桥过渡段沉降控制指标及控制方法研究[D].长安大学,2003.
    [26]王军文,李建中,范立础.连续梁桥纵向地震碰撞反应参数研究[J].中国公路学报,2005,18(4):42-47.
    [27]王东升,杨海红,王国新.考虑邻梁碰撞的多跨长简支梁桥落梁震害分析[J].中国公路学报,2005,18(3):54-59.
    [28]Ruangrassamee A., Kawashima K. Control of nonlinear bridge response with pounding effect by variable dampers[J]. Engineering Structures,2003,25(5): 593-606
    [29]Wang C. J. Failure study of a bridge subjected to pounding and sliding under severe ground motions [J]. International Journal of Impact Engineering,2005, 34(2):216-231
    [30]Wang C. J., Ming H. S. Performance study of a bridge involving sliding decks and pounded abutment during a violent earthquake [J]. Engineering Structures,2007, 29(5):802-812
    [31]Nawawi C., Hong H. Study of SSI and non-uniform ground motion effect on pounding between bridge girders [J]. Soil Dynamics and Earthquake Engineering, 2005,25(7):717-728
    [32]于海龙,朱晞.地震作用下简支梁桥梁间碰撞的反应性能[J].北方交通大学学报,2004,28(1):43-46.
    [33]陈学喜,朱晞,高学奎.地震作用下桥梁梁体间的碰撞响应分析[J].中国铁道科学,2005,26(6):75-79.
    [34]王东升,冯启民,王国新.基于直杆共轴碰撞理论的桥梁地震反应邻梁碰撞分析模型[J].工程力学,2004,21(2):157-166.
    [35]聂利英,李建中,范立础.地震作用下结构碰撞的模型参数及其影响分析[J].工程力学,2005,22(5):142-146.
    [36]李忠献,岳福青,周莉等.考虑地震动空间效应的城市高架桥梁地震碰撞响应分析[J].天津大学学报,2006,39(8):938-943.
    [37]李忠献,岳福青,周莉等.基于随机振动理论确定桥梁地震碰撞的临界间隙[J].地震工程与工程振动,2006,26(4):156-161.
    [38]丁文胜,孙福全.纵向地震作用下系杆拱桥与引桥间碰撞响应研究[J].江苏科技大学学报(自然科学版),2007,21(2):25-29.
    [39]谢旭,高博青,吴善幸等.柔性橡胶支座上的桥梁结构地震碰撞响应分析[J].浙江大学学报(工学版),2004,38(6):725-741.
    [40]李黎,吴璟,叶志雄.隔震曲线桥梁碰撞研究[J].工程抗震与加固改造,2008,30(5):48-54.
    [41]Papadrakakis M., Mouzakis H. P. Earthquake simulator testing of pounding between adjacent buildings[J]. Earthquake Engineering and Structural Dynamics, 1995,24(6):811-834.
    [42]Filiatrult A., Wagner P., Cherry S. Analytical prediction of experimental building pounding[J]. Earthquake Engineering and structural Dynamics,1995,24(8): 423-431.
    [43]Chau K. T., Wei X. X., Guo X. Experimental and theoretical simulations of seismic poundings between two adjacent structures[J]. Earthquake Engineering and Structural Dynamics,2003,32(4):537-554.
    [44]李忠献,张勇,岳福青.地震作用下隔震简支梁桥碰撞反应的振动台试验[J].地震工程与工程振动,2007,27(2):152-157.
    [45]Charles C. C., Robert E. B. Dynamic buckling of cylindrical shell [J].Journal of the Engineering Mechanics Division,1971,97(3):657-671
    [46]NuRi A. Asymmetric buckling behavior of spherical caps under uniform step pressures[J]. Journal of Applied Mechanics 1972,39(1):293-294.
    [47]NuRi A. Note on the dynamic buckling loads of shallow spherical shells from static analysis [J]. Mechanics Based Design of Structures and Machines,1981,9(4): 483-488
    [48]Messier R. H., Marcal P. V. A finite element algorithm for the determination of dynamic buckling[C]. Finte Elmant Analysis of Transient Nonlinear Structural, Houston. ASCE Appl Mech Symp Series,1975.
