一类非线性结构混沌运动的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
梁、拱、板、壳等非线性结构的受迫振动问题,经过Galerkin原理的转换,均可归结为如下形式的非线性动力方程老+d窝+2pJ’+gr’’占g(X,i,/) (1)
     对方程(1)的动力学性质的研究,是当前固体力学的研究领域中前沿的研究内容。对方程(1)的研究的解析结果,能有效的分析、计算和掌握梁、板、壳、拱等非线性弹性动力系统的发展演化规律,更好的认识、理解和实现对这类非线性系统的预测和控制。
     方程(1)是含有二次非线性项和三次非线性项的动力学方程。当
     9:0时,方程 (1) 成为
     ~+ax+Tx’’占g(x,i,t) (2)
     方程(2)是Duffing方程,其特点是方程等式左边中的非线性项为三次幂。前人对Duffing方程(2)描述的系统进行了许多研究,但很少见到用解析方法研究方程(1)。二次非线性项和三次非线性项共同存在于方程(1)中,使得用解析方法研究这类系统的难度增大,对应Hamilton系统中的同宿轨道或异宿轨道的解析表达式的求解相当困难。本文用Melinkov方法对方程(1)的混沌运动进行了全面和详细地研究。主要工作和结果如下:
     1.分析了方程(1)建立的平面Poincare映射的奇点性质,讨论了此类方程对应的Hamilton系统的同宿轨道和异宿轨道与三个参数O、 夕、尸的关系,给出了Hamilton系统存在同宿轨道或异宿轨道的充分必要条件。
     2.得出了同宿轨道或异宿轨道的解析表达式。应用Melnikov方法,计算并建立了同宿轨道或异宿轨道的Melnikov函数。给出了Poincare映射出现Smale马蹄混沌的临界值。
     3.得到了同宿轨道或异宿轨道内的,围绕中心型奇点的一族周期轨道的解析表达式。计算并建立了次谐周期轨道的Melnikov函数,给出了Poincare映射出现周期m点的判据。
     4.讨论了系统经过次谐分叉进入Smale马蹄混沌的具体途径。
     文中的各个结果均以具体的解析形式给出,其中包括同宿轨道或异宿轨道的解析表达式及其Melnikov函数;同(异)宿轨道内围绕中心型奇点的周期轨道的解析表达式及其Melnikov函数;出现周期m点的临界值;出现Smale马蹄混沌的临界值等。这些结果对于分析和研究方程(1)的Smale马蹄
    
     西南交通大学博士研究生学位论文 第11页
    混浊运动具有重要意义。
     本文进行的研究讨论工作始终考虑方程中三个参数a、p、厂对系统的
    影响,出于参数。、g、厂决定着确定系统的动力学行为,因而文中所得’
    到的各个结果具有一般性和普适性。至此,本文基本解诀了方程 门)的关
    于Smale马蹄混炖的判别及相关问题。
Converted by Galerkin principle, problems of forced vibration of nonlinear structure such as beam, arch, slab and shell can be converted into the following nonlinear dynamic equation
    Researches on dynamic properties of equation (1) are the leading work of present research activities of Solid Mechanics. Through the analytical research result of equation (1), evolution rules of nonlinear elastic dynamic system such as beam, slab, shell and arch can be effectively analyzed, calculated and mastered. Therefore prediction and control of this sort of nonlinear system can be more effectively recognized, understood and achieved.
    Equation (1) is the dynamic equation that contains quadratic nonlinear term and cubic non-linear term. When =0, this equation becomes
    Equation (2) is the Duffing equation, whose characteristic is that the nonlinear terms on the left side of the equation are all cubic power. Many studies have been carried out on the system described by Duffing equation (2), but very few on equation (1) by using the analytical method. The quadratic nonlinear term and the cubic nonlinear term that coexist in equation (1), thus causes difficulty in studying this sort of system through the analytical method and correspondingly makes the solution of analytical expression of homoclinic orbit or heteroclinic orbit in Hamilton system extremely difficult. By using Melinkov Method, the chaotic movement of equation (1) is thoroughly studied in this paper. The main work and results are as follows:
    1. Nature of the singular point of plane Poincare mapping that is established by equation (1) is analyzed. Relationship between the three parameters and homoclinic orbit and heteroclinic orbit of the Hamilton system corresponding to this sort of equation is discussed. The adequate and essential condition of the existing homoclinic orbit or heteroclinic orbit for the Hamilton system is presented.
