多种典型工况下的汽车正面碰撞性能协同优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,经济飞速发展和高速公路交通网的完善促进了我国汽车工业高速发展。同时,也带来了严重的交通事故问题。在各类交通事故中,正面碰撞事故是发生率最高且死亡人数最多的事故类型,而目前的汽车正面碰撞安全性设计主要根据100%重叠正面刚性壁碰撞和40%重叠偏置碰撞两种形式。为了进一步提高正面碰撞事故中乘员安全性,本文根据不同碰撞工况特点,分别对汽车与固定刚性壁障碰撞、各种类型的汽车与汽车碰撞和汽车与柱状物碰撞三种典型工况进行了分析,并对三种典型工况中的碰撞安全性进行了协同优化研究,使汽车前部结构能够同时满足三种工况的安全性要求。
     本文主要研究内容和创新点如下:
     1、汽车正面刚性壁障碰撞中,加速度波形是安全性设计的重点。通过分析正面碰撞中三种理想加速度波形和薄壁梁结构吸能机理,设计了一种正八边形逐级吸能结构来改善纵梁碰撞吸能特性和加速度波形。对该碰撞吸能结构进行了优化设计,并用于某SUV车架正面碰撞安全性改进。碰撞试验结果表明,改进后的SUV结构碰撞加速度波形和前部吸能效果都明显改善。
     2、各种类型的汽车与汽车正面碰撞中,纵梁全部参与变形碰撞和单侧纵梁参与变形的偏置碰撞是发生率较高的事故。针对如何降低汽车与汽车碰撞中乘员损伤,通过改变某乘用车有限元模型,将质量和刚度两个参数分离,建立了质量降低、刚度增加、同时降低质量和增加刚度的三种假想车型的有限元模型;采用全因子试验设计进行仿真计算,分析了质量和刚度对汽车与汽车100%和50%重叠碰撞中车体变形和加速度特性的影响。指出100%重叠碰撞中,乘用车结构刚度增加或质量降低产生的加速度峰值增加是导致车内驾驶员损伤风险增加的主要原因;而在50%重叠碰撞中,两车刚度差异造成的乘员舱侵入量增加是主要原因。通过调整SUV纵梁刚度和乘用车乘员舱强度,进行了两车50%偏置碰撞的刚度匹配研究,发现增强乘用车乘员舱强度对降低其与SUV偏置碰撞中的侵入量的作用比降低SUV纵梁刚度更显著,有利于偏置碰撞中乘员保护。
     3、针对汽车与柱状物碰撞中乘员损伤风险较高,以中型乘用车Taurus为目标进行中心柱碰撞中驾驶员损伤研究。并通过加速度波形参数化研究得出柱碰撞中过低的前期加速度、较高的加速度上升阶段斜率、较高的后期加速度会造成驾驶员损伤风险升高。通过调整气囊起爆时间,研究了柱碰撞中最优气囊起爆时刻。提出了抬高碰撞前期加速度来降低中心柱碰撞中乘员损伤风险的方案,并通过加强前保险杠横梁结构来实现。
     4、通过改变吸能盒截面形状和诱导槽结构,获得了在三种碰撞工况中都具有较好吸能特性的吸能盒结构。结合正面固定刚性壁碰撞、40%偏置碰撞和中心柱碰撞三种碰撞工况安全性设计要求,以固定刚性壁碰撞中第二台阶加速度与第一台阶加速度比值、40%偏置碰撞中驾驶员侧门立柱中部侵入量和柱碰撞中前期加速度为目标,提出了采用协同优化策略、均匀试验设计和模拟退火算法对汽车前部主要吸能结构厚度优化来获得在三种典型碰撞工况中耐撞性都较好的结构设计方案。优化结果同时改善了固定刚性壁碰撞中加速度曲线波形、40%偏置碰撞中侵入量和柱碰撞中前期加速度。
     5、针对一般台车碰撞试验只能复现车体X向加速度特性,不能复现Y向和Z向加速度的问题,开发了一款带有乘用车车身的新型正面碰撞台车,通过调整台车轴距、轮距、重心高度和吸能结构参数,来模拟实车正面刚性壁碰撞试验和偏置碰撞试验。通过台车正面碰撞仿真,分析了前部吸能结构参数和重心高度对X、Y和Z三向加速度的影响,比较准确地复现了实车100%正面碰撞中的X向和Z向及偏置碰撞中X、Y和Z向加速度。台车试验结果显示,台车碰撞能够同时比较准确地复现实车碰撞中的加速度波形和整车运动动态过程。
In recent years, great economic boom and perfection of highway network promote the rapid development of automobile industry in China. Meanwhile, the terrible accident problem is also brought to the whole society. For different crashes, frontal impact is the crash type that caused most frequently and resulted into most fatality, however the vehicle safety design is based on100%overlap frontal rigidwall impact and40%overlap offset impact. In order to further enhance the protection of occupants in frontal crash, based on the features of frontal crash situations caused by different crash environments, three typical frontal impact situations including the vehicle to rigidwall impact, vehicle to vehicle impact and vehicle to pole impact were studied. The collaborative optimization of vehicle impact safety in three typical situations was performed to meet the safety requirements in three impact situations at the same time.