    [49]Dionisio B. Instability of buildings subjected to earthquakes [J]. Journal of Structural Engineering,1992,118(8):2239-2260.
    [50]Ramesh G. Dynamic stability of cylindrical composite shells[D]. State University of Newyork,1994.
    [51]Kato S., Murata M. Dynamic elasto-plastic buckling simulation system for single layer reticular domes with semi-rigid connection under multiple loading[J]. International Journal of Space Structures,1997,12(3-4):161-172.
    [52]Seung D. K., Moon M. K., Taek J. K. Dynamic instability of shell-like shallow trusses considering damping [J]. Computers and Structures,1997,64(1-4): 481-489.
    [53]Montes E. H., Martin L. M. G. Influence of dynamic movements due to seismic response on the buckling problem of steel structures [J]. Journal of Constructional Steel Research,1998,46(1):445-445.
    [54]Hjelmstad K. D., Williamson E. B. Dynamic stability of structural systems subjected to base excitation [J]. Engineering Structures,1998,20(4-5):425-432.
    [55]Akshay G., Helmut K. Dynamic p-delta effects for flexible inelastic steel structures[J]. Journal of Structural Engineering,2000,126(1):145-154
    [56]Williamson E. B., Rungamornrat J. Numerical analysis of dynamic stability under random excitation [J]. Engineering Structures,2002,24(4):479-490
    [57]初良成,曲乃泗,邬瑞锋.空间结构横向动力稳定的有限元摄动分析[J].地震工程与工程振动,1993,13(3):64-72.
    [58]梁建文.Bolotin动力失稳方程的一个摄动迭代解法[J].计算力学学报,1996,13(1):118-119.
    [59]沈祖炎,叶继红.运动稳定性理论在结构动力分析中的应用[J].工程力学,1997,14(3):21-28.
    [60]叶继红.单层网架结构的动力稳定分析[D].同济大学,1995.
    [61]李忠学.杆系结构的非线性动力稳定分析[D].同济大学,1998.
    [62]张其林,Udo P.任意激励下弹性结构的稳定分析[J].土木工程学报,1998,31(1):26-32.
    [63]何艳丽.桅杆结构的动力稳定性分析[D].同济大学,1999.
    [64]徐艳.钢管混凝土拱桥的动力稳定性能研究[D].同济大学,2004.
    [65]Tsai H. C., Kelly J. M. Dynamic parameter identification for nonlinear isolation systems in response spectrum analysis[J]. Earthquake Engineering and Structural Dynamics,1989,18(8):1119-1132.
    [66]Huang J. S. Evaluation of equivalent linear analysis methods of bridge isolation[J]. ASCE Journal of Structural Engineering,1996,122(8):972-986.
    [67]Hwang J. S., Chiou J. M. An equivalent linear model of lead-rubber seismic isolation bearings[J]. Engineering Structures,1996,18(7):528-536
    [68]AASHTO. Guide specifications for seimic isolation design[M]. Washington DC.: American Association of State Highway and Transport Officials,1991.
    [69]Jara M., Casas J. R. A direct displacement-based method for the seismic design of bridges on bi-linear isolation devices[J]. Engineering Structures,2006,28(6): 869-879
    [70]Chen K. H., Loh C. H. Simplified inelastic analysis of bridge pier considering isolation system[J]. Techniacl Council on Lifeline Earthquake Engineering Monograph,1996:371-378.
    [71]Yang Y. B., Chen Y. C. Design of sliding-type base isolators by the concept of equivalet damping[J]. Shock and Vibration Digest,2000,32(1):39-45.
    [72]周锡元,李钟锡.规则型桥隔震桥梁结构的简化分析方法[J]土木工程学报,2001,34(3):53-56.
    [73]刘建新.公路桥梁减震装置及设计方法研究[D].长安大学,2000.
    [74]夏禾,张楠,曹艳梅.列车对周围地面及建筑物振动影响的试验研究[J].铁道学报,2004,26(4):93-98.
    [75]Chatterjee P. K., Dattatk, Surana C. S. Vibration of continuous vridges under moving vehicles[J]. Journal of Sound and Vibration,1994,165(5):619-634.