    
    
    
    2. An analytical expression of homoclinic orbit or heteroclinic orbit is worked out. By using Melnikov method, the Melnikov function of homoclinic orbit or heteroclinic orbit is calculated and established. The critical value when Poincare mapping taken the form of Smale horseshoes chaos is presented
    3. Within the homoclinic orbit or heteroclinic orbit, the analytical expression of one set of periodical track surrounding the center-type singular point is worked out. The Melnikov function of subharmonic orbits is calculated and established and the criterion of appearing periodical m point of Poincare mapping is presented.
    4. The specific route of the system going into Smale horse-hoof chaos through subharmonic bifurcation is discussed.
    Every result in the paper is presented through specific analytic expression, including the analytic expression of homoclinic orbit or heteroclinic orbit and its Melnikov function, analytical expression of periodical track surrounding the center-type singular point within the homoclinic orbit or heteroclinic orbit and its Melinkov function, the critical value when periodical m point appears, the critical value when Smale horseshoes chaos appears, etc.. These results are of great significance for studying and analyzing the Smale horseshoes chaos of equation (1).
    Influence of the three parameters in the equation is persistently considered in the research work conducted in this paper. Because the determination of the dynamic behavior of the system is decided by the parameters , every result in this paper has general and universal meaning. At this time, the criterion concerning the Smale horse-hoes chaos of equation (1) and its related problems are basically solved in this paper.
引文
[1] 陆启韶.分叉与奇异性.上海科技教育出版社.1995.
    [2] Chow S N, Hale J. Methods of Bifurcation Theory. Grundlehren, 251, Springer-Verlar, New York, 1982.
    [3] Verhulst F, Nonlinear Differential Equations and Dynamical Systems. Springer-verlag. 1990.
    [4] 陈虬,刘先斌.随机稳定性和随机分叉研究进展.现代数学和力学(MMM),1998:96—100.
    [5] 刘先斌,陈虬,陈大鹏.非线性随机动力系统的稳定性和分叉的研究.力学进展,1996:26(4):433~452.
    [6] 谢建华.一类碰撞振动系统的余维二分叉和Hopf分叉.应用数学和力学,1996;17(1):63~72.
    [7] 谢建华.振动的数学模型和全局分叉.力学学报,1997;29(4):456~463.
    [8] 张继业,杨翊仁,曾京.Hopf 分叉的代数判据及在车辆动力学中的应用.力学学报,2000:32(5):596~605.
    [9] 徐健学.工程动力学中的非线性和混沌.见:黄文虎,陈滨,王照林主编,一般力学(动力学振动与控制)最新进展.科学出版社,1994.
    [10] Wiggins S. Introduction to Applied Nonliear Dynamical System and Chaos. Springer-Verlag, 1990.
    [11] Holmes P J, Moon F C. Strange Attractors and Chaos in Nonlinear Mechannics. ASME J. Appl. Mech, 1983;50:1021-1032.
    [12] Holmes P J. A Nonlinear Oscillator with a Starange Attractor. Phil. Trans. R. Soc. Lond. A, 1979;292: 419-448.
    [13] 杨桂通.非线性弹塑性结构的非规则动力行为与混沌运动.现代数学和力学(MMM),1998:54—61.
    [14] 龙运佳.近代工程动力学----随机、混沌.科学出版社,1998.
    [15] 张秉正.非线性动力学与混沌运动.东北师范大学出版社,1995.
    [16] Mandelbrot B B. The Fractal Geometry of Nature. San Francisco, Freeman W H and Co. 1982.
    [17] 杨展如.分形物理学.上海科技教育出版社.1996.