     The main content and innovation of this dissertation are shown as following:
     1. In vehicle to rigidwall impact, the acceleration pulse is the key of safety design. Through analyzing the three ideal acceleration pulses and mechanism of energy absorbing of thin-wall structure, an octagonal step by step energy absorbing structure was designed to improve the energy absorption of longitudinal rail and acceleration pulse. The optimal design was obtained through optimization, and was used to improve the frame of SUV in frontal rigidwall impact test. The frame impact test shows that the energy absorption ability of frontal structure and acceleration shape of vehicle body could be improved obviously.
     2. The fullengagement and offset frontal vehicle to vehicle impacts are more frequent in different frontal crashes. The mass and stiffness were isolated through changing the FE model of a mid-size sedan, thus three ideal FE models with mass reduction, stiffness increase and both mass reduction and stiffness increase were obtained. The full factorial experimental design method was adopted to analyze the influence of mass and stiffness to the vehicle body deformation and acceleration pulse in the mid-size sedan to SUV, mid-size sedan and small size sedan100%and50%overlap frontal crashes. The result shows that the stiffness increase and mass reduction of passenger vehicle is the main cause to the increase of driver injury risk in100%overlap crash; while in50%overlap crash, the collapse of compartment caused by stiffness difference is the main reason. The stiffness matching of the two vehicles was studied by adjusting the stiffness of longitudinal rail of SUV and compartment strength of passenger car; the result shows that enhancing the compartment strength of passenger car is more important than decreasing the stiffness of longitudinal rail of SUV to improve its intrusion in vehicle to vehicle offset crash.
     3. Aiming to higher injury risk of occupant in vehicle to column object crash, the mid-size sedan Taurus was taken as an example to study driver injury risk in vehicle to center pole impact. Through parameterizing the acceleration, it's found that lower acceleration in earlier stage, higher slope of acceleration in rising stage and higer later stage acceleration would cause the increase of driver injury risk. After that, the optimal TTF (time to fire) of airbag was obtained by adjusting TTF. The method of raising the acceleration in earlier stage in center pole crash was proposed to decrease the occupant injury risk, and the bumper beam was strengthened to achieve it.
     4. Through changing cross-section and trigging structure of energy absorbing box, the crush box with good energy absorbing abilibty in three impact situations was abtained. Combining the safety design requirements of frontal rigidwall impact,40%overlap offset impact and centerpole impact, by taking the ratio of second stage and first stage acceleration in rigidwall impact, the intrusion of lower A pillar in40%overlap offset impact and acceleration of earlier stage in centerpole impact as design objects, the collaborative optimization strategy, uniform design and simulate anneal arithmetic were adopted to optimize the thickness of frontal main energy absorbing structures of Taurus to obtain the comprehensive design with better crashworthiness in three typical impact situations. The optimal design could improve the acceleration in rigidwall impact, the intrusion in40%overlap offset crash and the earlier stage acceleration in center pole crash at the same time.
     5. Owing to the traditional sled impact test could regenerate the X acceleration of vehicle body in frontal impact test, but could not simulate the Y and Z acceleration. One new impact sled with passenger car body was designed to simulate the real vehicle to rigidwall impact and40%overlap offset impact test through changing the wheelbase, tire tread, height of center of gravity and parameters of frontal energy absorbing structure. Through the sled frontal impact simulation, the influence of parameters of frontal energy absorbing structure and height of CG to X, Y and Z acceleration; and X, Y and Z acceleration of real vehicle in frontal impact offset were regenerated more accurately by sled impact. Sled frontal impact test result shows that this sled can reproduce both acceleration and the kinematics of vehicle precisely at the same time.