    [76]Saadeghvazirim M. A. Finite element analysis of highway bridges subjected to moving loads[J]. Computers and Structures,1993,49(5):837-842.
    [77]李黎,叶志雄,王欣等.移动荷载作用下特大悬索桥的行车舒适性[J].公路交通科技,2007,24(9):46-50.
    [78]王飞.考虑风致振动的大跨悬索桥行车舒适性研究[D].华中科技大学,2005.
    [79]GB10070-88.城市区域环境振动标准[S].北京:国家环境保护局,1988.
    [80]李忠献,岳福青.城市桥梁地震碰撞反应研究与发展[J].地震工程与工程振动,2005,25(4):91-98.
    [81]Priestley M. J. N., Seible F., Calvi G. M. Seismic design and retrofit of bridge[M]. New York:Wiley,1996.
    [82]Praveen K., Malhotra, Moh J. H. Seismic interaction at separation joints of an instrumented concrete bridge[J]. Earthquake Engineering and Structural Dynamics, 1995,24(8):1055-1067.
    [83]Otsuka H., Unjoh S., Terayama T. Damage to highway bridges by the 1995 Hyogoken Nanbu earthquake and the retrofit of highway bridges in Japan [R]. Osaka:3rd U.S-Japan workshop on seismic retrofit of bridge,1996.
    [84]Kazuhiko K., Shigeki U. The damage of highway bridges in the 1995 Hyogo-ken nanbu earthquake and its impact on Japanese seismic design[J]. Journal of Earthquake Engineering,1997,1(3):505-541.
    [85]Kawashima K., Unjoh S. Impact of hanshin/awajie earthquake on seismic design and seismic strengthening of highway bridges[J]. Structral Engineering 1996, 13(2):211-240.
    [86]Ping Z. Seismic analysis and serviceability evaluation of elevated bridge based 3D modeling with pounding effects of girders[D]. The University of Tokyo,2001.
    [87]范立础.梁桥非线性地震反应分析[J].土木工程学报,1981,14(2):41-51.
    [88]范立础,王志强.桥梁减隔震设计[M].北京:人民交通出板社,2001.
    [89]谢旭,吴善幸.地震时桥梁间的碰撞现象及其影响[c].第十五届全国桥梁学术会议论文集上海,全国桥梁学会,2002.
    [90]Malhotra P. K. Dynamics of seismic pounding at expansion joints of concrete bridges[J]. Journal of Engineering Mechanics, ASCE,1998,124(7):794-802.
    [91]Jankowski R., Wilde K., Fujjino Y. Pounding of superstructure segments in isolated elevated bridge during earthquakes[J]. Earthquake Engineering and Structural Dynamics,1998,27(5):487-502.
    [92]Trochalakis P., Eberhard M. O., Stanton J. F. Design of seismic restrainers for in-span hinges[J]. Journal of Structural Engineering,1997,123(4):469-478.
    [93]Ruangressamee A., Kawashima K. Relative displacement response spectra with pounding effect[J]. Earthquake Engineering and Structural Dynamics,2001,30(10): 1511-1538.
    [94]Goldsmith W. Impact the theory and physical behaviour of colliding solids[M]. London, England:Edward Arnold,1960.
    [95]Anagnostopoulos S. A. Pounding of building in series during earthquakes[J]. Earthquake Engineering and Structural Dynamics,1988,16(3):443-456.
    [96]Davis R. O. Pounding of buildings modelled by an impact oscillator [J]. Earthquake Engineering and Structural Dynamics,1992,21(3):253-274.
    [97]Jankowski R. Non-linear viscoelastic modelling of earthquake-induced structural pounding[J]. Earthquake Engineering and Structural Dynamics,2005,34(6): 595-611.
    [98]Muthukumar S., DesRoches R. Hertz contact model with non-linear damping for pounding simulation[J]. Earthquake Engineering and Structural Dynamics,2006, 35(7):811-828.
    [99]Lankarani H. M., Nikravesh P. E. Contact force model with hysteresis damping for impact analysis of multibody systems[J]. Journal of Mechanisms, Transmissions, and Automation in Design,1990,112(3):369-376.