    [18] 王动生,曹磊.混沌分形及其应用.中国科学技术大学出版社.1996.
    
    
    [19] 董连科.分形理论及其应用.辽宁科学技术出版社,1990.
    [20] 陈刚.分型几何研究的若干问题.见:冯长根,李后强,祖元刚主编,非线性科学的理论方法和应用.科学出版社,1997.
    [21] Saunders P T. Introduction to Catastrophe Theory. Cambridge university press, 1980.
    [22] 白以龙,夏蒙棼,柯孚久.演化诱致突变.见:庄逢甘主编,现代力学与科技进步.清华大学出版社,1997.
    [23] Eckhaus W, Van Harten A. The Inverse Scattering Transformation and the Theory of Solitons an Introdution. North-holland Publishing Company, 1981.
    [24] 黄永念.孤子理论和微扰方法.上海科技教育出版社,1996.
    [25] 谷超豪等.孤粒子理论与应用.浙江科学技术出版社,1990.
    [26] 陈予恕.非线性振动、分叉和混沌的最新进展.见:黄文虎,陈滨,王照林主编,一般力学(动力学振动与控制)最新进展.科学出版社,1994.
    [27] 舒仲周,谢建华.冲击动力学的发展与展望.见:黄文虎,陈滨,王照林主编,一般力学(动力学振动与控制)最新进展.科学出版社,1994.
    [28] 黄永念.非线性动力学的历史飞跃.见:庄逢甘主编,现代力学与科技进步.清华大学出版社,1997.
    [29] 陆启韶.复杂系统的非线性动力问题.见:白以龙,杨卫主编,力学 2000.气象出版社,2000.
    [30] 陆启韶,陈予恕,徐健学.非线性动力学及其工程应用.见:庄逢甘主编,现代力学与科技进步.清华大学出版社,1997.
    [31] 傅衣铭.结构非线性动力学分析.暨南大学出版社,1997.
    [32] 王树禾.微分方程模型与混沌.中国科学技术大学出版社,1999.
    [33] 郭百灵.非线性演化方程.上海科技教育出版社,1995.
    [34] 周纪卿,朱因远.非线性振动.西安交通大学出版社,1998.
    [35] 刘式适,刘式达.物理学中的非线性方程.北京大学出版社,2000.
    [36] 郭百灵.分叉、混沌、奇怪吸引子、湍流及其它------关于确定性系统中的内在随机性.物理学进展,1983;3(3):330—416.
    [37] Grebogi C, Yorke J. 杨立,刘巨斌等译.混沌对科学和社会的冲击.湖南科学技术出版社,2001.
    [38] 郭仲衡.近代数学与力学.北京大学出版社,1987.
    
    
    [39] 张筑生.微分动力系统原理.科学出版社,1997.
    [40] 张芷芬等.向量场的分叉理论基础.高等教育出版社,1997.
    [41] 陈予恕,唐云.非线性动力学中的现代分析方法.科学出版社,1992.
    [42] 李云.非线性动力系统的现代数学方法及其应用.人民交通出版社,1998.
    [43] 叶彦谦.极限环论.上海科技出版社,1984.
    [44] 张芷芬等.微分方程定性理论.科学出版社,1997.
    [45] 舒仲周等.运动稳定性.中国铁道出版社,2001.
    [46] 王照林.运动稳定性及其应用.高等教育出版社,1992.
    [47] Carr J. Applications of Centre Manifold Theory. Springer-Verlag, New York, 1984.
    [48] Chow S N, Hale J K. Method of Bifurcation Theory. Springer-Verlag. New York, 1982.
    [49] Vanderbauwhede A. Centre Manifold—Normal Forms and Elementary Bifurcations. In Dynamics Reported. Vol.2:89-169. John Wiley & Sons, 1989.
    [50] 陈予恕.非线性振动.天津科技出版社,1983.
    [51] Golubitsky M. Singularities and Groups in Bifurcation Theory. Vol. 1. Springer-Verlag, New York, 1985.