引文
[1]http://oica.net/category/production-statistics/
    [2]Arun Kumar Agnihotri, Road Traffic Injuries-A Global Public Health Concern. Agnihotri, Emergency Medicine 2012,2:3 http://dx.doi.org/10.4172/2165-7548. 1000e111
    [3]Junaid Abdul Razzak, Muhammad Shahzad Shamim, Amber Mehmood. A successful model of road traffic injury surveillance in a developing country: process and lessons learnt.BioMed Central, http://www.biomedcentral.com/ 1471-2458/12/357
    [4]World Health Organization. World Health Statistics,2008. Geneva:World Health Organization,2008.
    [5]http://www.nhtsa.gov/FARS
    [6]中华人民共和国交通事故统计年报(2005-2010),公安部交通管理局.
    [7]U.S. Department of Transportation. Traffic Safety Facts 2003:A Compilation of Motor Vehicle Crash Data from the Fatality Analysis Reporting System and the General Estimates System. United States, Washington D.C.:NHTSA Report HS-809775,2005.
    [8]Klanner, W. Status report and future development of the EURO NCAP program. Experimental Safety Vehicle (ESV) Conference. Amsterdam, Netherlands,2001.
    [9]公安部交通管理局.中华人民共和国道路交通事故统计年报.2004.
    [10]公安部交通管理局.中华人民共和国道路交通事故统计年报.2005.
    [11]Xujun Zhang, Hongyan Yao, Guoqing Hu et al. Basic Characteristics of Road Traffic Deaths in China. Iranian J Publ Health,2013, Vol.42(1):7-15.
    [12]Michael J. Wheeler. Crashworthiness of Aluminum Structured Vehicles. Proceedings ESV 16th,1998.
    [13]B. Yan, K. Laurin, K. Xu, S. Sriram, M. Huang. A New Dual Phase Steel for Automotive Body Panels. SAE:2003-01-0518.
    [14]Lutz Kessler, Joerg Gerlach. Thorsten Beierlng and Michael Linnepe Ing. The Impact of Advanced Material Simulation Parameters in Press Shop Operations Using Mild Steel Grades. SAE:2010-01-0992.
    [15]Jinbo Qu, Wael Dabboussi, James Nemes, Steve Yue. High Strain Rate Deformation Behavior of Advanced High Strength Steels for Automotive Applications. SAE 2006-01-1430.
    [16]高彬.汽车正面撞击的结构耐撞性研究:[哈尔滨工业大学硕士学位论文].哈尔滨,2006,42-44.
    [17]王大志.某轻型客车正面碰撞安全性改进设计.中国汽车工程学会第七届汽车安全技术会议论文集.2002.
    [18]刘凤梧,黄世霖,张金换等.微型客车针对正面碰撞法规的系统改进设计.汽车技术,2009,第9卷:2-6.
    [19]阮世捷,胡习之,曲杰.汽车安全与人体损伤生物力学的有限元模拟研究.华南理工大学学报,2007年,第35卷(6):1.6.
    [20]朱西产.汽车正面碰撞试验方法及其碰撞相容性的分析.中国汽车工程学会第六届汽车安全技术学术会议,2001,44-51.
    [21]中华人民共和国国家质量监督检验总局.机动车成年乘员用安全带和约束系统.2003.
    [22]Hallquist J O. LS-DYNA theory manual. California:Livermore Software Technology Corporation,2006.
    [23]Altair Engineering. Radioss starter manual 5.1 version. Michigan:Altair Engineering,2007.
    [24]ESI Group. Pam-crash/safe 2004 solver notes manual. ESI,2004.
    [25]TASS. MADYMO Theory Manual Version 7.3. Delft, Netherlands:TNO Road Vehicles Research Institute,2010.
    [26]SAE Standard J224 Collision Deformation Classification,2011.
    [27]Kaye Sullivan, Scott Henry and Tony R. Laituri. A Frontal Impact Taxonomy for USA Field Data. SAE:2008-01-0526,1-10.
    [28]Scullion P., Morgan R.M., Mohan P., Kan C-D. A Reexamination of the Small Overlap Frontal Crash.54th Proceedings of the Association for the Advancement of Automotive Medicine,2010,1-9.
    [29]陈君毅,王洪雁,潘婷.从道路交通事故研究看我国汽车正面碰撞法规试验形式.汽车工程,第32卷(2),2010年,168-172.