    [100]Muthukumar S., DesRoches R. A Hertz contact model with non-linear damping for pounding simulation[J]. Earthquake Engineering and Structural Dynamics,2006; 35(7):811-828.
    [101]叶昆.近断层脉冲型地震作用下LRB基础隔震结构地震响应研究[D].华中科;技大学,2008.
    [102]郭海山,沈世钊.单层网壳结构动力稳定性分析方法[J].建筑结构学报,2003,24(3):1-9.
    [103]刘慧娟,韩庆华,周全智.弦支穹顶结构在地震作用下的动力稳定性研究[J].天津理工大学学报,2007,23(2):84-88.
    [104]徐艳,胡世德.地震作用下钢管混凝土拱桥的动力稳定性[J].同济大学学报(自然科学版),2007,35(3):315-320.
    [105]廖萍,李黎,彭元诚等.薄壁高墩连续刚构桥的线性稳定分析[J].公路,2005,4:47-50.
    [106]李黎,廖萍,龙晓鸿等.薄壁高墩大跨度连续刚构桥的非线性稳定分析[J].工程力学,2006,23(5):119-124.
    [107]史小伟.某大跨连续刚构桥的抗震研究[D].华中科技大学,2005.
    [108]韩强.弹塑性系统的动力屈曲和分叉[M].北京:科学出版社,2000.
    [109]李忠学,沈祖炎,邓长根.广义位移控制法在动力稳定问题中的应用[J].同济大学学报(自然科学版),1998,26(6):609-612.
    [110]李存权.结构稳定和稳定内力[M].北京:人民交通出版社,2000.
    [111]贺拴海.桥梁结构理论与计算方法[M].北京:人民交通出版社,2003.
    [112]符华·鲍络金.弹性体系的动力稳定性[M].北京:高等教育出版社,1960.
    [113]李世其,张清杰,郑际嘉.矩形薄板流-固冲击屈曲与塑性铰失效的实验研究[J].力学学报,1993,25(3):249-255.
    [114]李世其.流固冲击荷载下矩形板的动力屈曲和后屈曲的实验与理论研究[D].华中理工大学,1992.
    [115]Qilin Z., Jijia Z. Dynamic response, buckling and collapsing of elastic-plastic straight columns under axial solid-fluid slamming compression [J]. International Journal of solids and structures,1992,29(3):381-397.
    [116]彭诚洋.船舶结构在流-固冲击作用下的动力屈曲[D].哈尔滨工程大学,2005.
    [117]Gupta A., Krawinkler H. Dynamic P-delta effects for flexible inelastic steel structures[J]. Journal of Structural Engineering 2000,126(1):145-154.
    [118]周承倜,王列东.复合材料叠层圆柱壳的非线性动力稳定性理论[J].应用数学和力学,2001,22(1):47-55.
    [119]李忠学,李元齐,严慧等.结构非线性动力稳定性研究中的关键问题探讨[J].空间结构,2000,6(4):29-35.
    [120]刘延柱,陈立群.非线性振动[M].北京:高等教育出版社,2001.
    [121]舒仲周.运动稳定性[M].成都:西南交通大学出版社,1989.
    [122]朱因远,周纪卿.非线性振动和运动稳定性[M].西安:西安交通大学出版社,1992.
    [123]艾庆华.钢筋混凝土桥墩抗震性态数值评价与试验研究[D].大连理工大学,2008.
    [124]齐虎,孙景江,林淋.OPENSEES中纤维模型的研究[J].世界地震工程,2007, 23(4):48-54.
    [125]陈滔.基于有限单元柔度法的钢筋混凝土框架结构三维非弹性地震反应分析[D].重庆大学,2003.
    [126]Patrick B. M. Performance modeling strategies for modern reinforced concrete bridge columns[D]. University of Washington,2006.
    [127]杨红,徐海英,王志军.考虑柱底纵筋滑移的纤维模型及框架地震反应分析[J].建筑结构学报,2009,30(4):130-137.
    [128]高文生.考虑钢筋粘结滑移影响的钢筋混凝土框架地震反应分析[D].重庆大学,2008.