    [52] Arnold V I. Geometrical Methods in the Theory of Ordinary Differential Equations. Springer-Verlag, new York, 1983.
    [53] Wang D. An Introducation to the Normal Form Theory of Ordinary Differential Equations. Adv. in Math. 1990;19:38-71.
    [54] Nayfeh A H. Perturbation Methods. John Wiley & Sons, New York, 1973.
    [55] Minorsky N. Nonlinear Oscillatons. D.van Norstand Comp. Inc., Princeton, 1962.
    [56] Nayfeh A H. Introducation to Perturbation Techniques. John Wiley & Sons, 1981.
    [57] Sanders J A. Averaging Methods in Nonlinear Dynamical Systems. Springer-Verlag, New York, 1985.
    [58] 顾德淦.摄动方法—及其在某些力学问题中的应用.高等教育出版社,1993.
    
    
    [59] 徐兆.非线性力学中的一种新的渐进方法.力学学报.1985;17(3):34~40.
    [60] Burton T D. On the Multi-scale Analysis of Strongly Nonliearer Forced Oscillators. Int. J. Norl. Mech.1986;21(2):135—146.
    [61] Cheung Y K.A Modified Lindstedt-Poincare Method for Certain Strongly Nonlinear Oscillators. Int. J.Nonl. Mech. 1991;26(4): 367-368.
    [62] Arnold V I. Bifurcations and Singularities in Mathematics and Mechanics. Proc.of the XVIIth ICTAM, 1988.
    [63] Wiggins S. Global Bifurcations and Chaos-Analytical Method. Springer-Verlag, 1988.
    [64] Lorenz E N.刘式达等译.混沌的本质.气象出版社,1997.
    [65] 陈式刚.映象与混沌.国防工业出版社,1992.
    [66] 李骊.强非线性振动系统的定性理论与定量方法.科学出版社,1997.
    [67] Oseledec V I. A Multiplicative Ergodic Theorem Liaypunov Characeristic Numbers for Dynamical Systems. Trans. Moscow Math. Soc, 1986; 19(2):197~221.
    [68] 郝柏村.从抛物线谈起---混沌动力学引论.上海科技出版社,1993.
    [69] Bowen R. Equilibrium States and the Ergodic Theory of Anosow Diffeomorphisms. Lecture Notes in Mathematics, Vol.470. Springer-Verlag, Berlin,1975..
    [70] Ruelle D,Takens F. On the Neture of Turbulence. Commun. Math. Phys. 1971,20(1): 167-192.
    [71] Ruelle D, Strange Attractors. The Mathematical Intelligencer, 1980; 2(1): 126-137.
    [72] 李后强,汪富泉.分形理论及其在分子科学中的应用.科学出版社,1993
    [73] 刘曾荣.混沌的微扰判据.上海科技教育出版社,1994.
    [74] 陆启韶.非线性动力学、分叉和混沌.见:黄文虎,陈滨,王照林主编,一般力学(动力学振动与控制)最新进展.科学出版社,1994.
    [75] Guckenheimer J,Holmes P. Nonlinear Oscillations,Dynamical Systems and Bifurcations of Vector Fields. Springer-Verlag, 1983.
    [76] 李继彬.混沌与 Melnikov 方法.重庆大学出版社,1989.
    [77] Liu Zengrong(刘曾荣). Second Order Melnikov Function and its Application, Physics Letters A, 1990; 143A(5):213-216.
    
    
    [78] 李继彬,冯贝叶.稳定性分叉与混沌.云南科技出版社,1995.
    [79] Dankowicz H. Looking for Chaos, An Extension and Alternative to Melnikov's Method. Int.J.Bif.& Chaos,1996; 6(3):485-496.
    [80] Gruendler J. The Existence of Homoclinic Orbits and the Method of Melnikov for Systems in R~n, SIAM J.Math. Anal, 1985;16(5):907-931.
    [81] Robinson C. Horseshoes for Autonmous Hamiltonian Systems using the Melnikov Integral. Ergodic Theory Dynawical Systems, 1988; 8: 359-409.