    [30]K. T. Gursel, S. N. Nane. Non-linear finite element analyses of automobiles and their elements in crashes. International Journal of Crashworthiness,2010, Vol. 15(6):667-692.
    [31]P. Du Bois, C.C. Chou, B.B. Fileta. Vehicle Crashworthiness and Occupant Protection, American Iron and Steel Institute, Washington, D.C.,2000,1-2.
    [32]凯墨尔M.M.,沃尔夫J.A.现代汽车结构分析,陈励志译.北京:人民交通出版社,1987,3-15.
    [33]Brian O'neill. Preventing Passenger Vehicle Occupant Injuries by Vehicle Design-A Historical Perspective from IIHS. Traffic Injury Ptevention,2009, Vol. 10:113-126.
    [34]K. T. Gursel, S. N. Nane. Non-linear finite element analyses of automobiles and their elements in crashes, International Journal of Crashworthiness.2010, Vol. 15(6):667-692.
    [35]薛量.基于耐撞性数值仿真的汽车车身结构优化设计研究:[上海交通大学博士学位论文].上海:上海交通大学车辆工程系,1999,29-35.
    [36]Farmer, C.M. Relationships of frontal offset crash test results to real-world driver fatality rates. Traffic Injury Prevention,2005,6:31-37.
    [37]Ryb GE, Burch C, Kerns T et al. Crash test ratings and real-world frontal crash outcomes:a CIREN study. J Trauma.2010,68(5):1099-1105.
    [38]Anders Lie, Claes Tingvall. How Do Euro NCAP Results Correlate with Real-Life Injury Risks? A Paired Comparison Study of Car-to-Car Crashes. Traffic Injury Prevention,2002,3:288-293.
    [39]National Highway Traffic Safety Administration. Lives Saved by the Federal Motor Vehicle Safety Standards and Other Vehicle Safety Technologies, 1960-2002. U.S. Department of Transportation, Washingyton, DC. Report No. DOT HS-809-833,2004.
    [40]Insurance Institute for Highway Safety, Status Report,2012, Vol.47(6):2-3.
    [41]Klanner, W., Felsch, B., and Van west, F. Evaluation of Occupant Protection and Compatibility Out of Frontal Crash Tests Against the Deformable Barrier. Proceedings of the 16 International Technical Conference on the Enhanced Safety of Vehicles,1998,98-S3-O-06:1-7.
    [42]Kallina, I. Crashworthiness. Vehicle Aggressivity and Compatibility in Automotive Crashes 2000, SAE paper SP-1525:78-88.
    [43]Peter O' Reilly. STATUS REPORT OF IHRA COMPATIBILITY AND FRONTAL IMPACT WORKING GROUP. ESV:05-0365.
    [44]Sean O'Brien. PRIORITIES FOR THE ASSESSMENT OF FRONTAL IMPACT COMPATIBILITY. ESV:11-0295.
    [45]Heiko Johannsen, Thorsten Adolph, Robert Thomson et al. FIMCAR FRONTAL IMPACT AND COMPATIBILITY ASSESSMENT RESEARCH: STRATEGY AND FIRST RESULTS FOR FUTURE FRONTAL IMPACT ASSESSMENT. ESV:11-0286.
    [46]Alliance of Automotive Manufacturers, letter to Acting Administrator, NHTSA, May 10,2006, Docket # NHTSA-2003-14623-24.
    [47]Summers, S., Hollowell, W.T., Prasad, A. Design Considerations for a Compatibility Test Procedure. Society of Automotive Engineers, Paper No. 2002-02B-169, March 2002.
    [48]Stephen Summers, Aloke Prasad. NHTSA's Recent Compatibility Test Program. ESV:05-0278.
    [49]Sanjay Patel, David Smith, Aloke Prasad et al. NHTSA's RECENT VEHICLE CRASH TEST PROGRAM ON COMPATIBILITY IN FRONT-TO-FRONT IMPACTS. ESV:07-0231.
    [50]Sanjay Patel, Aloke Prasad, Pradeep Mohan. NHTSA's Recent Test Program on Vehicle Compatibility. ESV:09-0416.
    [51]Hideki Yonezawa, Koji Mizuno, Takahiro Hirasawa, Hitoshi Kanoshima etc. Summary of activities of the compatibility working group in Japan. ESV: 09-0203.
    [52]Koji Mizuno and Yuji Arai. The effectiveness of matching front rail heights in car-to-car crashes. International Journal of Crashworthiness.2010, Vol.15(6): 571-579.