    [129]FEMA350. Recommended seismic design criteria for new steel moment-frame buildings[R]. Washington D C:Federal Emergency Management Agency,2000.
    [130]Vamvatasikos D., C A. C. Incremental dynamic dnalysis[J]. Earthquake Engineering and Structural Dynamics,2002,31(3):491-514.
    [131]Movchan A. A. The direct method of Liapunov in stability problems of elastic systems[J]. Journal of Applied Mathematics and Mechanics,1959,23:670-686.
    [132]Budiansky B., Roth S. R. Axisymmetric dynamic buchling of clamped shallow spherical shells[R]. Collected Papers on Instability of Shell Structures:NASA TN D-1510,1962.
    [133]Hsu C. S. On dynamic stability of elastic badies with prescribed initial condition [J]. International Journal of Engineering Science,1966,4:1-21.
    [134]Simitses G. J. Effect of static preloading on the dynamic stability of structure[J]. AIAA,1980,21(8):1174-1180.
    [135]Simitses G. J. Suddenly-loaded structural configuration[J]. Journal of Engineering Mechanics, ASCE,1984,110(9):1320-1334.
    [136]Akkas N. Asymmetric buckling behavior of spherical caps under uniform step pressure[J]. Journal of Applied Mechanics,1972,39:293-294.
    [137]朱兆祥,余同希.应力波引起的弹性结构的屈曲准则[C].塑性力学和地球动力学文集.北京,北京大学出版社,1990.
    [138]魏勇,朱兆祥,李永池.轴向冲击荷载作用下直杆弹性动力屈曲的研究[J].实验力学,1988,3(3):258-263.
    [139]Lee T.H., Mosalam K. M. Seismic demand sensitivity of reinforced concrete shear-wall building using FOSM method[J]. Earthquake Engineering and Structural Dynamics,2005,34(14):1719-1736.
    [140]Fajfar P., Dolek M., Marui D. Pre-and post-test mathematical modelling of a plan-asymmetric reinforced concrete frame building[J]. Earthquake Engineering and Structural Dynamics,2006,35(11):1359-1379.
    [141]Michalis F., Dimitrios V., Manolis P. Evaluation of the influence of vertical irregularities on the seismic performance of a nine-storey steel frame[J]. Earthquake Engineering and Structural Dynamics,2006,35(12):1489-1509.
    [142]Wang T., Yoshitake N., Pan P. Numerical characteristics of peer-to-peer(P2P) internet online hybrid test system and its application to seismic simulation of SRC structure[J]. Earthquake Engineering and Structural Dynamics,2007,37(2): 265-282.
    [143]Yang T. Y., Stojadinovic B., Moehle J. Hybrid simulation of a zipper-braced steel frame under earthquake excitation[J]. Earthquake Engineering and Structural Dynamics,2008,38(1):95-113.
    [144]Elwood K. J., Moehle J. P. Dynamic collapse analysis for a reinforced concrete frame sustaining shear and axial failures [J]. Earthquake Engineering and Structural Dynamics,2008,37(7):.991-1012.
    [145]Tsai K.-C., Hsiao P.-C., Wang K.-J. Pseudo-dynamic tests of a full-scale CFT/BRB frame-Part 1:Specimen design, experiment and analysis [J]. Earthquake Engineering and Structural Dynamics,2008,37(7):1081-1098.
    [146]Mo Y. L., Yeh Y.-K., Zhong J. Seismic behavior of shear-critical hollow bridge columns[C]. Structures Congress 2006:Structural Engineering and Public Safety. St. Louis, Missouri, ASCE Congress Proceedings,2006.
    [147]Haukaas T., Kiureghian A. D. Methhods and object-oriented software for FE reliability and sensitivity analysis with application to a bridge structure[J]. Journal of Computing in Civil Engineering,2007,21(3):151-163.
    [148]KANG T. H.-K., WALLACE J. W., ELWOOD K. J. Nonlinear modeling of flat-plate systems[J]. Journal of Structural Engineering,2009,135(2):147-158
    [149]Scott M. H., Haukaas T. Modules in opensees for the next generation of performance-based engineering[C].17th Analysis and Computation Specialty Conference. St. Louis, Missouri, ASCE Congress Proceedings,2006.