    [82] Holmes P J, Marsden J E. Melnikov's Method and Arnold Diffuson for Perturbations of Integrable Hamiltonian Systems. J.Math. Phys, 1982; 23: 669-675.
    [83] 李继彬.广义哈密顿系统理论及其应用.科学出版社,1997.
    [84] Melnikov V K. On the Stability of the Center for Time Periodic Perturbations. Trans. Moscow Math. Soc, 1963;12:1-57.
    [85] Arnold V I. Instability of Dynamical Systems with many Degrees of Freedom. Sov. Math. Dokl, 1964; 5:581-585.
    [86] Holmes P J, Marsden J E. A Partial Differential Equation with Infinitely many Periodic Orbits. Chaotic Oscillations of a Forced Beam. Rch. Ration. Mech. Anal, 1981;76:135-166.
    [87] Baran. D.D., Mathematical Models used in Studying the Chaotic Vibration of Buckled Beams. Mechanics Research Communications, 1994; 21(2): 189-196.
    [88] Moon F C, Holmes P J. A Magnetoelelastic Strange Attractor. J.Sound Vib, 1979; 65: 285-296, Errata, 69: 339.
    [89] Ueda Y. Steady Motion Exhibited by Duffing's Equation: A Picture Book of Regular & Chaotic Motions. In New Approaches to Nonlinear Problems, P. J. Holmes (ed), SJAM: Philadelphia, 1980: 311---322.
    [90] 张年梅.弹塑性系统的混沌运动研究.太原工业大学工学博士学位论文,1997.
    [91] 许政范,林常,刘曾荣,蒋继发.映射、马蹄与混沌.现代数学和力学 M. M. M 会议专题报告,1986.
    [92] 刘曾荣.混沌研究中的浑沌研究中的 Melnikov 方法.见:郭仲衡主编,近代数学与力学.北京大学出版社,1987.
    
    
    [93] Moon F C. Chaotic Vibration Introduction for Applied Scientists and Engineers. New York, John Willey & Sons, 1987.
    [94] Ueda Y. Explosion of Strange Attractors Exhibited by Duffing's Equation in Nonlinear Dynamics. R.H.G.Helleman (ed), New York Academy of Sciences, New York, 1980: 422-434.
    [95] 刘曾荣,姚国伟,朱照宣,软弹簧系统在周期扰动下通向混沌的道路.应用数学与力学,1986;7(2):103-108.
    [96] Li X G, Moon F C. Criteria for Chaos of a Three-well Potential Oscillator with Homoclinic and Heteroclinic Orbits. J. Sound & Vib, 1990; 136(1): 17-34.
    [97] Chacon R, Bejarano J D. Homoclinic and Heteroclinic Chaos in a Triple-well Oscillator. J. Sound & Vib, 1995; 186(2):269-278.
    [98] Margallo J G, Bejarano J D. Melnikov's Methold for Nonlinear Oscillator with Nonlinear Excitations. J. Sound & Vib, 1998; 212(2): 311-319.
    [99] 韩强.几种结构的动力屈曲、分叉和混沌的研究.太原工业大学工学博士论文,1999.6.
    [100] 王立彬.非线性梁的混沌运动研究.西南交通大学研究生学位论文,1999.5.
    [101] 韩强,张善元,杨桂通.弹性系统的混沌运动.见:庄逢甘主编,现代力学与科技进步.清华大学出版社,1997:221-224.
    [102] 叶建军,陈虬.一类非线性结构的动力行为分析.工程力学增刊,2000;3:77-80.
    [103] 叶建军,陈虬.一类非线性结构动力系统的混沌运动分析,西南交通大学学报,2001;36(2):214-216.
    [104] 叶建军,陈虬.非线性振动系统的混沌运动.西南交通大学学报,2001;36(6)
    [105] 高本庆.椭圆函数及其应用.国防工业出版社,1991.
    [106] 王竹溪,郭敦仁.特殊函数论.科学出版社,1979.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700