    [53]Matthew L. Brumbelow, David S. Zuby. IMPACT AND INJURY PATTERNS IN FRONTAL CRASHES OF VEHICLES WITH GOOD RATINGS FOR FRONTAL CRASH PROTECTION. ESV:09-0257.
    [54]Arbelaez R A, Aylor D, Nolan J M et al. Crash Modes and Injury Patterns in Real-World Narrow Object Frontal Crashes, Proceedings of IRCOBI Conference, Madrid, Spain,2006.
    [55]Scullion P, Morgan R M, Digges K et al. Frontal Crashes Between The Longitudinal Rails. The 22nd International Technical Conference on the Enhanced Safety of Vehicles (ESV), Washington, D.C.,2011, paper:2011-0372.
    [56]Padmanaban J, Okabe T. Real World Injury Patterns in Narrow Object Frontal Crashes:An analysis of US field Data. SAE technical paper:2008-01-0527.
    [57]Morgan R M, Cui C, Digges K H et al. Impact and injury patterns in between-rails frontal crashes of vehicles with good rating for frontal crash protection. Ann Adv Automot Med.2012, Vol.56:255-265.
    [58]Hong S-W, Park C-K, Mohan P. A study of the IIHS frontal pole impact test. SAE technical paper:2008-01-0507.
    [59]Hong, S.W., Park, C.K., Mohan, P. Comparative Analysis of a Vehicle Impacting a Rigid Barrier, an Offset Deformable Barrier, and a Rigid Pole. IRCOBI Conference, Bern, Switzerland,2008.
    [60]Insurance Institute for Highway Safety, Status Report,2009, Vol.44 (2):3-4.
    [61]Kamal, M. M. Analysis and Simulation of Vehicle to Barrier Impact. SAE Paper No.700414,1970.
    [62]Magee, C. L.-Keynote Address. Design for Crash Energy Management Present and Future Developments. The Seventh International Conference on Vehicle Structural Mechanics, April 1988.
    [63]K. Modeling and Simulation as Applied to Vehicle Structures and Interiors. Vehicle Safety Research Integration Symposium, U.S. Department of Transportation, May 1973.
    [64]Liaw, J. C., Walten, A. C., Brown, J. C. Structural Impact Simulation using Program KRASH. SAE Technical Paper Number 900466 published in SP-820, Engineering Technologies in Vehicle CAE & Structural Mechanics, February 1990.
    [65]Hagiwara, I., et al. Vehicle Crash Simulation Using Hybrid Model. SAE Technical Paper Number 810476, International Congress and Exposition, February 23-27,1981, Detroit, Michigan.-SAE Publication P-211, Paper No. 885055.
    [66]Drazetic, P., et al. Serial Mounting of Kinematic Models in Compression and Flexion. report received from Engineering System International, January 1994.
    [67]Mahmood, H. F., and Paluszny, A. Analytical Technique for Simulating Crash Response of Vehicle Structures Composed of Beam Elements. Sixth International Conference on Vehicle Structural Mechanics, Detroit,1986, SAE Paper No.860820.
    [68]Mahmood H. F., Paluszny, A., and Tang, X. D. A 3D Computer Program for Crashworthiness Analysis of Vehicle Structures Composed of Thin-Wall Beam Components. ASME Publication No. AMD-Vol.79.
    [69]Wierzbicki, T., and Abramowicz, W. On The Crushing Mechanics of Thin-Walled Structures. Journal of Applied Mechanics,1983, Vol.50:727-734.
    [70]Wierzbicki, T., and Akerstrom, T. Dynamic Crushing of Strain Rate Sensitive Box Columns. SAE Paper No.770592, Proceedings of the 2nd International Conference on Vehicle Structural Mechanics,1977.
    [71]Ohokubo, Y., Akamatsu, T., and Shirasawa, K. Mean Crushing Strength of Closed-Hat Section Members. SAE Paper No.740040,1974.
    [72]Johnson, W., Soden, P. D. and Al-Hassani, S. T. S. Inextensional Collapse of Thin-Walled Tubes Under Axial Compression. Journal of Strain Analysis,1977, Vol.12:317-330.
    [73]Alexander, J. M. An Approximate Analysis of the Collapse of Thin Cylindrical Shells Under Axial Load. Quarterly Journal of Mechanics and Mathematics, 1960.
    [74]钟志华.汽车耐撞性分析的有限元法.汽车工程,1994,第16卷(1):1-6.