    [150]罗辑.基于OpenSees计算平台的钢管混凝土拱桥抗震性能分析[D].四川大学,2004.
    [151]中华人民共和国国家标准.GB50010-2002.建筑抗震设计规范[S].中国建筑工业出版社,2001.
    [152]Mander J. B., Priestley M. J. N., Park R. Theoretical stress-strain:model for confined concrete[J]. Journal of Structural Engineering,1986,114(8):1804-1826.
    [153]范立础,卓卫东.桥梁延性抗震设计[M].北京:人民交通出版社,2001.
    [154]Watson S., Zahn F. A., Park R. Confining reinforcement for concrete columns[J]. Journal of Structural Engineering,1994,120(6):1789-1824.
    [155]凌炯.面向对象开放程序OpenSees在钢筋混凝土结构非线性分析中的应用与初步开发[D].重庆大学,2004.
    [156]蒋欢军,吕西林.钢筋混凝土柱对应于各地震损伤状态的侧向变形计算[J].地震工程与工程振动,2008,28(2):44-50.
    [157]蒋欢军,王斌,吕西林.钢筋混凝土梁和柱性能界限状态及其变形值[J].建筑结构,2010,40(1):10-14.
    [158]吕西林,周定松,蒋欢军.钢筋混凝土框架柱的变形能力及基于性能的抗震设计方法[J].地震工程与工程振动,2005,25(6):53-61.
    [159]Berry M. P., Eberhard M. O. Performance models for flexural damage in reinforced conrete columns[R]. University California, Berkeley:Pacific Earthquake Engineering Research Center,2003.
    [160]Berry M. P., Eberhard M. O. Practical performance model for bar buckling[J]. Journal of structural engineering,2005,131(7):1060-1070
    [161]Priestley J. N. Brief comments on the elastic flexibility of reinforcement concrete frames and significance to seismic design[J]. Bulletin of the New Zealand National Society on Earthquake Engineering,1998,31(4):246-259.
    [162]Paulay T., P M. J. N. Seismic design of reinforced concrete and masonry buildings[M]. New York:John Wiley & Sons,1992.
    [163]Yashinsky M., Eeri M., Ostrom T. Caltrans' new seismic design criteria for bridges[J]. Earthquake Spectra,2000,16(1):285-307
    [164]Papia M., Russo G. Compressive concrete strain at buckling of longitudinal reinforcement [J]. Journal of Structural Engineering,1989,115(2):382-397.
    [165]Anonymous. Manual for Menshin Design of Highway Bridges[M]. Tsukuba City:Public Works Research Institute,1992.
    [166]K.Kawashima. Manual for Menshin design of highway bridges, The second U.S.-Japan Workshop on Earthquake Protective Systems for Bridges[M]. Tsukuba City:Public Works Research Institute,1992.
    [167]Sugita H., Mahin S. A. Manual for menshin design of highway bridges: Ministry of construction[R]. Berkeley:EERC Report No.94/10, Earthquake Engineering Research Center, University of California,1994.
    [168]Hwang J. S., Sheng L. H. Equivalent elastic seismic analysis of base-isolated bridges with lead-rubber bearings[J]. Engineering Structures,1994,16(3): 201-209.
    [169]Hwang J. S., Sheng L. H., Gates J. H. Practical analysis of base-isolated bridges with bi-linear hysteresis characteristics[J]. Earthquake Spectra,1994,10(4): 705-727.
    [170]D.Iwan W., Gates N. C. Estimating earthquake response of simple hysteretic structures [J]. Journal of the Engineering Mechanics Division,1979,105(3): 391-405
    [171]朱东生.桥梁抗震设计中几个问题的研究[D].西南交通大学,1999.
    [172]Hwang J. S., Chang K. C., Tasai M. H. Composite damping ratio of seismically isolated regular bridge[J]. Engineering Structures,1997,19(1):55-62.
    [173]Eurocode. Design provisions for earthquake resistance of structures,Part 2:Bridges[M]. Brussels:ENV 1998-2,1994.
    [174]中华人民共和国国家标准.JTGD60-2004.公路桥涵设计通用规范[S].人民交通出版社,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700