    [75]张维刚,钟志华.汽车正撞吸能部件改进的计算机仿真.汽车工程,2002,第24卷(1):6-9.
    [76]贾宏波,黄金陵,谷安涛,王中校.车辆典型薄壁直梁结构碰撞模拟研究与参数选择.农业机械学报,1998,第29卷(1):24-27.
    [77]贾宏波,黄金陵,郭孔辉.汽车车身结构碰撞性能的计算机模拟、评价与改进.吉林工业大学学报,1998,第28卷(2):6-10.
    [78]朱西产,钟荣华.薄壁直梁件碰撞吸能计算机仿真方法的研究.汽车工程,2000,第22卷(2):85-88.
    [79]雷正保,钟志华,李光耀等.受冲薄壁结构动力效应的显式有限元分析.力学学报,2000,第32卷(1):70-76.
    [80]Libo Cao, Qiyong Wei, Zhonghao Bai, Yong Lu. Study on the step by step energy absorption method based on the theory of reverse design.14th asia pacific Automotive engineering conference. August,2007.
    [81]曹立波,崔崇桢,白中浩,丁海建.八边形逐级吸能梁的设计与优化.湖南大学学报,2010,第37卷(1):29-34.
    [82]林逸,张建伟,马天飞等.微型客车抗撞性改进的计算机仿真.汽车工程,2002,第24卷(6):467-469.
    [83]张维刚.汽车碰撞安全性设计与改进技术:[湖南大学博士学位论文].长沙:湖南大学车辆工程系,2002,94-113.
    [84]胡玉梅.汽车正面碰撞设计分析技术及应用研究:[重庆大学博士学位论文].重庆:重庆大学车辆工程系,2002,50—70.
    [85]郝春鹏,范子杰,桂良进.微型客车车身结构正面碰撞特性的数值模拟,汽车工程,2004,第26卷(5):571-573.
    [86]白中浩.汽车前碰撞吸能方法及其关键技术研究:[湖南大学博士学位论文].长沙:湖南大学车辆工程系,2006,60-75.
    [87]Cao, L. Structural Improvement of the S-beam of a Production SUV. SAE Technical Paper 2010-01-1005,2010.
    [88]武和全.汽车车架碰撞安全性分析及其优化设计:[南昌大学博士学位论文],南昌:南昌大学机电工程学院,2009,108-117.
    [89]王大志.基于乘员保护的汽车正面碰撞结构设计与变形控制研究:[清华大学博士学位论文],北京:清华大学,112-123.
    [90]王宏雁.燃料电池轿车碰撞安全性分析:[同济大学博士学位论文].上海:同济大学车辆工程系,2003,97-103.
    [91]唐洪斌.乘用车正面抗撞性设计方法研究:[吉林大学博士学位论文].长春:吉林大学,2008,15-30.
    [92]刘维海.轿车正面碰撞被动安全性研究:[吉林大学博士学位论文].长春:.吉林大学,2012,23-58.
    [93]赵欣超,朱平.基于两种正面碰撞的轿车耐撞性能仿真与改进研究.汽车工程,2007年,第29卷(10):842-846.
    [94]简晓春,王笑.正面和偏置碰撞的耐撞性仿真与车身结构改进.汽车安全与节能学报,2011年,第2卷(3):212-216.
    [95].刘钊,,朱平,喻明,卢家海.基于正面力传递路径的轿车车身结构耐撞性.汽车安全与节能学报,2011年,第2卷(4):317-322.
    [96]孙振东,刘玉光,朱西产.不同形式的汽车正面碰撞试验研究及分析.汽车工程,2006年,第28卷(7):652-655.
    [97]朱西产.汽车正面碰撞试验法规及其发展趋势分析.汽车工程,2002年,第24卷(1):1-5.
    [98]雷雨成,严斌,程昆.汽车的碰撞相容性研究.汽车科技,2004年,第1期:15-17.
    [99]商博,许伟,乐中耀.汽车碰撞兼容性的影响因素及测试方法分析.汽车安全与节能学报,2012年,第3卷(3):232-238.
    [100]张君媛,魏一凡,张建伟.不同碰撞模式的汽车正面结构抗撞性设计,2007年,第37卷(2):275-279.
    [101]李响.多学科设计优化方法及其在飞行器设计中的应用:[西北工业大学博士学位论文].西安:西北工业大学,2003,40-49.
    [102]赵周鹏.基于ISIGHT的无人机机翼气动与结构协同优化研究:[南京航空航天大学硕士学位论文].南京:南京航空航天大学,2007,56-57.
    [103]Sherwood, C. Characteristics of Small Overlap Crashes. International Technical Conference on the Enhanced Safety of Vehicles, Stuttgart, Germany,2009.
    [104]Conroy, C., Tominaga, G. T., Erwin, S., Pacyna, S., Velky, T., Kennedy, F., Sise, M. and Coimbra, R. (2008). The influence of vehicle damage on injury severity of drivers in headon motor vehicle crashes. Accident Analysis & Prevention, Vol.40, No.4, pp.1589-1594.
    [105]Jeffery Augenstein, Elana Perdeck, Khaled Mostafa. The Role of Intrusion in Injury Caustion in Frontal Crashes. SAE paper:2005-1-1376.
    [106]都定员.创伤评分的演进与AIS2005.创伤外科杂志,2006年,第8卷(3):193-197.
    [107]King, A.I., Viano, D.C. Mechanics of the Head/Nech. The Biomedical Engineering Handbook:Second Edition. Ed. Joseph D. Bronzino. Boca Raton: CRC Press LLC.2000.
    [108]Federal Motive Vehicle Safety Standard. No.208
    [109]Viano D C, Arepally S. Assessing the Safety Performance of Occupant Restraint System. SAE Paper,902328,1990.
    [110]Insurance Institute for Highway Safety. Frontal Offset Crashworthiness Evaluation Offset Barrier Crash Test Protocol (Version XIII). http://www.iihs. org/ratings/protocols.
    [111]Egli A. Stopping the Occupant of a Crashing Vehicle-A Fundamental Study. SAE Paper,670038,1967.
    [112]Searle J. Optimum Occupant Restraints. SAE Paper,700422,1970.
    [113]Lundell B. Dynamic Response of a Belted Dummy-A Computer Analysis of Crash Pulse Variation. SAE Paper,840401,1984.
    [114]Brantman, R., Achievable Optimum Crash Pulses for Compartment Sensing and Airbag Performance, Thirteenth International Technical Conference on Experimental Safety Vehicles (ESV), Paper S9-O-22, pp.1134-1138.
    [115]Zhiqing Cheng. Optimal Crash Pulse for Minimization of Peak Occupant Deceleration in Frontal Imptace. SAE:06B-207.
    [116]Willem Witteman. Adaptive Frontal Structure Design to Achieve Optimal Deceleration Pulses. ESV:05-0243, pp:1-10.
    [117]Motozawa, Y., Kamei, T., A New Concept for Occupant Deceleration Control in a Crash, SAE Paper:2000-01-0881.
    [118]Matsumoto H, Sakakida M, Kurimoto K. A Parametric Evaluation of Vehicle Crash Performance. SAE Paper,900465,1990.
    [119]Steve Mark, Effect of frontal crash pulse variation on occupant injuries.18ESV paper No.400, pp:1-8.
    [120]曹立波,龙腾蛟,肖慧青.等效双台阶波形特征与乘员综合损伤值的关系研究.汽车工程学报,2012年,第2卷(3):190-194.
    [121]朱航彬,刘学军.正面碰撞波形对乘员伤害值的影响.汽车工程,2008年,第30卷(11):964-967.
    [122]马志雄,朱西产.假人主要伤害值对等效双梯形减速度曲线的灵敏度分析.汽 车工程,2009年,第31卷(2):165-169.
    [123]张君媛,陈光,刘乐丹等.乘用车结构正面抗撞性波形设计与目标分解.吉林大学学报(工学版),2012年,第42卷(4):823-826.
    [124]Alexander J. M. An approximate analysis of the collapse of thin cylindricalshells under axial load. The Quarterly Journal of Mechanics and Applied Mathematics,1960,13(1):10-15.
    [125]Wierzbicki, T., and Abramowicz, W. On The Crushing Mechanics of Thin-Walled Structures. Journal of Applied Mechanics,1983, Vol.50:727-734.
    [126]Guoxing Lu, Tongxi Yu. Energy absorption of structures and materials. CRC Press. Boca Raton, New York, Washington, DC.
    [127]Mahmood, H. F., and Paluszny, A. Stability of Plate Type Box Columns Under Crush Loading. Computational Methods in Ground Transportation Vehicles, 1982, AMD-Vol.50:17-33.
    [128]Mahmood, H. F., Paluszny, A., and Lin, Y. S. Bending Collapse of Automotive type Components. XXEI Fisita Congress,1988, Technical Papers Vol.1:1. 220-1.342.
    [129]钟志华,张维刚,曹立波等.汽车碰撞安全技术.北京:机械工业出版社,2003,33-35.
    [130]黄天泽,黄金陵.汽车车身结构与设计.北京:机械工业出版社,1999,40-50.
    [131]B. Paluch, M. Gre'diac. Combining a finite element programmer and a genetic algorithm to optimize composite structures with variable thickness. Composite Structures,2008,83(3):284-294.
    [132]F.S. Almeida, A.M. Awruch. Design optimization of composite laminated structures using genetic algorithms and finite element analysis. Composite Structure,2009,88(3):443-454.
    [133]Leonard Evans, Driver injury and fatality risk in two-car crashes versus mass ratio inferred using Newtonian mechanics. Accident and prevention,1994, Vol. 26(5):609-616.
    [134]Evans L, Causal influence of car mass and size on driver fatality risk. American Journal of Public Health,2001,91:1076-1081.
    [135]Jeya Padmanaban. Influences of vehicle size and mass and selected driver factors on odds of driver fatality.47th Annual Proceedings Association for the Advancement of Automotive medicine,2003.
    [136]Leonard Evans. How to Make a Car Lighter and Safer. SAE:2004-01-1172.
    [137]Denis P. Wood, Ciaran K. Simms. Car size and injury risk:a model for injury risk in frontal collisions. Accident Analysis and Prevention,2002,34:93-99.
    [138]Talsuke Watanabe, Shigeru Hirayama, Kazuhiro Obayashi et al. Research on Stiffness Matching Between Vehicles for Frontal Impact Compatibility. ESV conference paper:05-0302.
    [139]Shigeru Hirayama, Talsuke Watanabe, Kazuhiro Obayashi et al. Second Report of Research on Stiffness Matching between Vehicles for Frontal Impact Compatibility. ESV conference paper:07-0261.
    [140]Mohan Pradeep. Development of Objective Metrics to Improve Vehicle Compatibility in Frontal Collisions. The George Washington University,2008, 25-26.
    [141]Hideki Yonezawa, Koji Mizuno, Takahiro Hirasawa, Hitoshi Kanoshima etc. Summary of activities of the compatibility working group in Japan. ESV: 09-0203.
    [142]Koji Mizuno and Yuji Arai. The effectiveness of matching front rail heights in car-to-car crashes. International Journal of Crashworthiness,2010, Vol.15(6): 571-579.
    [143]http://www.access.gpo.gov/nara/cfr/waisidx_99/49cfr581_99.html
    [144]Edwards, M., et al. Development of Test Procedures and Performance Criteria to Improve Compatibility in Car Frontal Collisions. Vehicle Safety,2002.
    [145]Dhafer Marzougui, Randa Radwan Samaha, Chongzhen Cui et al. Extended Validation of the Finite Element Model for the 2001 Ford Taurus Passenger Sedan, www.ncac.gwu.edu.2012.6.
    [146]Dhafer Marzougui, Randa Radwan Samaha, Fadi Tahan et al. Extended Validation of the Finite Element Model for the 2002 Ford Explorer Sport Utility Vehicle.www.ncac.gwu.edu.2012.6.
    [147]Dhafer Marzougui, Randa Radwan Samaha, Chongzhen Cui et al. Extended Validation of the Finite Element Model for the 2010 Toyota Yaris Passenger Sedan, www.ncac.gwu.edu.2012.6.
    [148]Gail T. Tominaga, Steve Erwin. Wide vs. Narrow Frontal Crashes:Do Injury Patterns Differ? CIREN San Diego Team, CIREN Meeting, September 2006.
    [149]Austin, R., Lower extremity injuries and intrusion in frontal crashes, SAE 2012 Government/Industry Meeting, Washington, DC,2012,1-11.
    [150]Morgan, R., Cui, C., Digges, K., Cao, L. et al. Foot and Ankle Injuries to Drivers in Between-Rail Crashes. SAE Technical Paper 2013-01-1243.
    [151]钟毅芳,陈柏鸿,王周宏.多学科综合优化设计原理与方法.武汉:华中科 技大学出版社,2006,96-99.
    [152]王元博,夏勇,景谊明等.考虑行人腿部保护和低速碰撞特性的保险杠系统概念设计[J].汽车工程,2009,31(12):1111-1115.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700